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Abstract—1In this paper, we investigate effects of communi-
cation delays on the nonlinear dynamics of connected vehicle
systems. Our modeling framework incorporates communication
delays, which arise from the intermittency and packet drops
in wireless vehicle-to-vehicle communication. Plant stability
and string stability are used to characterize the system-level
performance of vehicle networks. Delay-dependent stability
conditions are derived based on the Lyapunov-Krasovskii theo-
rem and then visualized by using stability diagrams. Numerical
simulations are used to validate the stability diagrams and to
demonstrate that bistability can be avoided by utilizing the
nonlinear stability analysis presented in this paper.

I. INTRODUCTION

In recent years, cooperative adaptive cruise control (CAC-
C) has been intensively studied and showed great potentials
in improving traffic efficiency [1]-[3]. CACC requires that
each vehicle monitors the motion of the vehicle immediately
ahead by range sensors (e.g., radar) as well as the motion of
the designated leader via wireless vehicle-to-vehicle (V2V)
communication. Such fixed connectivity structure does not
take full advantage of V2V communication and also makes
it difficult to implement CACC in real traffic, where most of
vehicles are not equipped with radar.

To fully exploit V2V communication, connected cruise
control (CCC) was proposed [4]-[7], which allows one to
utilize ad-hoc connections with multiple vehicles ahead. CCC
can be used either to assist human drivers or to automatically
regulate the longitudinal motion of vehicles. Incorporating
CCC vehicles into the flow of non-CCC vehicles leads to
connected vehicle systems (CVSs), which require neither
designated leader nor fixed connectivity structure. Since
CVSs allow the incorporation of human-driven vehicles that
are not equipped with range sensors or V2V communication
devices, it can be implemented in real traffic.

Plant stability and string stability are typically used to
characterize the system-level performance of vehicle net-
works [8], [9]. Plant stability requires that the equilibrium
of all vehicles in the network is asymptotically stable in
absence of external disturbances. If some vehicles cause
disturbances by accelerating or decelerating, the vehicle
network is said to be string stable if the disturbances are
attenuated when propagating upstream. In [4], the stability
of CVSs was investigated by using linearized models. Thus,
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the corresponding results are only valid in the vicinity of the
equilibrium.

The nonlinear dynamics of CVSs were studied in [10] by
neglecting information delays that may indeed influence the
stability significantly. In this paper, we investigate the effects
of information delays on the nonlinear dynamics of CVSs.
Considering that delay-independent stability conditions are
typically quite conservative, we seek for delay-dependent
conditions for plant stability and string stability by using
the Lyapunov-Krasovskii theory. Compared with the results
obtained using linearized models, the stability conditions de-
rived in this paper are more robust against large disturbances.

The rest of this paper is organized as follows. A general
framework for CCC design is presented in Section II, which
incorporates the information delays and nonlinear range poli-
cies. In Section III, we derive the delay-dependent stability
conditions for plant stability and head-to-tail string stability
of a CCC cascade. The stability diagrams and simulations in
Section IV demonstrate that the bistability caused by large
perturbations can be avoided using the nonlinear stability
analysis presented in this paper. Finally, conclusions are
presented in Section V.

II. DYNAMICS AND STABILITY OF
CONNECTED VEHICLE SYSTEMS

In this section, a framework is presented for modeling the
longitudinal dynamics of vehicles equipped with connected
cruise control (CCC), which utilize motion data received
from multiple vehicles ahead via wireless vehicle-to-vehicle
(V2V) communication. We incorporate the information de-
lays that arise due to intermittency and packet drops in V2V
communication. This framework ensures the existence of
uniform flow equilibrium in the resulting connected vehicle
systems (CVSs), which is independent of the network size,
connectivity structure, information delays, and control gains.

A. Dynamics of Connected Cruise Control

Fig. 1 demonstrates a scenario where the CCC vehi-
cle i monitors the positions and velocities of vehicles j =
p,...,i—1, where p denotes the furthest vehicle that vehicle i
can monitor due to the limitation of effective communication
range. Note that vehicle p is not necessarily the head vehicle
of the network. Here, h; denotes the distance between
vehicle j— 1 and vehicle j, which is also called headway,
and v; is the speed of vehicle j. Moreover, &; ; represents
the delay for vehicle i receiving motion data from vehicle j,
and 5,-, j may be human reaction time (0.5-1.5 [s]), sensing
delay (0.1-0.2 [s]), or communication delay (0.1-0.4 [s]).
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Fig. 1. A vehicle network where a CCC vehicle (red) at the tail receives
information from multiple vehicles ahead. Other vehicles (blue) may be
either CCC or non-CCC vehicles. The symbols /; and v; denote the
headway and the speed of vehicle j, respectively, while &; j denotes the
information delay between vehicles i and j.

We use the CCC framework presented in [4], that is, the
car-following dynamics of the CCC vehicle i is governed by

Ii(e) =viet (1) = 0.

i—1
vit) =Y 04 (Vi(hij(t =& ) —vilt = &)
= (1)

i—1
+ Z Bij(vi(t—&ij) —vilt —&))),
j=p

where constants «; ; and fB;; are control gains, and V;(h)
denotes the range policy that gives the desired speed as a
function of headway h. The quantity

1
= Y @)
Ll S

denotes the average headway between vehicles i and j, which
is used to make the equilibrium independent of network size
while enabling comparison of desired speeds obtained for
different j’s. When all vehicles utilize the same range policy,
i.e., Vi(h) =V (h) for all i, the framework (1) guarantees the
existence of a unique uniform flow equilibrium

hi(l)Eh*, Vi(l‘)Ev*:V(h*), 3)

for all i, which is independent of network size, connectivity
structures, information delays, and control gains. If vehicles
use different range policies, the equilibrium still exists but
not in uniform. That is, h;(t) =AY and v;(t) = v* = V(h)
but h; # h} for i # j. Since traffic data indicate that the
equilibrium is typically close to uniform [11], we neglect
such heterogeneities for simplicity.
In this paper, we utilize the range policy function

0, lf h§h8t7
V) = vnéax[l—cos(ﬂﬁ)}, if g < h < hg,
Vi it B> .

4)
This indicates that for small headways i < hy, the vehicle
tends to stop for safety reasons. For large headways h >
hgo, the vehicle aims to maintain the preset maximum speed
Vmax- Between hg and hg,, the desired velocity monotonically
increases with the headway. The nonlinear function for Ay <
h < hgo in (4) ensures the smooth change of acceleration at
h = hg and h = hg, and hence improves the driving comfort.
According to the data collected in real traffic [11], parameters
in (4) are set as hy =5 [m], hgo = 35 [m], Viax = 30 [m/s].

No. n No. (n-1) No. 1 No. 0

Fig. 2. CCC cascade where all followers are CCC vehicles that only react
to the vehicle immediately ahead. The symbol ¢ denotes the communication
delay while the control gains are given by « and f3.

B. Plant Stability and String Stability

Plant stability and string stability are used to characterize
the system-level performance of vehicle networks. Plant sta-
bility indicates that, in absence of external disturbances, the
uniform flow equilibrium (3) is asymptotically stable. Head-
to-tail string stability means that the disturbances caused
by the head vehicle are decreased when reaching the tail
vehicle, allowing that disturbances may be amplified by
some vehicles in the network. Head-to-tail string stability
is particularly useful for CVSs that include human-driven
vehicles, as their dynamics cannot be designed and hence
may amplify the disturbances.

Suppose that the velocity of vehicle i is expressed by
vi(t) = v* + V() for i =0,1,..., where the equilibrium
velocity v* is given by (3) while 7;(¢) denotes the perturbation
about the equilibrium. There are many ways to evaluate the
head-to-tail string stability depending on what disturbances
to consider and how to characterize the magnitude of the sig-
nals. Considering that disturbance signals may be expressed
by using Fourier series where each element is a sinusoidal
term, we use the sinusoidal disturbance

Vo(t) = Vamp sin(@t) 5)

where Vamp, @ € Ry denote the amplitude and the frequency
of the disturbance, respectively. Moreover, we use the Z.-
norm to evaluate the magnitude of signals, ie., ||[V| =
sup,o|V(z)|. Then, a vehicle network is said to be head-
to-tail string stable if

[Pnslleo < [[P0lleo, Ve € Ry, (6)

where v, denotes the steady-state disturbances for the ve-
locity of the tail vehicle.

III. STABILITY OF THE CCC CASCADE

In this section, we study the nonlinear dynamics of a
CCC cascade, which is a simple connected vehicle network
where all following vehicles are CCC vehicles that only react
to the motion of the vehicle immediately ahead via V2V
communication, as depicted in Fig. 2. We assume that all
CCC vehicles have identical communication delay ¢ and
also use the same control gains & and . Then, the dynamic
model of the CCC cascade is given by

h,’(l‘) = v,-_1(t) —V,'(t),
vi(t) = a(V(hi(t — 0)) —vi(t — 0)) (7)
+B(vic1(t— o) —vi(t—0)),
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for i=1,...,n; cf. (1). We define perturbations about the
equilibrium (3) as

bi(t) = vi(t) —v' =wvi(t) =V (h"), (8)

,n. Substituting (8) into (7) yields

;li(t) =i-1(t) = Wi(t),

bi(t) = a(V(hi(t—0)) =V (h*) = ¥i(t — 0)) €)
+B(Pi1(t—0) =it —0)).

We assume bounded headways h; € 2 C Ry, which im-
plies bounded equilibrium headway h* € 2. Then, based on
the mean value theorem, there exists y; € & such that

fori=1,...

V(hi(t—0)) =V (h*) =V'(y)hi(t — o), (10)

where the prime denotes differentiation with respect to 7 and
y; is an explicit function of A;; cf. (4). Substituting (10) into
(9) and writing the results in the matrix form, we obtain

%i(1) = Aoxi(r) + Ao (W)xi(t — o) (11
—A())C,‘,l(t)-%-B)C,',l(t—O')7
for i=1,...,n, where matrices are given by
hi(t 0 -1
el el
B 0 0
) - 0 B I
and
o(yi) =aV'(yi), k=a+p. (13)

Note that (11) is equivalent to the nonlinear model (9) since
no approximations are used throughout the process.

A. Plant Stability

When analyzing the plant stability, we neglect perturba-
tions from other vehicles, i.e., %_;(r) =0 in (11), yielding
an autonomous nonlinear delayed system

Xi(t) = Aoxi(t) + Ao (Wi)xi(t — 0). (14
Applying the Newton-Leibniz formula leads to
t
Xt — o) :x,-(t)—/ (r)dr. (15)
Jt—0O
Substituting (15) into (14) results in
ot
5(0) =AW () —Aaw) [ u(dr. (16)
Jt—0O
where
A(Y;) = Ao+Aq (W) a7

In the rest of this paper, we use L > 0 to denote that
a quantity L is positive definite and use L < 0 to denote
a negative definite quantity L. Then, a delay-dependent
sufficient condition for the plant stability of the CCC cascade
(7) is given by the following theorem.

Theorem 1: For delay ¢ and domain h; € 2 (i=1,...,n),
the CCC cascade (7) is plant stable if there exist constant
symmetric matrices P,Q,W > 0 such that

T T
A P+PA+g+cAOWA0 ATWAG  —PAg
T
Q(yr) = ATWA, AsWAe=C gy, | <0
7AF£P 0552 4
(18)

holds for Yy; € &, where arguments of Ag(y;) and A(y;)
are not spelled out to save space.

Proof: To prove Theorem 1, we utilize the Lyapunov-
Krasovskii stability theorem [12] by using the functional

—x (t)Px;(t) + / r)Ox;i(r

[ LA

where P,Q,W > 0 yields L > 0.
Differentiating (19) with respect to time and using (14)
and (16), we obtain

L=XT(0)®(yi)Xi(t) — 26T (1) PAo /tiax,-(r) dr

19)

NWi;(r)drd6,

¢ (20)
—/ xT (r)Wai(r)dr,
t—0o
where X[ (t) = [x](t), xI(t — o)] and
o(yi) = ATP+PA+Q+0ANWA)  cAlWAG
Vi) = GATWA, GATWAG — 0
2D
Considering the identity
1 t
X Oewx =< [ Xoewxndar @)
=
in (20) yields
!
L= [ AenQmt.ndr 23)
t—0o

where x[(t,r) = [x](t), xI (t— o), %] (r)] and Q(;) is given
by (18). If (18) holds, we have x[(¢,7)Q(yi)xi(t,r) < 0 for
r € [t — o, t]. Since the integration does not change the
negative sign, we have L < 0, implying that the equilibrium
xi=0(@{=1,...,n) is asymptotically stable. [ ]

We emphasize that the condition (18) leads to the largest
stable domain that can be obtained by the Lyapunov-
Krasovskii functional (19), since neither inequalities nor
approximations are used throughout the derivation. For given
domain &, the plant stability condition (18) can be numeri-
cally solved for P,Q,W by utilizing linear matrix inequality
(LMI) toolbox in MATLAB for sufficiently many points
in 2. The corresponding results are visualized in stability
diagrams as shown in Section IV.

B. Head-to-Tail String Stability

Considering that string stability is used to characterize
the steady-state performance under periodic excitations, we
begin by presenting a condition that ensures the existence of
periodic steady-state response.
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Theorem 2: Suppose that the disturbance on the speed of
head vehicle is T-periodic. If Theorem 1 holds, then the CCC
cascade (7) has T-periodic steady-state response, i.e.,

Xis (l‘ + T) = xis(t) R 24)

i=1,....,n,

where the subscript “s” denotes the steady state.
Proof: Substituting t =7+ T into (9) for i = 1, subtract-
ing (9), and considering the periodicity vo(t +7) = Vo (¢) and

Vo(t+T —0)="7(t —0), we have
71(¢+T) () —(M(+T)=71(1)),
W(+T) =) =a(V(@+T-0)) =V (n(-0)))
k(9 (t—i—T—G)— Pi(t—0)).
(25)

For h; € 9, based on the mean value theorem, there exists
Wi € 2 such that

V(h~(t—|—T— 0)) =V (hi(t—0))
=V'(u;) (hi(t +T — 0) = hi(t — 0)),

for i=1,...,n. Note that y; is a function of hiz cf. (10). We
define the error e (¢) = x;(t+T) —x;(¢), substitute (26) into
(25), and write the result in matrix form, which yields

éq (l‘) =Ape; (l‘) —|—AO-(LL1)€1 (l — G)
= A (0)~Ae(w) [ alrar,

cf. (14) and (16).
With the same P,Q,W > 0 as used in Theorem 1, the
Lyapunov-Krasovskii functional becomes

(26)

27)

L=¢,(t)Pe(t +/ r)Qe (r

(28)
+ / / r)We;(r)drdo,
+9
while its time derivative is given by
t
L= / ET(t,r)Q(u)Eq (1, ) dr (29)
1—0

where ET(t,r) = [el(t), el (t—0), ¢ (r)] and Q(uy) is given
by (18) while replacing y; by ;. Thus, (18) ensures that
Q) <0 for Vu; € 2. Hence, we have L =0 and L <0,
implying that e () — 0 as t — 0. This leads to zero steady-
state error e5(t) =0, i.e., x15(t +T) = x15(¢). Based on the
results for vehicle 1, one can repeat the aforementioned
process for vehicles 2,...,n and complete the proof for
Theorem 2. [ ]

When evaluating head-to-tail string stability, we assume
sinusoidal disturbance on the speed of head vehicle as given
by (5). Since ¥ (¢) is periodic with period T =27/ ®, based
on Theorem 2, a periodic steady state of the CCC cascade (7)
exists with the same period. However, due to nonlinearities
in the dynamics, the steady states are not purely sinusoidal
but may be expressed using the Fourier series.

To analyze string stability, the steady state of the tail
vehicle is needed. However, it may not be obtained explicitly
due to nonlinearities and delay effects. Thus, we seek for the

approximation of the steady state by applying the third-order
Taylor expansion to (7) about the equilibrium (3), yielding

hi(t) = ¥i-1 (1) — vi(1) ,

Ui(t) = @*hi(t —0) — k¥i(t —0) + Bii_1(t—o)  (30)
+a(eh}(t— o)+ 8k (1 — o)),
where
o =aV'(h), 8:V (2h*), 6:V éh*) 31)

cf. (13).
_ The steady-state solutions of (30) can be expressed by
his(t,€,8) and vi(t,e,8). Applying the first order Taylor
expansion with respect to € and & yields
his(t,€,8) = hi (t) + €hin(t) + 8hi3(1),
Tis(t,€,0) = Vi1 (1) + €V () + 6Vi3(t),
fori=1,...

(32)

,n. According to (5), for vehicle 0 we have

Vo,1 (l) = Vamp sin(a)t) , \7072(t) =703 (t) =0. (33)

Substituting (32) into (30) and matching coefficients of €
and 0, respectively, we obtain

ili,j(l) = Vifl,j(t) _ﬁivj(t)’

ljw'(l‘):(p*ili7j(t—6)—Kﬁi,j(t—6)+ﬁ\7i,17j(t—6) (34)
+ya(hiit o)),
fori=1,...,nand j=1,2,3. Here, y =0 and p =1 = 1.

First, we consider j = 1 in (34), which is a linear time-
invariant (LTI) system with excitation 7 (¢) given in (33).
Thus, the steady states of (34) for j =1 are in the form

hi1(t) = a; 1 cos(@t) +b; y sin(ot),

35
Vi 1(t) = cij cos(wt) +d;  sin(wt), 55)

where a;1,b;1,ci1,d;1 €R are constants. For compactness,
we use the coefficient vector

T

zig=[ a1 bi1 ciq diy | (36)

Substituting (35) into (34) for j = 1 and matching coefficients
of cos(®t) and sin(wr), respectively, we obtain

zi1= (C(a)))_1

D;q, 37

with

- oE I4)

(o) = { —¢@*F(wo) OE +kF(00) } T (38)
D) = (B@F((DO') 7A0®12)Zi71,13

where Ap and B are given in (12), I, denotes the 2-
dimensional identity matrix, and

1 0 1 | cos(P) —sin(0)
E= [ -1 0 ] , F(O)= [ sin(@)  cos(H)
Note that co;; =0 and dp,; = vamp; cf. (33).
When considering (34) for j =2 and j =3, the whole
network becomes an LTI system with excitations hl2 . and
fzil, respectively. As 711-271 only contains the frequency 2

} . (39
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while ﬁgl contains frequencies ® and 3@, the corresponding
steady states for j =2 and j =3 are in the form

hia(t) = aj2cos(201) + b;p sin(201)
i2(t) = cipcos(20t) +d;»sin(2ot),
i3(t) = aj3,1cos(wt) + b; 3 1 sin(@r)
+a;33cos(3wt) +b;33cos(3mr),
7i3(t) = ci3,1 cos(or) +di3,1 sin(or)
+ciz3cos(3mt) +d;i33cos(3mt).

S <

(40)

We also collect the coefficients in vectors as follows
zi2 = laia bia cia din)", @1
Zigk = laizk bizk cizp dizl", k=1,3,
cf. (36). Substituting (40) into (34) for j =2 and j =3 and
solving for the coefficients yields
zi2 = (C2w)) "' Dia,
%k = (C(kw))_lDiﬁ,k,
where the matrix C is defined in (38) and
Dir» = (BRF(200) —Ay®h)zi—12+ aM(200)J;,
D3y = (BQF(koo) —Ag®b)zi—13x+ oM(koo)K;,
(43)

42)
k=13,

with

o = (2 ],

Ji=100,0, (af, —b71)/2, aiibi1]",
Ki1=10,0, (3¢}, +3ai1b7,) /4, (3ai bii+3b},)/4]",

Kiz=10,0, (a7, —3ai1b7,) /4, (3ai bi1—b1)/4]".
(44)

Substituti~ng (35) and (40) into (32) results in the approx-
imation of /;(¢) and ¥;4(¢). Then, the CCC cascade is head-
to-tail string stable if

Y 0(Vamp, @) = [|Pns |/ [[P0][« < 1, VO 20,  (45)

cf. (6). Here, ||¥0]|oc = Vamp While ||| can be numerically
obtained for ¢ € [0,27/w]. Note that the amplification ra-
tio Y,0(Vamp, ®) in (45) depends on both the disturbance
amplitude and the frequency due to nonlinearities. This
is different from the amplification ratio obtained using a
linearized model (see, e.g., [4]), which only depends on the
disturbance frequency. Therefore, the string stable domains
obtained at nonlinear level may change as the disturbance
amplitude varies.

IV. STABILITY DIAGRAMS AND SIMULATIONS

In this section, we consider a CCC cascade of 31 vehicles;
see Fig. 2 with n = 30. We assume that the communication
delay is 0 = 0.2 [s] and the headways are bounded in the
domain 2 = {h:13 <h <27}. We remark that considering
larger domain 2 leads to a smaller stable region in the plane
of control gains. Since the stability conditions presented
in this paper are sufficient for stability, the system may

Vamp = 1 [m/s] Vamp = 6 [m/s]

a [1/s]
a [1/s]

-1 .o 1 2 3 4 ] Vo
8 11/s]

3 4

B [1/s]

Fig. 3. Stability diagrams for different disturbance amplitudes as indicated.
Nonlinearly plant stable domain (light gray) and string stable domain (dark
gray) are enclosed by solid red and blue boundaries that result from (18)
and (45), respectively. Linearly plant stable and string stable domains are
enclosed by dashed-dotted red and blue curves, respectively.

still be stable for states outside the domain &. Stability
diagrams are shown in Fig. 3 for disturbance amplitudes
Vamp = 1 [m/s] and vamp = 6 [m/s]. The plant stable domain
(light gray) enclosed by red solid curves is obtained by
(18). The blue solid boundary results from (45). Since plant
stability is a precondition for string stability, the string stable
domain (dark gray) is the overlap between the plant stable
domain and the region enclosed by blue solid curve. Here,
the domains enclosed by dashed-dotted red and blue curves
are the plant and string stable domains obtained using the
linearized model shown in [4], which do not change with
the disturbance amplitude. Fig. 3(a) shows that the linear
and the nonlinear string stable domains are similar when the
disturbance amplitude is small, but the difference increases
for large disturbance amplitudes; see Fig. 3(b).

To demonstrate the system performance, we select the
points A—C in Fig. 3(a). The initial conditions are given
by h;(t) =20 [m] and v;(¢) =20 [m/s] for i = 1,...,30
and 7 € [—0,0]. When evaluating plant stability, we as-
sume constant speed of head vehicle vo(r) = 22.5 [m/s].
Simulations in Fig. 4(a,b) correspond to points A and B.
Note that case A is plant unstable although it is in the
linearly plant stable domain. This indicates that the linear
stability of the equilibrium cannot ensure the stability of
the nonlinear system for large perturbations. To investigate
head-to-tail string stability, we assume sinusoidal disturbance
on the speed of head vehicle vo(r) = 22.5 + vamp sin(@t)
where vamp = 1 [m/s] and @ = 0.8 [rad/s]; cf. (5). The
simulations in Fig. 4(c,d) indicate that case B is head-to-tail
string unstable but head-to-tail string stability is achieved in
case C. Fig. 4(c) also shows that the steady-state speed of
tail vehicle is periodic with the same frequency as the speed
of head vehicle.

For nonlinear systems, bistability may occur, indicating
that the system is stable for small disturbances but loses
stability for large disturbances. Here, we choose point D
in Fig. 3(b) to demonstrate this phenomenon. We assume
vo(t) = 22.5 4 vampsin(wt) where @ = 0.4 [rad/s]; cf. (5).
Simulations in Fig. 5(a,b) show that the system is string
stable for vamp = 1 [m/s] but string unstable for vamp = 6
[m/s]. This indicates that the linear string stable domain is
not applicable for large disturbances while it can be used
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Fig. 4. Simulation results for CCC cascade. (a,b): cases A and B for plant
stability. (c,d): cases B and C for string stability. Black dash-dotted and solid
curves denote the speeds of the head and the tail vehicles, respectively.

when disturbances are small. In Fig. 5(c—f), we compare
the numerical simulations of the tail vehicle (black curve)
with the corresponding linear approximation (red curve)
and nonlinear approximation (blue curve). When vymp = 1
[m/s], both linear and nonlinear approximations track the real
steady state well; see Fig. 5(c,e). When vymp = 6 [m/s], the
error between the numerical simulation and the approxima-
tions becomes significant. However, compared with the linear
approximation, the peak value of nonlinear approximation is
much closer to the peak value of the real steady state; see
Fig. 5(d,f). Since ||Vys]| determines the string stability, the
nonlinear string stable domains in Fig. 3 can approximate the
exact stable domain well for large disturbance amplitudes.

V. CONCLUSIONS

In this paper, we investigated the nonlinear dynamics of
connected vehicle systems in presence of communication
delays caused by intermittency and packet drops in vehicle-
to-vehicle communication. Delay-dependent sufficient condi-
tions for plant stability and head-to-tail string stability were
derived based on the Lyapunov-Krasovskii theory. Simula-
tions were conducted to validate the stability conditions for
large disturbances. In the future, the present work will be
extended by investigating effects of connectivity structures
on the dynamics of heterogeneous vehicle networks.
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Fig. 5. Simulations and comparisons between simulation and approxima-

tions for vamp = 1 [m/s] and vamp = 6 [m/s], respectively. Black dash-dotted
and black solid curves indicate the velocities of head vehicle and tail vehicle,
respectively. Red and blue curves are used to denote linear and nonlinear
approximations, respectively.
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