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Abstract— In this paper, we synthesize a connected cruise
controller with performance guarantee using probabilistic mod-
el checking, for a vehicle that receives motion information
from several vehicles ahead through wireless vehicle-to-vehicle
communication. We model the car-following dynamics of the
preceding vehicles as Markov chains and synthesize the con-
nected cruise controller as a Markov decision process. We
show through simulations that such a design is robust against
imperfections in communication.

I. INTRODUCTION

For over a century, automotive engineers have been design-
ing better cars in order to provide people with higher levels
of mobility. However, the road transportation system is often
plagued by stop-and-go traffic jams that bottleneck trans-
portation efficiency [23] and also adversely impact individual
vehicle’s performance. Thus, it is necessary to consider new
vehicle control strategies so that individual cars are able to
’steer’ the traffic flow as a multi-agent system towards more
desired states.

One primary factor under consideration is the longitudinal
control of vehicle motion. Human drivers often perform
poorly as vehicle controllers due to their relatively large
reaction time and limited perception abilities. In particular,
while most human drivers are able to maintain plant stability
of a car (i.e., maintain a chosen speed when there are no
external perturbations), they cannot guarantee string stability
(cannot attenuate velocity fluctuations that travel backward
along the vehicle chain). Using adaptive cruise control, one
may improve string stability due to faster and more accurate
sensing abilities and more sophisticated control strategies
[4], [13]. However, adaptive cruise control cannot overcome
the limitation that only motion information of the vehicle
immediately ahead can be monitored by range sensors. This
restricts the performance of the cruise controller and limits
our ability to improve the traffic flow.

Therefore, researchers proposed to control vehicles using
traffic flow information over a longer spatial horizon by u-
tilizing vehicle-to-vehicle communication. Strategies include
cooperative adaptive cruise control [3], [5], [6], [14], [15],
[19]–[21], [24]–[27], [29] and connected cruise control [1],
[7], [17], [18], [22], [28]. While cooperative adaptive cruise
control is designed for platoons of vehicles with different lev-
els of cooperation, connected cruise control simply utilizes
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motion information from multiple vehicles ahead, and does
not require the surrounding vehicles to be cooperative. Then,
by exploiting the received signals, the vehicle equipped with
connected cruise control may optimize its own performance
[8], [9]. In this paper we include stochastic disturbances and
introduce a new design method so that the controller can per-
form well in more realistic traffic scenarios. In particular, we
take into account stochastic behavior of neighboring vehicles
and include them in the controller synthesis. We write the
connected vehicle system as a Markov decision process with
stochastic disturbances, so that we can synthesize connected
cruise controllers using probabilistic model checking (even
when packet losses occur).

The layout of this paper is as follows. In Section II we
introduce the car-following model used for human-driven
vehicles and a class of connected cruise controllers with
similar structure. In Section III we formulate the optimal
connected cruise control design problem in terms of prob-
abilistic model checking, and demonstrate how stochastic
velocity disturbances can be included in this framework. In
Section IV we synthesize connected cruise controllers in a
simple scenario and test their performance using numerical
simulations. Finally, we conclude our findings in Section V.

II. MODELING CONNECTED VEHICLE SYSTEMS

In this section we model connected vehicle systems in
discrete time under stochastic disturbances. We first describe
the human car-following behavior using the optimal velocity
model, and then set up a class of connected cruise controllers
which are structurally similar to the optimal velocity model.
The predefined structure specifies certain dynamic properties
the synthesized controller should exhibit, and thus reduces
the emphasis on specifications formulated by linear temporal
logic [11]. This setup may also give us more insights to the
dynamics of the connected vehicle system and may scale
better for connected vehicle systems consisting of a large
number of vehicles.

A. Human car-following model
Here we discuss the human car-following behavior in non-

emergency situations; see Fig. 1(a). While many human car-
following models exist [16], the optimal velocity model has
very simple mathematical form and provides great physical
intuition. Thus, we choose it as a basis for the structure of
our connected cruise controllers.

Based on [10], [17], [18], the optimal velocity model for
the human-driven vehicle i is given by

ḣi(t) = vi+1(t)− vi(t) ,
v̇i(t) = αi

(
V (hi(t))− vi(t)

)
+ βi

(
vi+1(t)− vi(t)

)
.

(1)
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Fig. 1. (a): Single-lane car-following of human-driven vehicles showing
the headway and the velocities. (b): The range policy (2) where vmax is the
maximum allowed velocity, hst is the smallest headway before the vehicle
intends to stop, and hgo is the largest headway after which the vehicle
intends to maintain vmax.

Here the dot stands for differentiation with respect to time t,
hi denotes the headway, (i.e., the bumper-to-bumper distance
between the vehicle i and its predecessor), and vi denotes
the velocity of vehicle i; see Fig. 1(a). According to (1)
the acceleration is determined by two terms: the difference
between the headway-dependent desired velocity and the
actual velocity, and the velocity difference between the
vehicle and its predecessor. The gains αi and βi are used
to correct velocity errors. We neglect the human reaction
time for simplicity.

The desired velocity is determined by the nonlinear range
policy function

V (h) =


0 if h ≤ hst ,

vmax
h− hst
hgo − hst

if hst < h < hgo ,

vmax if h ≥ hgo ,

(2)

shown in Fig. 1(b). That is, the desired velocity is zero
for small headways (h ≤ hst) and equal to the maximum
speed vmax for large headways (h ≥ hgo). Between these,
the desired velocity increases with the headway linearly,
which corresponds to the constant time headway th =
(hgo−hst)/vmax. Many other range policies may be chosen,
but the qualitative dynamics remain similar if the above
characteristics are kept [18].

Note that (2) defines the steady-state behavior of vehicle i
and, in aggregation, the uniform traffic flow where vehicles
travel with the same constant velocity and maintain the same
constant headway:

hi(t) ≡ h∗ , vi(t) ≡ v∗ = V (h∗) . (3)

In a vehicle string, the equilibrium velocity v∗ is determined
by the head vehicle while the equilibrium headway h∗ can
be calculated from the range policy (2).

In this paper we use vmax = 30 [m/s], hst = 5 [m], hgo =
35 [m] that corresponds to realistic traffic data [18], which
results in the constant slope V ′(h∗) = 1 [1/s] corresponding
to the constant time headway th = 1/V ′(h∗) = 1 [s] in the
region where hst < h∗ < hgo, 0 < v∗ < vmax. In particular,
we consider the system in the vicinity of the equilibrium
(h∗, v∗) = (20 [m], 15 [m/s]).

B. Structured connected cruise controller

We now consider the configuration shown in Fig. 2 where
the vehicle at the tail is equipped with connected cruise

Fig. 2. A string of n + 1 vehicles on a single lane. The CCC vehicle at
the tail receives signals from human-driven vehicles ahead via vehicle-to-
vehicle communication. Dashed arrows indicate the flow of information in
this connected vehicle system.

control and it receives motion information from the n ve-
hicles ahead through vehicle-to-vehicle communication (see
dashed arrows terminating at vehicle 1). For simplicity, we
assume that preceding vehicles are human-driven and can be
described by (1).

Based on the dynamics of human-driven vehicles (1), we
construct the connected cruise controller in the form

ḣ1(t) = v2(t)− v1(t) ,

v̇1(t) = α11

(
V (h1(t))−v1(t)

)
+ β11

(
w2(t)−v1(t)

)
+

n∑
j=2

β1j
(
wj+1(t)−wj(t)

)
,

(4)

where α11 and β1j , j = 1, · · · , n are the feedback gains to be
designed, and wj(t), j = 2, . . . , n+1, are the velocity signals
received by the connected cruise controller. We assume the
headway h1 and velocity v1 of vehicle 1 are measured on-
board, and thus are available to the controller. The received
velocity signal wj(t) is equivalent to the actual velocity
vj(t) without packet loss, but may differ when packet drops
occur. Still, even for wj 6= vj the equilibrium of the vehicle
equipped with connected cruise control is given by (3).

In [8] we have shown that for a fixed group of preceding
vehicles without packet loss, the optimal connected cruise
control design gives β1j that are constant in time but decrease
with j. We can exploit this result later when synthesizing the
optimal gains α11 and β1j , j = 1, . . . , n.

C. Implementing connected cruise control

Here we consider the human car-following model (1) and
the connected cruise control (4) in the linear region and write
them in discrete time to take into consideration the effect
of sampling and zero-order hold in digital controllers. For
simplicity we assume that the clocks used by the vehicles
are synchronized.

We assume the dynamics of human-driven vehicles fluc-
tuate around an equilibrium state (3), then we want the
dynamics of the vehicle equipped with connected cruise
control (1,2) to be in the vicinity of that state as well.
Because v∗ = 0 describes the jammed state and v∗ =
vmax corresponds to free flow, we focus on the equilibrium
states where the desired velocity increases with the headway
linearly (i.e., hst < h < hgo, 0 < v < vmax, see the middle
part in Fig. 1(b)).

We define the headway perturbations h̃i(t) = hi(t) − h∗
and velocity perturbations ṽi(t) = vi(t) − v∗ and linearize
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(1) about the equilibrium (3):

˙̃
hi(t) = ṽi+1(t)− ṽi(t) ,

˙̃vi(t) = αi

( 1

th
h̃i(t)− ṽi(t)

)
+ βi

(
ṽi+1(t)− ṽi(t)

)
.

(5)

Similarly we linearize the connected cruise controller (4)

˙̃v1(t) = α11

( 1

th
h̃1(t)−ṽ1(t)

)
+ β11

(
w̃2(t)−ṽ1(t)

)
+

n∑
j=2

β1j
(
w̃j+1(t)−w̃j(t)

)
,

(6)

where w̃j(t) = wj(t)− v∗.
When using vehicle-to-vehicle communication the human-

driven vehicles transmit their kinematic data intermittently in
every ∆t. To represent this sampling we first discretize (5)
with time step ∆t:

h̃i[k + 1] = h̃i[k] + ∆t (ṽi+1[k]− ṽi[k]) ,

ṽi[k + 1] = ṽi[k] + ∆t αi

( 1

th
h̃i[k]− ṽi[k]

)
+ ∆t βi

(
ṽi+1[k]− ṽi[k]

)
,

(7)

which approximates the sampled dynamics of human-driven
vehicle i. Here we introduced the notation h̃i[k] = h̃i(k∆t),
ṽi[k] = ṽi(k∆t).

We then discretize (6) with the same time step in order to
describe the dynamics of the vehicle equipped with digital
connected cruise control. We assume the digital controller
uses zero-order hold by utilizing h̃i[k] and ṽi[k] in the time
interval [k∆t, (k + 1)∆t), but for simplicity we ignore the
O(∆t2) terms. In this case, the discretized dynamics of the
connected cruise controller is given by

h̃1[k + 1] = h̃1[k] + ∆t (ṽ2[k]− ṽ1[k]) ,

ṽ1[k + 1] = ṽ1[k] + ∆t α11

( 1

th
h̃1[k]− ṽ1[k]

)
+ ∆t β11

(
w̃2[k]− ṽ1[k]

)
+

n∑
j=2

∆t β1j
(
w̃j+1[k]− w̃j [k]

)
,

(8)

Based on (7,8), we formulate the controller synthesis
problem in the next section.

III. CONTROLLER SYNTHESIS USING PROBABILISTIC
MODEL CHECKING

In this section we present the framework that uses prob-
abilistic model checking to synthesize connected cruise
controllers considering stochastic events. We express the
dynamics of the connected vehicle system (7,8) as a Markov
decision process and formulate the optimization objective
accordingly. In particular, we consider stochastic velocity
disturbance from the leading vehicle and also model the
packet losses.

A. Markov chain for human-driven vehicles

Here we rewrite the sampled dynamics (7) of a human-
driven vehicle as a Markov chain. We first quantize a bound-
ed region of the state space into a finite number of cells. We
consider bounded headway and velocity disturbances[

h̃min

ṽmin

]
≤
[
h̃
ṽ

]
≤
[
h̃max

ṽmax

]
, ṽmin ≤ w̃i ≤ ṽmax , (9)

for i = 2, . . . , n. With quantization sizes

∆h =
h̃max − h̃min

Nh
, ∆v =

ṽmax − ṽmin

Nv
, (10)

we define the quantized states and disturbances

xi = floor
(
h̃i/∆h

)
,

yi = floor(w̃i/∆v) ,

zi = floor
(
ṽi/∆v

)
,

(11)

for i = 2, . . . , n, with xi evaluated among Nh cells, and yi
and zi in the Nv cells.

When considering a connected vehicle system of n + 1
vehicles with stochastic velocity disturbance from the leading
vehicle, we assume that ṽn+1 is bounded and the probability
transition matrix Cn+1 of the stochastic signal ṽn+1[k] is
known, that is,

Pvn+1 [k + 1] = Cn+1 Pvn+1 [k] , (12)

where Pvn+1 [k] is the probability distribution of the quan-
tized state zn+1 = floor(ṽn+1/∆v) at time step k.

Then, based on the discretized car-following model (7)
and (12), we are able to write the dynamics of human-driven
vehicles (7) as a Markov chain

Phuman[k + 1] = Chuman Phuman[k] , (13)

where Phuman[k] denotes the probability distribution of the
quantized state

[
x2 z2 . . . xn zn zn+1

]T
at time

step k, cf. (11).
We remark that (13) can be extended to include other

stochastic events in traffic flow such as lane-changing.

B. Markov decision process for connected cruise control

We consider a finite set of feedback gains for the dis-
cretized linear connected cruise controller (8)

α11 = Ka∆α ,

β1i = Kbi∆β ,
(14)

where Ka,Kbi ∈ {0, . . . ,m}, m ∈ N+, and i = 1, . . . , n.
Now we are able to write the dynamics of the vehicle
equipped with connected cruise controller as a Markov
decision process

P1[k+1] = CCCC(z2, y2, . . . , yn+1;Ka,Kb1, . . . ,Kbn) P1[k] ,
(15)

where P1[k] is the probability distribution of the state[
x1 z1

]T
, while the probability transition matrix CCCC

depends on the actual velocity disturbance z2, the received
velocity signals yi for i = 2, . . . , n + 1, and undetermined
feedback gains Ka,Kbi for i = 2, . . . , n, at time step k.
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Now we specify the relation between the received signal
wi and the actual velocity vi in order to complete the
description of the connected vehicle system. When there is
no packet drop, the received signal corresponds to the actual
motion of vehicle i

wi[k] = vi[k] ⇒ yi[k] = zi[k] , (16)

for i = 2, . . . , n, cf. (11). However, according to the
vehicle-to-vehicle communication protocol, when a packet
is dropped, it will not be resent at the next transmission, and
the connected cruise controller uses the information received
in the previous time step. Thus, we have

wi[k] = vi[k − 1] ⇒ yi[k] = zi[k − 1] . (17)

In [2] it was found that the probability of more than one
consecutive packet drops is relatively low. Thus we only
consider non-consecutive packet drops.

Therefore the dynamics of the connected vehicle system
can be described by the Markov decision process (13,15,16)
when there is no packet drop at time step k, while (13,15,17)
is used when there is packet drop at time step k. The
stochastic dynamics of packet drops can be integrated into
the setup, but in this paper we only consider the scenario
where every second packet is lost.

In order to synthesize the controller we set up the follow-
ing stochastic optimization problem:

min
N∑

k=1

E
[
γhx

2
1[k] + γvz

2
1 [k] + u21[k]

]
,[

x1[N ]
z1[N ]

]
∈ Ωend ,

[
x1[k]
z1[k]

]
∈ Ωsafe ,

(18)

for k = 1, . . . , N , where E denotes the expected value, γh
and γv are the weighting factors for the headway and velocity
fluctuations, respectively, while u1 is the acceleration of
vehicle 1 defined in (4,8,11). We also require the dynamics
of the vehicle equipped with connected cruise control to stay
within the safe region Ωsafe in the quantized state space
and to reach the desired region Ωend at the end of the
optimization. Note that the time horizon N is not given but
depends on when the trajectory hits Ωend.

The optimization problem (13,15,16,17,18) can be solved
using the stochastic model checking software PRISM [12].
The synthesized controller will be given as a map between
the strategy Ka,Kbi and the headway and velocity fluctua-
tions:

α11 = Ka(x1, z1, z2, y2, . . . , yn+1)∆α ,

β1i = Kbi(x1, z1, z2, y2, . . . , yn+1)∆β ,
(19)

for i = 1, . . . , n, cf. (14). Though such maps may not be de-
terministic for general stochastic optimization problems, for
this particular problem we have a deterministic correspon-
dence between the quantized states (x1, z1, z2, y2, . . . , yn+1)
and the optimized feedback gains at each time step.

Note that due to the optimization setup, no feedback gains
are specified for (x1, z1) ∈ Ωend. One simple strategy in
such cases is to set the feedback gains zero inside the end
region, which we implement in this paper.
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Fig. 3. Histogram of 10000 velocity profiles v2(t) evaluated at t = 50
[s], where v2(t) is generated by (12,24,25).

Fig. 4. (a,b): Headway and velocity responses for a (1+1)-vehicle string
as functions of time. The blue solid curves show the headway h1(t) and
the velocity v1(t) for the vehicle equipped with connected cruise control.
The green dots show the velocity v2(t) of the leading vehicle, which is the
same as the received velocity signal w2(t). (c,d): The feedback gains α11

and β11 used by the controller.

IV. SIMULATION

In this section, we demonstrate the simplest results of
probabilistic model checking by designing connected cruise
control for a two-vehicle system (i.e., n = 1 in (4)). Here
we only have two feedback gains:

α11 = Ka(x1, z1, z2, y2)∆α ,

β11 = Kb1(x1, z1, z2, y2)∆β .
(20)

We first synthesize the connected cruise controller using
(15,16,17,18) in discrete time and quantized space, and then
simulate the continuous-time controller (4) with zero-order-
hold assumption on the disturbance and feedback gains.

We consider the time step ∆t = 0.4 [s] and the quan-
tization size ∆h = 3 [m], ∆v = 3 [m/s], and we set
the fluctuation bounds h̃max = 12 [m], h̃min = −12 [m],
ṽmax = 12 [m/s] and ṽmin = −12 [m/s]. Thus, the number
of headway and velocity cells are Nh = 8 and Nv = 8,
respectively. For fluctuations with tighter bounds, the time
step and quantization size can be proportionally reduced.
We set the total number and increments for the quantized
feedback gains as m = 5, ∆α = 0.3 [1/s], ∆β = 0.4 [1/s].
The weighting factors are chosen to be γh = 1 and γv = 1.
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Fig. 5. (a,b): Histograms of velocity and headway at t = 50 [s] in
simulations of a (1 + 1)-vehicle string with stochastic velocity disturbance
(4,12,24,25). (c,d): The histogram of feedback gains α11 and β11 used by
the connected cruise controller at t = 50 [s].

We define the safety region and the end condition as

Ωsafe =
{[

x1
z1

] ∣∣∣ [1
1

]
≤
[
x1
z1

]
≤
[
8
8

]}
,

Ωend =
{[x1

z1

] ∣∣∣ [4
4

]
≤
[
x1
z1

]
≤
[
5
5

]}
.

(21)

We consider bounded fluctuation of velocity v2

v∗ − 2∆v ≤ v2 ≤ v∗ + 2∆v , (22)

that yields
3 ≤ z2 ≤ 6 , (23)

and assume the probability transition matrix

C2 =


0.7840 0.3200 0 0
0.2160 0.3800 0.3080 0

0 0.3000 0.3840 0.2160
0 0 0.3080 0.7840

 , (24)

cf. (12). This probability transition matrix has an eigen-
value at 1 and the corresponding eigenvector K =[
0.3058 0.2064 0.2011 0.2867

]T
gives the steady-state

probability distribution of z2. As an illustration, we generate
10000 discrete-time velocity profiles ṽ2[k] based on (12,24),
and correspondingly define the continuous-time velocity pro-
files

v2(t) = v∗ + ṽ2[k] , t ∈ [k∆t, (k + 1)∆t) . (25)

We sample each v2(t) at time t = 50 [s], and plot the
histogram in Fig. 3. One can observe that the histogram
corresponds to the steady-state distribution K.

A. Controller synthesis with no packet loss

Here we synthesize the optimal connected cruise controller
for the two-vehicle system (15,16,18) with no packet loss and
test the nonlinear controller (4) with synthesized gains (19)
in continuous time using zero-order hold.

Fig. 6. (a,b): Velocity and headway responses for a (1+ 1)-vehicle string
under sinusoidal disturbance. (c,d): The feedback gains α11 and β11 used
by the connected cruise controller. The notations are the same as in Fig. 4.

We first demonstrate the performance of the connected
cruise controller under a random velocity disturbance gen-
erated by (12,24,25). The headway and velocity responses
and feedback gains of the vehicle equipped with connected
cruise control are plotted in Fig. 4 as functions of time.
We can see from Fig. 4(a) that the synthesized controller
is able to follow the preceding vehicle’s motion well, while
maintaining reasonable headway as shown in Fig. 4(b). This
simulation demonstrates that the connected cruise controller
performs well under stochastic disturbances.

In order to evaluate the performance of the controller in
the statistical sense, we repeat the simulation (4,12,24,25) for
10000 different inputs, collect the value of headway, velocity,
and feedback gains at t = 50 [s] in each run, and plot the
corresponding histograms in Fig. 5. By comparing Fig. 3 and
Fig. 5(a) we find that the probability of z1 ∈ {4, 5} is larger
than z2 ∈ {4, 5}, which show that the controller performs
well in disturbance rejection. On the other hand, Fig. 5(b)
shows that the headway fluctuation x1 is well contained
within the safe region, cf. (21).

To further evaluate the disturbance-rejection performance
of the synthesized controller, we consider a sinusoidal ve-
locity profile

v2(t) = v∗ + vamp cos(ωt) , (26)

where vamp = 5 [m/s] and ω = 1 [1/s]. The simulation
results are shown in Fig. 6. In Fig. 6(a) we see that the
velocity fluctuation of the vehicle equipped with connected
cruise control (blue curve) has smaller amplitude than the
preceding vehicle (green curve), and the headway fluctua-
tions are also kept within safety region. Due to the periodicity
of v2(t), the feedback gains α11 and β11 also exhibit certain
periodic nature. We note that while static gains are also able
to suppress the velocity fluctuations [8], dynamic gains may
provide us more flexibility under stochastic influences from
the traffic.
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Fig. 7. (a,b): Velocity and headway responses for a (1+ 1)-vehicle string
under triangular disturbance. (c,d): The feedback gains α11 and β11 used
by the connected cruise controller. The notations are the same as in Fig. 4.

Fig. 8. (a,b): Velocity and headway responses for a (1+ 1)-vehicle string
under packet loss. The blue solid curves show the headway h1 and the
velocity v1 for the CCC vehicle. The green dots show the observed velocity
w2 of the leading vehicle 2. (c,d): The feedback gains α11 and β11 used
by the connected cruise controller.

Finally, we test the synthesized controller using a trian-
gular velocity signal that is more commonly seen in traffic
flow, and plot the results in Fig. 7. In this case, the leading
vehicle starts with a velocity below the equilibrium v∗,
and then accelerates to v∗ with constant acceleration, and
after two dips its velocity settles down to v∗; see the green
curve in Fig. 7(a). The controlled vehicle responds to the
velocity fluctuations well, especially that v1 (blue curve)
has smaller local minima than v2 (green curve), indicating
successful attenuation of velocity perturbations. Moreover,
the headway fluctuations are also kept within the safety
region, see Fig. 7(b). Note that in Fig. 7(c,d) the feedback
gains α11 and β11 settle down to their respective non-zero
minimal value as the states of the controlled vehicle converge
to the equilibrium.
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Fig. 9. (a,b): Histograms of velocity and headway at t = 50 [s] in
simulations of a (1 + 1)-vehicle string with stochastic velocity disturbance
and packet losses. (c,d): Histogram of feedback gains α11 and β11 used by
the connected cruise controller at t = 50 [s].

B. Controller synthesis with packet loss

Here we still consider a two-vehicle system but assume
the connected cruise controller fails to receive every second
packet of the velocity signal sent by vehicle 2. We synthesize
an optimal controller for (15,16,17,18) similarly as in the
previous subsection.

In Fig. 8 we test the synthesized controller using the
same velocity signal v2 as in Fig. 4(a), but in Fig. 8(a)
the velocity profile w2 received by vehicle 1 is plotted as
green dots. We note that the dynamic gains in the no-packet-
loss and packet-loss cases are clearly distinctive from each
other, cf. Fig. 4(c,d) and Fig. 8(c,d). This demonstrates that
the synthesized controller is able to adapt to the changes
due to packet losses. Moreover, the generated car-following
dynamics is robust against the packet losses, as shown
by the similarities of the blue curves in Fig. 4(a,b) and
Fig. 8(a,b). In both cases, the controlled vehicle is able to
follow the preceding vehicle while maintaining the desired
time headway.

Similarly, to demonstrate the controller performance sta-
tistically, we perform 10000 runs and plot the histograms
for the headway, velocity, and feedback gains at time t = 50
[s] in Fig. 9. We see that with packet losses, the connected
cruise controller still maintains similar distributions for the
velocity and headway fluctuations as in Fig. 5. However, we
note that there are considerable differences in the distribution
of feedback gain β11 between Fig. 5(d) and Fig. 9(d). This
demonstrates the necessity of considering packet losses in
the system.

V. CONCLUSIONS

In this paper we demonstrated the design of connect-
ed cruise control using probabilistic model checking. Our
method was based on stochastic optimal control and was able
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to accommodate stochastic events from the traffic flow and
also react to packet drops in vehicle-to-vehicle communica-
tion. We showed through simulations that the synthesized
controller is robust against imperfect communication and
may be used in connected vehicle systems with a larger
number of vehicles.
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