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Abstract— In this paper we investigate the concept of con-
nected cruise control (CCC) where vehicles rely on ad-hoc
wireless vehicle-to-vehicle (V2V) communication to control their
longitudinal motion. While V2V communication potentially
allows vehicles to build detailed knowledge about the traf-
fic environment, intermittencies and packet drops introduce
stochastic delays into the communication channels that make
control very challenging. We derive the mean and covariance
dynamics for the corresponding stochastic system and analyze
the effects of stochastic delays on vehicular strings. We also
provide conditions for plant and string stability using the mean
and the covariance. Moreover, we demonstrate that how the
stable regimes shrink when the sampling time or the packet
drop ratio increases. Our results have important implications
regarding safety and efficiency of connected vehicle systems.

I. INTRODUCTION

Emerging technologies in wireless vehicle-to-vehicle
(V2V) communication may allow vehicles to obtain infor-
mation about the motion of multiple vehicles ahead. This
may lead to advanced longitudinal control algorithms, which
can be implemented even when the vehicle is not equipped
with additional sensors. We refer to this as connected cruise
control (CCC) [1]. Apart from improving driver comfort and
safety, the impact of CCC on traffic dynamics and mobility
can be significant even for low penetration of CCC vehicles
due to the long-range connections available [2,3]. However,
for current dedicated short range communication (DSRC)
devices, packets are usually broadcasted in every 100 ms
[4], which requires the consideration of digital effects and
time delays [5]. Moreover, packets may be dropped from
time to time [6], which results in stochastic delay variations.

In this paper, we study the longitudinal dynamics of ve-
hicles with stochastic delays in the communication channels
and evaluate the stability of the uniform flow. In particular,
we study plant stability, i.e., the ability of a CCC vehicle
to follow a leader driving at a constant speed, and string
stability, that is, the ability of a CCC vehicle to attenuate
velocity fluctuations imposed by the leader. By analyzing
the linearized system, we derive necessary conditions for
plant and string stability of vehicular platoons using the mean
dynamics, and necessary and sufficient conditions for plant
and nσ string stability using the covariance dynamics. Also,
the performance degradations are evaluated when the packet
delivery ratio decreases.

II. PRELIMINARIES

In this paper, we need to use Kronecker product and
vectorization of matrices intensively, so we recall the
following definitions and theorems from [7].

Definition 1: Let hi ∈ Rn denote the i-th column of the
matrix H ∈ Rn×m, i.e., H = [h1 h2 . . . hm]. The
vector operator vec(H) ∈ Rmn is defined as

vec(H) =
[
hT

1 hT
2 . . . hT

m

]T
. (1)

Theorem 1: For matrices A ∈ Rm×n, B ∈ Rn×l, C ∈
Rp×q and D ∈ Rq×r, we have

(AB)⊗ (CD) = (A⊗C)(B⊗D) , (2)

where ⊗ denotes Kronecker product.

Theorem 2: For any three matrices A, B and C for which
the matrix product ABC is defined, we have

vec(ABC) = (CT ⊗A)vec(B) . (3)

Definition 2: For a random variable x ∈ Rn, the second
moment and the second central moment are defined as E[x⊗
x] and E[(x−µ)⊗ (x−µ)], respectively, where µ = E[x]
denotes the mean. It can be shown that

E[(x− µ)⊗ (x− µ)] = vec
(
E[(x− µ)(x− µ)T]

)
, (4)

where E[(x− µ)(x− µ)T] is the covariance matrix.

III. CONNECTED CRUISE CONTROL WITH STOCHASTIC
DELAYS

In this section, we present a CCC design while incorpo-
rating stochastic delay variations due to the packet loss in
wireless V2V communication. Fig. 1 shows a vehicle chain
where each vehicle is using the information received from the
vehicle immediately ahead via wireless communication. This
can be viewed as the concatenation of leader-follower pairs.
We consider a nonlinear controller that acts on the inter-
vehicle distance (or headway) h, which can be calculated
from GPS coordinates, the leader’s velocity vL, and the
vehicle’s own velocity v.

The leader broadcasts its kinematic information intermit-
tently with a sampling time of ∆t, which yields the time
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Fig. 1. The top row shows a chain of vehicles equipped with V2V
communication on a single lane, which is the concatenation of leader-
follower configuration displayed at the bottom. Dashed arrows indicate
wireless communication links between vehicles.

mesh tk = k∆t for k = 0, 1, 2, . . .; see Fig. 2(a). According
to the IEEE802.11p protocol used in DSRC, the transmitter
is unaware whether the broadcasted packet has been suc-
cessfully delivered and no packets are re-transmitted. We
assume that at time instant tk, previous τ(k)−1 packets have
been dropped consecutively. Thus, the last packet received
successfully was transmitted at time instant tk−τ(k). The
controller outputs a command based on this information at
tk−τ(k)+1, that is kept constant until tk+1 using a zero-order
hold, since no new packet is delivered successfully until tk;
see Fig. 2(b). Since the packet drop dynamics is governed by
a stochastic process, the digitally controlled system is forced
by piecewise constant inputs of stochastically varying length.
Fig. 2(d) shows the time evolution of τ(k), which can be
formulated as

τ(k + 1) =

 1, if a packet is received
during [tk, tk+1),

τ(k) + 1, otherwise.
(5)

Assuming that the packet delivery ratio is q, the prob-
ability density function of τ(k) is given by the geometric
distribution

fτ(k)(ξ) =
∑∞
r=1 wrδ(ξ − r) with

∑∞
r=1 wr = 1 , (6)

where δ(∗) denotes the Dirac delta function and

wr = q(1− q)r−1, (7)

see [6]. In order to avoid infinitely large delays, we truncate
the distribution such that

wr =


q(1− q)r−1 if r = 1 , . . . , N − 1 ,

1−
∑N−1
i=1 wi = (1− q)N−1 if r = N ,

0 if r > N ,
(8)

i.e., τ(k + 1) = 1 if τ(k) = N , where N is the maximum
number of trials. We choose N such that

∑N−1
r=1 wr ≥ pcr

holds where pcr is the critical cumulative delivery ratio.
For example, based on the worst case scenario q = 0.58
presented in [6], using pcr = 0.99 the maximum value is
N = 6.

Notice that since the dynamics of the vehicle still evolve in
continuous time, the corresponding effective delay increases
from τ(k)∆t to

(
τ(k) + 1

)
∆t linearly during each sam-

pling interval. Such stochastic delay variations are shown in
Fig. 2(c).
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Fig. 2. (a) Leader’s velocity is transmitted every ∆t time, but packets may
be dropped as indicated. (b) Controller output while using ZOH based on
the newest received information. (c) Time-delay variations arising in system
(9,10). (d) Time-delay variations arising in the corresponding discrete-time
system (15). (e) Range policy function (11). (f) Saturation function (12).

For simplicity we consider zero inclination and omit
rolling resistance and air drag effects in the physics-based
model [1], which leads to the simplified vehicle dynamics

ḣ(t) = vL(t)− v(t) ,

v̇(t) = u(tk−τ(k)) ,
(9)

for tk ≤ t < tk+1. We choose the nonlinear controller

u(t) = Kp

(
V
(
h(t)

)
−v(t)

)
+Kv

(
W
(
vL(t)

)
−v(t)

)
, (10)

cf. [5]. The linearized version of this is widely used in the
literature [8,9,10,11,12].

The range policy V (h) gives the desired velocity as a
function of the headway h, and must be
• continuous and monotonously increasing (the more s-

parse traffic is, the faster the vehicles intend to run);
• zero for h ≤ hst (vehicles intend to stop within a safety

distance);
• maximal for h ≥ hgo (vehicles intend to run as fast

as they can in sparse traffic – often referred to as free
flow).

In this paper, we choose the continuously differentiable range
policy

V (h) =


0 if h ≤ hst ,
vmax

2

(
1− cos

(
π h−hst

hgo−hst

))
if hst < h < hgo ,

vmax if h ≥ hgo ,
(11)

shown in Fig. 2(e). Moreover, the saturation function W (vL)
describes the switching between CCC mode (vL ≤ vmax) and
normal cruise control mode (vL > vmax) such that

W (vL) =

{
vL if vL ≤ vmax ,

vmax if vL > vmax ,
(12)

see Fig. 2(f).
For vL ≤ vmax (CCC mode), system (9,10) possesses the

equilibrium
v∗L = v∗ = V (h∗) . (13)
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Our goal is to design the control gains Kp, Kv to ensure that
the system can reach this equilibrium (i.e., plant stability
is satisfied) and also attenuate perturbations introduced by
the leader (i.e., string stability holds) in the presence of
stochastic delay variations.

IV. DISCRETIZATION AND LINEARIZATION

Fourier’s theory states that periodic signals can be rep-
resented as an infinite sum of sines and cosines, which
can also be extended to absolutely integrable non-periodic
signals. Henceforth, we will assume sinusoidal variations of
the leader’s velocity. Solving the differential equation (9,10)
with input

vL(t) = v∗L + vamp
L sin(ωt) (14)

along the time interval [tk, tk+1) in CCC mode, one may
derive the discrete-time nonlinear map[

h(tk+1)
v(tk+1)

]
=

[
1 −∆t
0 1

] [
h(tk)
v(tk)

]
+

[
α1 α2

0 0

] [
vL(tk)− v∗L
v⊥L (tk)− v∗L

]
+

[
0 1

2∆t2(Kp +Kv)
0 −∆t(Kp +Kv)

] [
h
(
tk−τ(k)

)
v
(
tk−τ(k)

)]
+

[
− 1

2∆t2Kv 0
∆tKv 0

] [
vL

(
tk−τ(k)

)
v⊥L
(
tk−τ(k)

)]
+

[
− 1

2∆t2Kp

∆tKp

]
V
(
h
(
tk−τ(k)

))
+

[
v∗∆t

0

]
,

(15)

where
v⊥L (t) = v∗L + vamp

L cos(ωt),

α1 =
sin(ω∆t)

ω
, α2 =

1− cos(ω∆t)

ω
.

(16)

That is, in the discrete-time system (15), τ(k) plays the role
of a discrete stochastic delay, see Fig. 2(d). Notice that the
scalar sinusoidal input (14) that drives the continuous-time
system (9) results in the vector-valued input for the discrete-
time system (15).

Then we linearize the system about the equilibrium (13).
Defining the perturbations h̃(t) = h(t)− h∗, ṽ(t) = v(t)−
v∗, ṽL(t) = vL(t)− v∗L , ṽ⊥L (t) = v⊥L (t)− v∗L , we obtain

X(k + 1) = AX(k) + BU(k)

+ Aτ X
(
k − τ(k)

)
+ Bτ U

(
k − τ(k)

)
,

Y (k) = CX(k) ,

(17)

where the state, the input and the output are defined as

X(k) =

[
h̃(tk)
ṽ(tk)

]
, U(k) =

[
ṽL(tk)
ṽ⊥L (tk)

]
, Y (k) = ṽ(tk) ,

(18)
and the matrices are given by

A =

[
1 −∆t
0 1

]
, B =

[
α1 α2

0 0

]
,

Aτ =

[
− 1

2∆t2KpN∗
1
2∆t2(Kp +Kv)

∆tKpN∗ −∆t(Kp +Kv)

]
,

Bτ =

[
− 1

2∆t2Kv 0
∆tKv 0

]
, C =

[
0 1

]
,

(19)

where

N∗ = V ′(h∗) = V ′
(
V −1(v∗)

)
=


π
√
v∗(vmax − v∗)
hgo − hst

if hst < h < hgo ,

0 elsewhere ,

(20)

cf. (11). Also, notice that

U(k − r) = Rr U(k), (21)

where

R =

[
cos(ω∆t) − sin(ω∆t)
sin(ω∆t) cos(ω∆t)

]
. (22)

Defining the 2(N + 1)-dimensional augmented state

X̂(k) =


X(k)

X(k − 1)
...

X(k −N)

 , (23)

(17) can be written as

X̂(k + 1) = Âτ(k) X̂(k) + B̂τ(k) U(k),

Y (k) = Ĉ X̂(k) ,
(24)

where Âτ(k) ∈ R2(N+1)×2(N+1) and B̂τ(k) ∈ R2(N+1)×2

can take the values

Âr =


A δ1rAτ δ2rAτ · · · δNrAτ

I 0 0 · · · 0
0 I 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 I 0

 ,

B̂r =


B + Bτ R

r

0
...
0

 ,
(25)

for r = 1, . . . , N , cf. (19). Here, δir denotes the Kronecker
delta, while I ∈ R2×2 and 0 ∈ R2×2 denote identity and
zero matrices, respectively. Also we have

Ĉ =
[
C 0′ · · · 0′

]
, (26)

where Ĉ ∈ R1×2(N+1), and 0′ =
[

0 0
]
.

Note that in (24), Âτ(k) depends on Âτ(k−1) according to
(5,6,8), which also holds for B̂τ(k) and B̂τ(k−1), implying
that (24) is a non-Markovian stochastic process. However, to
simplify the analysis, we assume that τ(k) is independently
identically distributed (i.i.d.) with the probability density
function (6,8).

V. MEAN AND COVARIANCE DYNAMICS

In this section, the dynamics for the mean and covariance
will be derived. Let us define the deterministic variables

X̄(k) = E[X̂(k)] , Ȳ (k) = E[Ŷ (k)] . (27)
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By taking expectations of both sides of (24), one can derive
the equation describing the mean dynamics

X̄(k + 1) = Ā X̄(k) + B̄U(k) ,

Ȳ (k) = C̄ X̄(k) ,
(28)

where

Ā =
∑N
r=1wrÂr , B̄ =

∑N
r=1wrB̂r , C̄ = Ĉ. (29)

Then the covariance is defined as
¯̄X(k) = E

[(
X̂(k)− X̄(k)

)
⊗
(
X̂(k)− X̄(k)

)]
,

¯̄Y (k) = E
[(
Ŷ (k)− Ȳ (k)

)
⊗
(
Ŷ (k)− Ȳ (k)

)]
,

(30)

and it can be shown that
¯̄X(k) = E[X̂(k)⊗ X̂(k)]− X̄(k)⊗ X̄(k) ,
¯̄Y (k) = E[Ŷ (k)⊗ Ŷ (k)]− Ȳ (k)⊗ Ȳ (k) .

(31)

Thus, using (24), one can obtain the covariance dynamics
¯̄X(k + 1) = ¯̄A ¯̄X(k)

+ ¯̄H1

(
X̄(k)⊗ X̄(k)

)
+ ¯̄H2

(
X̄(k)⊗ U(k)

)
+ ¯̄H3

(
U(k)⊗ X̄(k)

)
+ ¯̄H4

(
U(k)⊗ U(k)

)
,

¯̄Y (k) = ¯̄C ¯̄X(k) , (32)

where
¯̄A =

∑N
r=1wrÂr ⊗ Âr ,

¯̄H1 =
∑N
r=1wrÂr ⊗ Âr − Ā⊗ Ā ,

¯̄H2 =
∑N
r=1wrÂr ⊗ B̂r − Ā⊗ B̄ ,

¯̄H3 =
∑N
r=1wrB̂r ⊗ Âr − B̄⊗ Ā ,

¯̄H4 =
∑N
r=1wrB̂r ⊗ B̂r − B̄⊗ B̄ ,

¯̄C = Ĉ⊗ Ĉ .

(33)

To simplify (32), first we assume that the mean dynamics
is stable and already at steady state. When the mean dynam-
ics is plant stable, the transient response will converge to
zero, and the steady state response will share the same form
with the input, i.e., it is a sinusoidal signal. Thus, at steady
state, one can assume

X̄(k) = QU(k) . (34)

Substituting (34) into (28) and using (21), one can get

Q− ĀQR = B̄R . (35)

Thus, Q can be obatined by solving

(I⊗ Ī−RT ⊗ Ā)vec(Q) = vec(B̄R) . (36)

cf. (3). Considering (34), the covariance dynamics (32)
becomes

¯̄X(k + 1) = ¯̄A ¯̄X(k) + ¯̄B ¯̄U(k) ,
¯̄Y (k) = ¯̄C ¯̄X(k) ,

(37)

where
¯̄U(k) = U(k)⊗ U(k) , (38)

¯̄A and ¯̄C are given in (33) while
¯̄B =

∑N
r=1wr

(
ÂrQ + B̂r

)
⊗
(
ÂrQ + B̂r

)
−
(
ĀQ + B̄

)
⊗
(
ĀQ + B̄

)
. (39)

VI. PLANT STABILITY ANALYSIS

Plant stability means that the follower is capable of
approaching the leader’s velocity when the leader is driving
at a constant velocity. In this section, plant stability for both
the mean dynamics (28) and covariance dynamics (37) are
given, where plant stability of the mean dynamics gives the
necessary condition for the plant stability of the stochas-
tic system (24). On the other hand, plant stability of the
covariance dynamics provides the necessary and sufficient
condition for the plant stability of the stochastic system (24).

For plant stability of the mean dynamics, all the eigenval-
ues of the corresponding system matrix Ā in (28) must lie
within the unit circle in the complex plane. The eigenvalues
z ∈ C are given by the characteristic equation

det(z Ī− Ā) = 0 , (40)

where Ī ∈ R2(N+1)×2(N+1) is the identity matrix. There are
three different ways where the system can lose stability [13].

(i) One real eigenvalue crosses the unit circle at 1;
(ii) One real eigenvalue crosses the unit circle at −1;
(iii) A pair of complex conjugate eigenvalues crosses the

unit circle at e±jθ.
By substituting the critical eigenvalue(s) into the characteris-
tic equation (40), one can obtain the stability boundaries rep-
resented in the parameter space (Kp,Kv, v

∗, w,∆t), where
w denotes the set of all the wr-s for r ∈ {1, 2, . . . , N}.
In case (iii), one needs to separate the real and imaginary
parts and equate them to zero in order to obtain the stability
boundary parameterized by θ.

For plant stability of the covariance dynamics, all the
eigenvalues of the corresponding system matrix ¯̄A in (37)
must lie within the unit circle in the complex plane. Here,
the eigenvalues z ∈ C are given by the characteristic equation

det(z ¯̄I− ¯̄A) = 0 , (41)

where ¯̄I ∈ R22(N+1)2×22(N+1)2 is the identity matrix.
Similar to plant stability for the mean dynamics, the cor-
responding stability boundaries can be obtained for three
different kinds of stability losses.

Fig. 3 shows the stability charts in the (Kv,Kp)-plane for
different values of the packet delivery ratio q and sampling
time ∆t. The inlets show the probability distribution of
discrete stochastic delay given by (6). The horizontal red
line and the red curves represent plant stability boundaries
for the mean dynamics (28), and the region enclosed by
these curves, i.e., the union of all shaded regions, are mean
plant stable. Solid purple curves represent plant stability
boundaries for the covariance dynamics (37), and the the
region enclosed by them are covariance plant stable. (The
green and blue curves and the corresponding lobe-shaped
regions will be explained in Section VII.) Both the mean and
covariance plant stable domains shrink as the packet delivery
ratio q decreases and as sampling ratio ∆t increases. For the
mean dynamics (28), the arising oscillation frequency is zero
along the horizontal red line while the frequency increases
monotonously along the red curve, that is, the further we are
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Fig. 3. Stability diagrams in the (Kv,Kp)-plane for vmax =
30 m/s, hst = 5 m, hgo = 35 m, v∗ = 15 m/s (cf. (11,13)) and different
values of packet delivery ratio q and sampling time ∆t as indicated. The
corresponding delay distributions (6) are plotted on each panel as inlets. Red
and green curves correspond to changes in plant and string stability of the
mean dynamics (28), respectively, and purple and blue curves correspond
to changes in plant and 1σ string stability of the covariance dynamics (37),
respectively.

from the origin (along the curve), the higher the frequency
of the arising oscillation is. However, for the covariance
dynamics, the oscillation frequency is zero along both the
horizontal purple line and the purple curve, implying that the
covariance always loses plant stability without oscillations.

VII. STRING STABILITY ANALYSIS

String stability means that the follower is capable of
attenuating fluctuations in the leader’s velocity. For linear
systems, string stability is equivalent to the attenuation of
sinusoidal signals at all frequencies [14]. In this section,
string stability for both the mean dynamics (28) and covari-
ance dynamics (37) are given. String stability for the mean
dynamics gives necessary condition for the string stability of
the stochastic system (24) while the covariance dynamics is
used to determine the nσ-string stability.

For string stability of the mean dynamics, we consider
ṽ(t) as output corresponding to periodic input (14). After
discretizing time (cf. (17,18)), we obtain two discrete inputs
ṽL(tk) = ṽL(k) and ṽ⊥L (tk) = ṽ⊥L (k), and one discrete
output ṽ(tk) = ṽ(k). However, the inputs are not linearly
independent, so their effects have to be summed up. Apply-
ing Z-transform to (28), one can obtain the corresponding
transfer function

Γ̄(z) := [γ̄1(z) γ̄2(z)] = C̄
(
z Ī− Ā

)−1
B̄. (42)

Following the same method as in [15], one can get the steady
state output

Ȳss(k) = M̄(ω)vamp
L sin

(
kω∆t+ ψ̄(ω)

)
, (43)

where

M̄(ω) =
√
|γ̄1|2 + |γ̄2|2 + 2Im(γ̄1γ̄∗2 ) , (44)

is the amplification ratio, ψ̄(ω) is the phase lag at frequency
ω, and ∗ denotes the complex conjugate.

Then the string stability boundaries in the parameter space
are given by {

M̄(ω̄cr) = 1,

M̄ ′(ω̄cr) = 0,
(45)

for critical excitation frequency ω̄cr > 0, where prime
denotes differentiation with respect to ω. Note that M̄ also
depends on the parameters (Kp,Kv, w, v

∗,∆t). Finally, one
may show that M̄(0) = 1, M̄ ′(0) = 0 always holds.
Therefore, the string stability boundary at ω̄cr = 0 is given
by

M̄ ′′(0) = 0. (46)

For string stability of the covariance dynamics, from (38),
one may notice that the input ¯̄U(k) can be separated into a
constant part and a harmonic excitation part, i.e.

¯̄U(k) = ¯̄U0 + ¯̄U1(k) , (47)

where

¯̄U0 =
1

2

(
vamp

L

)2 ¯̄u0 ,
¯̄U1(k) =

1

2

(
vamp

L

)2 ¯̄u1(k) , (48)

with

¯̄u0 =


1
0
0
1

 , ¯̄u1(k) =


− cos(2kω∆t)
sin(2kω∆t)
sin(2kω∆t)
cos(2kω∆t)

 . (49)

According to superposition principle of linear systems, the
particular solution of (37) is the sum of particular solution
¯̄Y0 to ¯̄U0 and particular solution ¯̄Y1(k) to ¯̄U1(k). Moreover,
for ¯̄U0, (37) implies

¯̄Y0 =
(
vamp

L

)2 ¯̄M0(ω) , (50)

with
¯̄M0(ω) =

1

2
¯̄C(¯̄I− ¯̄A)−1 ¯̄B¯̄u0 . (51)

For ¯̄U1(k), the Z-transform of (37) yields the transfer func-
tion matrix

¯̄Γ(z) := [¯̄γ1(z) ¯̄γ2(z) ¯̄γ3(z) ¯̄γ4(z)]

= ¯̄C(z¯̄I− ¯̄A)−1 ¯̄B. (52)

Similar to the mean dynamics analysis, one can obtain
steady state output to the harmonic excitations by applying
superposition principle and trigonometric identities, yielding

¯̄Y1(k) =
(
vamp

L

)2 ¯̄M1(ω) sin(2kω∆t+ ¯̄ψ(ω)), (53)
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where

¯̄M1(ω) =
1

2

((
Re(¯̄γ4 − ¯̄γ1) + Im(¯̄γ2 + ¯̄γ3)

)2
+
(
Im(¯̄γ1 − ¯̄γ4) + Re(¯̄γ2 + ¯̄γ3)

)2) 1
2

,

(54)

and ¯̄ψ(ω) is the phase lag at frequency ω. Therefore, at steady
state, we have

¯̄Yss(k) = ¯̄Y0 + ¯̄Y1(k) (55)

=
(
vamp

L

)2( ¯̄M0(ω) + ¯̄M1(ω) sin
(
2kω∆t+ ¯̄ψ(ω)

))
.

Recall that Ȳ (k) = E[ṽ(k)] ∈ R and ¯̄Y (k) = E[ṽ2(k)]−
E[ṽ(k)]2 ∈ R. Define

µ = Ȳss(k) , σ2 = ¯̄Yss(k) , (56)

that are the mean and variance of ṽ(k) at steady state. Note
that the variance ¯̄Yss(k) is non-negative. Thus, (55) implies
that ¯̄M0(ω) ≥ ¯̄M1(ω). From Chebyshev’s inequality [16],
we know that the probability of ṽ(k) being outside the nσ
window [µ−nσ, µ+nσ], n ∈ R+ is rather small. Therefore,
using (43,55), we can calculate

µ± nσ = vamp
L

[
M̄(ω) sin(kω∆t+ ψ̄(ω)) (57)

± n
√

¯̄M0(ω) + ¯̄M1(ω) sin
(
2kω∆t+ ¯̄ψ(ω)

) ]
,

which is a periodic function with period T = 2π
ω∆t . Thus, the

total amplification ratio becomes

¯̄M(ω) = max
0≤k≤T

{∣∣∣M̄(ω) sin(kω∆t+ ψ̄(ω)) (58)

± n
√

¯̄M0(ω) + ¯̄M1(ω) sin
(
2kω∆t+ ¯̄ψ(ω)

) ∣∣∣} .
The system is said to be nσ string stable if the amplitude

of the input ṽL(k) is attenuated such that |µ ± nσ| <
vamp

L , i.e., the oscillations are constrained in the interval
[µ − nσ, µ + nσ]. Henceforth, the necessary and sufficient
condition for nσ string stability is given by

¯̄M(ω) < 1 . (59)

In Fig. 3, the string stability boundaries are plotted in the
(Kv,Kp)-plane as solid green and blue curves for different
values of the packet delivery ratio q and sampling time
∆t. For the mean dynamics, the critical frequency is zero
along the straight lines given by (46) while ω̄cr > 0 along
the curve given by (45). The union of light green and
light blue shaded regions correspond to mean string stable
regions, while the light blue shaded region represents the 1σ
string stable region. These are embedded in the plant stable
regions. We remark that there are some other string stability
boundaries outside the plant stable domain which are not
shown here. The mean and nσ string stable domains shrink
when packet delivery ratio q decreases or the sampling time
∆t increases. When exceeding critical values, the domains
disappear, in which case there exist no gain combinations
that can maintain string stability.

VIII. CONCLUSIONS

In this paper, the effects of stochastic delays on the
dynamics of connected vehicles were studied by analyzing
both the mean and covariance dynamics. Necessary and
sufficient plant and string stability conditions were derived
and it was shown that the stability domains shrink when the
packet drop ratio or the sampling time increases. Above a
critical limit string stability cannot be achieved by any gain
combinations. Our future research include the application of
the developed mathematical tools to large vehicular systems
with more complicated connectivity structure.
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