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Black-Box Modeling of Connected Vehicle Networks

Linjun Zhang and Géabor Orosz

Abstract—In this paper, we propose a black-box modeling
framework for connected vehicle networks comprised of con-
ventional vehicles and vehicles equipped with wireless vehicle-
to-vehicle (V2V) communication. First, we identify the link
length that is the number of vehicles between the broadcasting
and the host vehicle. Based on the estimated link length, a
linear model is used to approximate the dynamics of the vehicle
network. The proposed framework does not require priori
information about the dynamics of the vehicle network, and
hence can be implemented in real traffic. Numerical simulations
are used to demonstrate the effectiveness of the estimators in
capturing the link length and predicting the time evolution of
the vehicle network. The estimated model can be used when
designing connected cruise control (CCC) algorithms.

I. INTRODUCTION

In recent years, exploiting wireless vehicle-to-vehicle
(V2V) communication in vehicle control systems has been
receiving increasing attention. With the capability of mon-
itoring distant vehicles beyond the line of sight, V2V
communication has potentials in improving traffic mobility,
enhancing vehicle safety, and reducing fuel consumption.

One common way to apply V2V communication is to con-
struct cooperative adaptive cruise control (CACC), which is
a vehicle platoon where all vehicles automatically respond to
the vehicle immediately ahead relying on range sensors (e.g,
radar) while also responding to the motion of a designated
platoon leader [1]-[5]. There are two restrictions of CACC
that limit its implementation in real traffic. On one hand, it
requires that autonomous vehicles travel next to each other
to form a platoon, which rarely occurs in practice due to
the low penetration of such vehicles. On the other hand,
it requires that all following vehicles communicate with a
designated platoon leader, which restricts the connectivity
topology. To relax these limitations, connected cruise control
(CCC) was proposed [6], [7], which allows the incorporation
of human-driven vehicles that may be not equipped with
communication devices. Moreover, CCC requires neither a
designated leader nor a prescribed connectivity structure. The
flexibility of CCC makes it practical to implement in real
traffic.

When designing CCC for system-level properties such as
string stability [2] and collision avoidance [8], one needs
to know the dynamics of the vehicle network, which is
indeed unavailable in practice. In [9], the authors used
the intelligent driver model (IDM) to predict the response
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Fig. 1.
from multiple vehicles ahead. Symbols s;, /; and v; denote the position,
length and velocity of vehicle j, respectively. The blue link can be realized
by human perception, range sensors, and V2V communication while the red
link can only be realized by V2V communication. Notice that vehicle i —
n+ 1 does not broadcast its information.

Vehicle network where a CCC vehicle (red) receives information

of the vehicle immediately ahead. However, they assumed
that the number of vehicles between the broadcasting and
the host vehicle was known while all vehicles could be
described by the same model. The main contribution of this
paper is an estimator framework that allows one to identify
the dynamics of vehicle networks without requiring any
prior knowledge about the system. We first provide a link
length estimator to identify the number of vehicles between
the broadcasting and the host vehicle. This determines the
number of states in the dynamics. Then, we use a discrete-
time linear model to approximate the dynamics, where the
coefficients are determined by minimizing a cost function.
Numerical simulations are used to show the effectiveness
of the proposed estimator in identifying the link length and
predicting the network behavior.

II. LINK LENGTH ESTIMATOR

In this section, we present the link length estimator (LLE)
to identify the number of vehicles between the broadcasting
and the host vehicle by using position and velocity informa-
tion received via V2V communication. In Fig. 1, vehicle i+ 1
(red) monitors the positions s; and the velocities v; of some
vehicles among vehicles i,...,i —n within the effective com-
munication range. We emphasize that the vehicle network
may include vehicles that do not broadcast information (e.g.,
vehicle i —n+1 in Fig. 1). The symbol [; represents the
length of vehicle j. The vehicle immediately ahead can
be monitored by human perception, by range sensors (e.g.,
radar), or by V2V communication while distant vehicles can
only be monitored by using V2V communication since they
are out of the line of sight.

We use the word “headway” to describe the bumper-to-
bumper distance between two consecutive vehicles so that
the average headway h;; between vehicle i and vehicle j
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(j < i) can be expressed by
):2 LI
i—j ’

hij = (1)
see Fig. 1.

Let vjmax denote the admissible maximum velocity of
vehicle j, which is determined by traffic laws or by the
driver’s intention. Traffic data show that, when vehicles j—1
and j move at a constant speed 0 < v* < v; max, vehicle j aims
to keep a constant speed-dependent headway h* _; [10].
This relationship is called range policy that can be descrlbed
by the function

hjj1=sj1—s;—li-1=H;(V"). (2)

Here, the function H;(v*) > 0 is continuous and monotoni-
cally increasing with v*. Note that when v* = 0 vehicle j can
maintain the headway 0 < h7; | < H;(0) while v* = v max
results in hj‘yk > H;(vjmax)-

When all vehicles move at the same constant velocity v*
and they all use the same range policy H(v*), we obtain the
uniform flow equilibrium,

j/ 1= *:H(V*)’ (3)

forall j=i—n,...,i+1; cf. (1) and (2). In real traffic, range
policies may vaIy among different drivers in which case the
equilibrium still exists but is not uniform, i.e., h;‘ i1 # R vy
for j # k; see (2). In this situation, the average' equilibrium
headway between vehicles i and j is given by

W s;—s;—(i— v _

L] i— ]

where the average vehicle length /,, and the average range
policy Hay(v*) are given by

Hy (V') “4)

i—1

= — Z H("). )
—J k=j+1

Note that the length of vehicle i and the range policy of

vehicle j are not included in (4); cf. (1)-(3).

Then, we present the LLE that can estimate the number of
vehicles between any pair of communicating vehicles. Here,
we are interested in the link length between vehicles i and i —
n, which is the total number of vehicles in the communication
range of the CCC vehicle i+ 1. According to (4), we have

st —st

i—n S

= (6)
Loy + Hyy (V*)

In practice, the information about /,, and Hay (v*) in (6) are

not available when there exist vehicles that do not broadcast

information. Thus, in practice, we use the approximations

Hav (V*) ~ Hyy (V*) s @)

which may be generated by statistical analysis of empirical
traffic data.

In real traffic, the equilibrium information s} and v*
cannot be obtained directly. According to the UMTRI Safety
Pilot experiment [11], V2V communication provides data

lav ~ lav 9

intermittently with sampling time Ar = 0.1 [s]. Suppose that
at the time instant #; = kA¢, vehicle i+ 1 receives position and
velocity data s;(t), vi(tx), Si—n(t), Vi—n(tx) from vehicles i
and i —n. Assuming that the traffic flow is around the
equilibrium, we define the averages

E(te) 2 EL [simn(t)) —silt))]
Ex(ti) 2Bt [viea(t))] (8)

" i(t))
&) = Eyy [MV(J@(;]))}

for the distance, velocity, and link length, respectively, where
Exf [x(tj)] £ X5_ox(1;)/(k+1). When the perturbation about
the equilibrium has zero mean, we have &;(t) — s;_, — sF
and & (1) — v* as t — oo,

Rewriting (8) in the iterative form and defining 7(#;) as
the output, we propose the LLE as follow.

Si(te) = &1 (te—1) + Sin(fk) _si(lt(k) —&i(tx—1) 7

éz(l‘k) — 52(%—1) + Vi—n(tk) 7{52(1‘](,1) ’ (9)
_ 1 51(1‘ )

&) =&+ ¢ (77 (g 20

ﬁ(lk) = il‘lt(§3(tk)> s

for k=1,2,..., where the operation int(&3) rounds &3 to the

nearest integer since the link length must be an integer. Here,

the initial conditions are set as &;(to) = & (fo) = &3(tp) = 0.

Theorem 1: Suppose that the measurement errors in po-

sition s and velocity v have zero mean. Then, the LLE (9)

converges to the actual link length, i.e., A(fy) — n as k — oo,
if and only if the following condition holds:

1— 03 < ,liaVJrE“(v*) < 1+E

n lav +Hyy (V*) n

The proof is given in Appendix A. Indeed, Theorem 1

shows that, as the link length n increases, the convergence
of LLE (9) requires higher accuracy of the approximated
average vehicle length /,, and the approximated average
range policy H,(v*). The accuracy of such information
can be improved when more vehicles broadcast information.
However, we remark that LLE (9) does not rely on the motion
data of vehicles i—1,...,i—n+1 so that LLE can be also
applied when they do not broadcast.

(10)

III. NETWORK DYNAMICS IDENTIFIER

To design CCC for vehicle i+ 1 that satisfies system-
level requirements such as string stability, it is necessary to
identify the dynamics of the network; see Fig. 1 containing
vehicles i —n,...,i. To achieve this goal, we present the
network dynamics identifier (NDI) in this section. We begin
by defining the state of this vehicle network as

(1)

Here, we neglect the information delays that may arise
from human reaction, digital processing, or intermittency

X = [Sifna Vieny « -y Si, Vi]T .
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and packet drops in wireless communication. Then, the car-
following dynamics of the vehicle network can be described
by an ordinary differential equation

X = f(X,vin). (12)

Here, we consider v;_, and v; as the input and the output
of the network, respectively, since the speed variation of
vehicle i —n propagates through the whole network and
eventually affects the speed of vehicle i. In real traffic, the
function f is nonlinear.

For CCC design, we need to estimate the input-output dy-
namics of (12). Although a nonlinear model may improve the
estimation accuracy, it will increase the complexity for the
subsequent CCC design. Considering that stable nonlinear
systems can be approximated by linear systems with bounded
errors, we use a linear discrete-time model

N
Vi(te) = Z ag0i(ti—g) +bgvin(ti—g) =07@  (13)
g=1
to approximate the input-output dynamics of the nonlinear
network (12), where the coefficients and the regressor are
given by

[ ar ] [ Vi(te-1)
ay Vi(tk—n)
6 = . o= : 14
by ¢ Vin(t-1) (14)
| by | | Vien(teen)

respectively. Note that the regressor ¢ is comprised of
measured states and estimated states while the coefficient
vector 0 and the regression length N are to be determined.

Neglecting information delays, we can write the car-
following dynamics of vehicle j in the form

=10 R+

where u; denotes the acceleration input. Discretizing this
model leads to a second order discrete-time model. Thus, for
a n-vehicle network, we set the regression length as N = 2n.
Since n is typically unknown in practice, we use N = 2
instead where 7 is the estimated number of vehicles in the
network given by LLE (9). Note that 7 must maintain un-
changed when identifying the coefficients in 8. The change
of 71 indicates that the network size may have changed due to
the cut-in and/or the cut-off of vehicles so that the dynamics
of the vehicle network changes as well. In this case, the NDI
must be restarted with the corresponding N.

In (13), the value of 6 can be determined by minimizing
the error between the measured output v; and the estimated
output ¥; of the vehicle network, that is, we determine 6 by
minimizing the cost function

5)

r+8

(vilt) = 9ia0)),

k=r

J= (16)

Connected Vehicle Network
+ S,

X v X=f(Xv.,)
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Fig. 2. Information flow diagram of network dynamics identifier.
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Fig. 3. A vehicle network where vehicle 4 monitors vehicle 3 and vehicle 0
while other vehicles only responds to the motion of the vehicle immediately
ahead.

where 7,0 € N. Note that ¢, = rAt and rs = At denote
the start time and the window size of the data for training
the NDI to estimate 6. Typically, the estimation accuracy
increases with the window size tg, but this also increases
the computational cost. To solve the minimization of (16)
subject to the dynamics (13), we utilize the differential
evolution (DE) approach [12], which maintains a population
of candidate solutions and iteratively improves these candi-
date solutions in terms of their costs. A brief description
of the DE approach is given in Appendix B. We remark
that one may use other approaches to solve the optimization
problem. Here, we use DE since it does not require gradient
information, which simplifies its application.

Given sufficiently large number of iterations, DE can
lead to the global minimum. However, to achieve real-time
estimation in practice, the maximum number of iterations
is limited by the on-board computational resources so that
the result may end up in the vicinity of a local minimum.
After reaching the maximum number of iterations, the DE
computation yields the coefficients a4,b, for g =1,...,N,
which are left unchanged for predicting the behavior of the
vehicle network and for the subsequent CCC design. The
information flow of NDI is summarized in Fig. 2.

IV. NUMERICAL SIMULATIONS

In this section, we consider a 5-vehicle network shown
in Fig. 3, where the CCC vehicle 4 monitors the motion of
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vehicle 0 and vehicle 3 while other vehicles only respond
to the motion of the vehicle immediately ahead. Here, we
assume that vehicle 4 is driven by a human driver and test
the performance of the estimators presented in Sections II
and III.

To simulate the heterogeneity of vehicles, we use different
models and parameters for different vehicles. Specifically, we
use the optimal velocity model (OVM) [10] for vehicles 1
and 3, that is,

Sj = Vj,
vj = a(Vi(hjj-1) =v;) +Bi(Wi(vj-1) = v;),

for j = 1,3. Here, the constants o; and f3; are control
gains for headway and relative velocity, respectively, and the
functions V;(h) and W;(v) are given by

a7

0, ith<hjg,
V j.max h—hjs :
Vj(h): j'T|:1—COS (ﬂm)} s if hj,St<h<hj.g07
Vj max it h> hj,gOa
W'(V)_ v, ifVSVj,maxa
J = .
Vj max if v> Vj max -

(18)

The function V;(h) indicates that the vehicle tends to stop
when the headway is small while aiming to maintain the
admissible maximum velocity v;max for large headways.
Between hjq and hjg,, the nonlinear and monotonically
increasing function is selected such that derivatives at h =
hjs and h = hj,, are smooth, yielding smooth change
of acceleration that is important for driving comfort. The
saturation function W;(v) ensures that vehicle j does not try
to follow the vehicle immediately ahead when v;_1 > v max.

For vehicles 2 and 4, we use the intelligent driver model
(IDM) [13] given by

4 2
e o () (8D (19)
Vi=4daj ll (Vj,max) ( hj,jfl ) ‘|7

for j =2,4, where

1% j (V j— 4 j— 1)
2\/ajb;
Here, parameters a; and b; represent the desired maximum
acceleration and deceleration, respectively, while 7; denotes
the desired time gap.
When all vehicles move at the same velocity v*, we obtain
the range policies

gvj,vi—1) =hjs+v,T;+ (20)

hjoo—h 2p*
Hovm (V') = hjg+ 22— arccos (1 _ 2 ) ,
’ T Vj max
hjsi+v'T;
1= (% /vjmax)*

see Fig. 5(a). It can be seen that for 0 < v* < v;max, H;j(v*)
is continuous and monotonically increasing. The equilibrium

21

Hppm (V') =

25 25
(a) (b)
20 20
o =
o =
S 10 2 10
5 5
0 0
0 100 200 300 0 100 200 300
t [s] t [s]
25
(c) 1201(d)
20 __ 100
'z‘ 15 % 80
£ 60
L 10 :
3 o 40
5 20
% 100 200 300 % 100 200 300
ts] ts]
Fig. 4.  (a) Reference velocity of vehicle 0, which is obtained from

UMTRTI’s Safety Pilot project. (b,c) Velocities of vehicles 3 and 4. (d)
Distance between vehicle 3 and vehicle 0.

headway for v =0 is 0 < hj',j—l < H;(0) = hjg, while for
V' >V max We have 1} > Hj(Vjmax) = hjeo

To simulate the vehicle network, we use the experimental
data from UMTRI Safe Pilot [11] for the head vehicle O,
which is shown by the red solid curve in Fig. 4(a). Note
that the measured data is in discrete time with sampling rate
At = 0.1 [s]. Here we apply the linear interpolation to the
experimental data and obtain a continuous trajectory. The
motion of other vehicles is governed by the OVM (17) or
the IDM (19) with the following parameters.

« Vehicle 1 is modeled by OVM with a; = 0.6 [1/s], B =
0.7 [1/5], hst;1 = 5 [m], hgo1 = 35 [m], Viax,1 = 30 [m/s].
« Vehicle 2 is modeled by IDM with a, = 1.3 [m/s?],
by =2 [m/s?], hyr =2.5 [m], To = 1.5 [s], Vinax2 = 43
[m/s].
« Vehicle 3 is modeled by OVM with az = 0.4 [1/s], B3 =
0.5 [1/5], hst3 = 6 [m], hgo 3 =40 [m], Vinax 3 = 33 [m/s].
« Vehicle 4 is modeled by IDM with ay = 1.6 [m/s?],
by =2 [m/s?], hya =2 [m], Ty = 1.3 [s], Vmaxa = 40
[m/s].
We also consider different lengths for different vehicles:
lp=4.8 [m], [y =5.5 [m], [, =3.6 [m], I3 =4.6 [m], and
I4=4.1 [m]. To estimate the link length, vehicle 4 calculates
the distance between vehicles 0 and 3 that includes the
lengths of vehicles 0-2, for which the average vehicle length
is I,y = 4.63 [m]; cf. (5). However, this information cannot be
obtained in practice. When using LLE (9), we approximate
the average vehicle length by Ly =4.5 [m].

The initial positions and velocities of all vehicles are
provided as follows: s9(0) = 0 [m], s1(0) = —19.8 [m],
52(0) = —35.3 [m], 53(0) = —51.9 [m], 54(0) = —68.5 [m],
vo(0) =0 [m/s], vi(0) =35 [m/s], v2(0) =3 [m/s], v3(0) =5
[m/s], and v4(0) = 1 [m/s].

The CCC vehicle 4 monitors the positions and velocities
of vehicle 0 and vehicle 3 while also calculating the distance
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Fig. 5. (a) Range policies H;(v*) of vehicles j =1-3 (dashed), the average
range policy Hyy (v*) (red solid), and the approximated average range policy
H,,(v¥) (black solid). (b) Ratio (10) between the average values and their
approximated values.

between vehicles 0 and 3, as shown in Fig. 4. Then, we apply
the LLE (9) to estimate the network size. Range policies (21)
for vehicles 1-3 are shown in Fig. 5(a) by dashed curves.
The solid red curve displays the average of range policy
H,y (v*) for vehicles 1-3; cf. (5). Since in practice Hyy (v*) is
not available, we use the approximated average range policy
in the OVM form, i.e., Hy(v*) = Hovm(v*), and set the
parameters as hy = 3 [m], hgo = 38 [m], and vyax =29 [m/s];
cf. (21). The ratio % used in Theorem 1 is plotted in
Fig. 5(b). The link léngtfl between vehicles 0 and 3 is n=3.
Hence, according to (10), the convergence of A(ty) to n can

be guaranteed if 0.833 < LwtHw (") <1 167 that is between

the two red vertical lines liﬁJrléji’g.(vS)(b). Based on our chosen
average values, the convergence is always guaranteed.

In the cost function (13), we set the window size as t5 = 30
[s]. Parameters for DE computation are set as follows: pop-
ulation N, = 30, maximum generation gmax = 200, mutation
factor F = 0.9, and crossover factor Cr = 0.8. Then, we
use the LLE (9) and the NDI (13) to estimate the network
size and the network dynamics, respectively. The results are
shown in Fig. 6, where panel (a) shows that the estimated
network size 7 (dashed line) converges to the actual network
size n (solid line). After t, =51.8 [s], 7 = 3 is unchanged
for t5 = 30 [s]. Therefore, the data between 7, = 51.8 [s] and
t,+t5 = 81.8 [s] are utilized for training the NDI to identify
the dynamics of the network. When the DE computation
reaches the preset maximum generation gmax = 200, the
coefficients in (13) are obtained as given in Table 1. The
evolution of cost (16) is shown in Fig. 6(b), which decreases
along iterations. Note that the identified values in Table I are
left unchanged since 7 does not change. Then, by using these
coefficients and using the data in the time domain 51.8-81.8
[s] as initial condition, we simulate the the linear discrete-
time model (13) as shown by the dashed-dotted black curve
in Fig. 6(c) with the tracking errors given in Fig. 6(d). These
results demonstrate that the obtained model can reproduce
the dynamics of the vehicle network.

V. CONCLUSIONS

In this paper, we proposed a black-box modeling frame-
work for connected vehicle networks, which can be used in
the design of connected cruise control. First, we presented

TABLE I

IDENTIFIED VALUES FOR a|—ag AND b1—bg USING THE NDI (13).

ap | -0.5587 | by | -0.9536
a, | -0.0059 | by | -1.2371
asz 0.4807 | b3 2.0490
ay | 04245 | by | 0.4873
as 0.1410 | bs 0.7339
ag | 03635 | b | -0.9178
7:(a) % b)
o <, 60
' ~
5% ~
2 ' é 40
4tt--, ~
%z 20
3 S
0 100 200 300 % 50 100 150 200
t [s] Iteration Index
25 4
(c) —3 (d)
@ 20 - 133 Z )
E s ]
k=] 0
(% 10 ‘%0
5 g -2
% 100 200 300 % 100 200 300
t [s] t [s]
Fig. 6. (a) Estimation of network size. (b) Evolution of cost functions (16)

based on DE computation. (c) Actual velocity (red solid) and estimated
velocity (black dashed-dotted) of vehicle 3. (d) Error between the actual
velocity vz and the estimated velocity 3.

an link length estimator to identify the number of vehicles in
the network, which determined the number of states in the
network. Then, a linear discrete-time model was used to ap-
proximate the dynamics of nonlinear vehicle networks, where
the coefficients in the model were obtained by minimizing an
error function. Numerical simulations were used to validate
the analytical results and show that the estimated model
can predict the behavior of vehicle networks. Therefore, our
presented estimator could be used in the design of connected
cruise control.

In practice, there exist packet drops in V2V communi-
cation and the road geometry may also be more complex.
How to make the presented estimators robust against these
effects will be investigated in the future. The integration of
the presented estimators in connected cruise control design
will be also studied.

APPENDIX A: PROOF OF THEOREM 1

For a vehicle network, we have

* * 7
Si—S8i=8;—s; +di;
J i J i L]
] (22)
Vi=Vv +Vj,

where the uniform flow equilibrium s —s7 =d;’; and v* can

be seen as the constant components in the Fourier series

of s;—s; and v; while the perturbations d;; and ¥; are
composed of all sinusoidal terms of the Fourier series. Note
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that measurement errors may also be included in d; ; and ¥;.
It follows that

EX [dj(ty)] =0, EX[5(t,)] =0, (23)
as k — oo,
Substituting (22) and (23) into (8) leads to
Si(te) = sipy—si_1
2=, 24)
S — 5
53 (tk) — %,
lav +Hay (V*)

as k — oo, Hence, the steady-state output of LLE (9) becomes

R
nmmmzm(“"*>.

_ (25)
k—roo Loy +Hav(V*)

At the uniform flow, we have
Sip—Si1 = "(lav "‘Hav("*)) ) (26)
cf. (4). Substituting (26) into (25) leads to
I H,, (v*
nmm@_m<mﬁﬂvh)
k—yeo Loy +Hyy (V*)
When the condition (10) holds, it follows that

n—05 <l A0
lav +Hav(V*)

Rounding real numbers to the closest integer yields
limy_,o. A(t) = n; cf. (27,28).

27)

n<n+0.5. (28)

APPENDIX B: PROCEDURE OF DIFFERENTIAL
EVOLUTION APPROACH

A brief introduction of the differential evolution approach
is provided as follows.

« Set population P, = {6y,... 6y, ¢}, where g denotes
the generation, N, is the population size, and the vector
0; € R™ is a candidate solution for i =1,...,N,.

« Randomly initialize the population of generation 0, i.e.,
Py, in a prescribed domain.

o Mutation: Recombine the population to produce N,
trial vectors, i.e., Ny = O, ¢+ F (6, ¢ — O, ¢) for i =
L,...,N,, where rg,r|,r, are randomly selected from
the set {1,...,N,} and the scalar factor F > 0 controls
the evolution rate. There is no upper limit on F, but
effective value is typically smaller than 1.

« Crossover. DE produces a new vector by crossing each
vector with a mutant vector, that is

[111',gL.7 if rand(0,1) < Cr,

[el}g] i otherwise, (29)

[ﬁﬁg]j =

where [ﬂi7g]j denotes the j-th element in the vector
¥, rand(0,1) yields a random real value between 0
and 1, and the crossover probability Cr € [0, 1] controls
the fraction of values copied from the mutant.

« Select the lower-cost one from the target vector 6; , and
the mutant ¥; ¢, and then pass it to the next generation.
That is,

ﬁi,g 3

Gi,g )

if J(Vig) <J(6:),

; (30)
otherwise.

6i,ngl =

Detailed description of the differential evolution approach is
provided in [12].

REFERENCES

[1] V. Milanés and S. E. Shladover, “Modeling cooperative and au-
tonomous adaptive cruise control dynamic responses using experimen-
tal data,” Transportation Research Part C, vol. 48, pp. 285-300, 2014.

[2] J. Ploeg, D. P. Shukla, N. van de Wouw, and H. Nijmeijer, “Controller
synthesis for string stability of vehicle platoons,” IEEE Transactions
on Intelligent Transportation Systems, vol. 15, no. 2, pp. 854-865,
2014.

[3] S. Oncii, J. Ploeg, N. van de Wouw, and H. Nijmeijer, “Cooperative
adaptive cruise control: network-aware analysis of string stability,”
IEEE Transactions on Intelligent Transportation Systems, vol. 15,
no. 4, pp. 1527-1537, 2014.

[4] A. Alam, J. Martensson, and K. H. Johansson, “Experimental evalua-
tion of decentralized cooperative cruise control for heavy-duty vehicle
platooning,” Control Engineering Practice, vol. 38, pp. 11-25, 2015.

[5] R. Kianfar, B. Augusto, A. Ebadighajari, U. Hakeem, J. Nilsson,
A. Raza, R. S. Tabar, N. V. Irukulapati, C. Englund, P. Falcone, S. Pa-
panastasiou, L. Svensson, and H. Wymeersch, “Design and experimen-
tal validation of a cooperative driving system in the grand cooperative
driving challenge,” IEEE Transactions on Intelligent Transportation
Systems, vol. 13, no. 3, pp. 994-1007, 2012.

[6] L. Zhang and G. Orosz, “Motif-based design for connected vehicle
systems in presence of heterogeneous connectivity structures and time
delays,” IEEE Transactions on Intelligent Transportation Systems, p.
(accepted), 2016.

[71 J. I. Ge and G. Orosz, “Dynamics of connected vehicle systems
with delayed acceleration feedback,” Transportation Research Part C,
vol. 46, pp. 46-64, 2014.

[8] A. Alam, A. Gattamin, K. Johansson, and C. Tomlin, “Guaranteeing
safety for heavy duty vehicle platooning: Safe set computations and
experimental evaluations,” Control Engineering Practice, vol. 24, pp.
33-41, 2014.

[9] R. Pandita and D. Caveney, “Preceding vehicle state prediction,” in
IEEE Intelligent Vehicles Symposium, Gold Coast, Australia, 2013,
pp. 1000-1006.

[10] G. Orosz, R. E. Wilson, and G. Stépén, “Traffic jams: dynamics and
control,” Philosophical Transactions of the Royal Society A, vol. 368,
no. 1928, pp. 4455-4479, 2010.

[11] “UMTRI Safety Pilot,” http://safetypilot.umtri.umich.edu/.

[12] K. V. Price, R. M. Storn, and J. A. Lampinen, Differential evolution:
A practical approach to global optimization. Springer, 2005.

[13] A. Kesting and M. Treiber, “Calibrating car-following models by
using trajectory data,” Transportation Research Record: Journal of
the Transportation Research Board, vol. 2088, no. 1, pp. 148-156,
2008.

2426



