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Abstract The dynamics of connected vehicle systems are investigated where vehi-

cles exchange information via wireless vehicle-to-vehicle (V2V) communication.

In particular, connected cruise control (CCC) strategies are considered when using

different delay configurations. Disturbance attenuation (string stability) along open

chains is compared to the linear stability results using ring configuration. The results

are summarized using stability diagrams that allow one to design the control gains

for different delay values. Critical delay values are calculated and trade-offs between

the different strategies are pointed out.
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1 Introduction

Vehicular traffic has been fascinating researchers for decades and most of the early

work has been focused on understanding how humans drive, in particular, how they

control the longitudinal motion of vehicles [4, 7, 8]. In the last few decades, the

so-called optimal velocity model [2, 10] gained popularity since this can reproduce

a plethora of different large-scale traffic patterns observed empirically [20]. It also

became evident that human drivers often trigger traffic jams due to their large reac-

tion times and limited perception range [15].

In order to bypass this problem, the concept of adaptive cruise control (ACC) was

created where the distance to the vehicle ahead is monitored by range sensors (e.g.,

radar, lidar) and the vehicle is actuated accordingly [11, 19]. By appropriate control

design, one may guarantee attenuation of velocity perturbations between consecutive

vehicles that is called string stability in the literature [18]. However, a relatively large

penetration of ACC vehicles is required to change the behavior of the overall traffic

flow [3], which may be difficult to reach due to the relatively high cost. Also, while

the sensing delay of an ACC vehicle is significantly smaller than the human reaction

time, it is still only able to monitor the motion of the vehicle immediately ahead.

Wireless vehicle-to-vehicle (V2V) communication can be used to obtain infor-

mation from beyond the line of sight. Initial attempts focused on constructing pla-

toons of ACC vehicles where the information broadcast by a designated platoon

leader is utilized by the following vehicles. This strategy, called cooperative adap-

tive cruise control (CACC) [12, 21], can significantly improve the performance of

the system but it requires all vehicles to be equipped with sensors and communica-

tion devices, and the number of vehicles involved is limited by the communication

range. To eliminate such limitations the concept of connected cruise control (CCC)

has been put forward that allows the inclusion of human-driven vehicles that may or

may not broadcast information [1, 5, 13, 16, 22]. CCC utilizes all available infor-

mation from multiple vehicles ahead and may be used to assist the human drivers,

to complement sensor-based algorithms, or to automatically control the longitudi-

nal motion of the vehicle. This increased flexibility makes CCC scalable for large

connected vehicle systems.

However, intermittencies and packet drops lead to time delays in CCC. Such com-

munication delays are typically larger than the sensing delays in ACC, though they

are still smaller than human reaction time. Typically, one may expect that larger

delays lead to degraded performance but time-delay systems may present counter-

intuitive behavior in terms of stability [9, 17]. In this paper, we investigate the sim-

plest CCC scenario when each CCC vehicle utilizes information from the vehicle

immediately ahead. While the received V2V information is delayed by the commu-

nication delay, information measured by on-board sensors may be available (almost)

instantaneously. In this paper, we are asking the question whether one shall use these

instantaneous values or shall delay them with the communication delay. We compare

the different control strategies using stability charts where we identify gain com-

binations ensuring plant stability (stability in the lack of disturbances) and string
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stability (attenuation of velocity disturbances arising ahead). We also identify trade-

offs between the different strategies.

2 Modeling and Control Design with Delays

We consider connected cruise control strategies where each vehicle receives motion

information from the vehicle immediately ahead via wireless V2V communication

and uses this information to control its longitudinal motion. In particular, we consider

control strategies of the form

ṡ(t) = v(t) ,
v̇(t) = F

(
s(t), v(t), s(t − 𝜏), v(t − 𝜉), sL(t − 𝜎), vL(t − 𝜎)

)
,

(1)

where the dot stands for differentiation with respect to time t. Also, s, and sL denote

the position of the front bumpers of the vehicle and its immediate predecessor (called

the leader), while v and vL denote the corresponding velocities; see Fig. 1. The com-

munication delay 𝜎 is caused by intermittencies and packet drops while the delays

𝜏 and 𝜉 can be set when designing the controller. More precisely, we assume that

the quantities s and v are available instantaneously through on-board sensors of

high sampling rate but one may still use the delayed values in the control design

as explained below. Indeed, 𝜏 and 𝜉 may be set to zero or to be equal to 𝜎.

In this paper, we base our control design on the optimal velocity model and

consider three different delay scenarios, but all results can be generalized to car-

following models of the general form (1); see [6, 15]. The first scenario is given

by

Fig. 1 Connected vehicles system where each vehicle receives information from the vehicle imme-

diately ahead with the communication delay 𝜎 as indicated by the red-dashed arrows. The system

can be constructed as the concatenation of leader–follower pairs shown below where the positions,

the velocities, the headway, and the vehicle length are highlighted
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ṡ(t) = v(t) ,
v̇(t) = 𝛼

(
V(sL(t − 𝜎) − s(t − 𝜎) − 𝓁) − v(t − 𝜎)

)
+ 𝛽

(
W(vL(t − 𝜎)) − v(t − 𝜎)

)
,

(2)

which corresponds to matching all delays in the controller to the communication

delay. Here,𝓁 represents the length of the vehicle ahead (see Fig. 1) while the delayed

value of the headway h = sL − s − 𝓁 appears in the monotonously increasing range

policy function

V(h) =
⎧
⎪
⎨
⎪
⎩

0 if h ≤ hst ,
F(h) if hst < h < hgo ,
vmax if h ≥ hgo .

(3)

That is, for small headways the vehicle intends to stop for safety reasons while for

large headways it intends to travel with a chosen maximum speed. Between these we

assumeF(h) to be strictly monotonously increasing such thatF(hst ) = 0 andF(hgo) =
vmax. The simplest choice may be

F(h) = vmax
h − hst
hgo − hst

, (4)

that is depicted in Fig. 2a where the time gap Tgap = (hgo − hst )∕vmax is highlighted.

Notice that Tgap is constant for headway range hst < h < hgo. However, the corre-

sponding range policy is non-smooth at hst and hgo which may lead to a “jerky ride”.

Thus, in this paper we use

0 hst hgo h

V vmax

1
Tgap

0 hst hgo h

V vmax

0

vmax

vL

W

vmax

1

(a) (b)

(c)

Fig. 2 a, b Range policies (3) with the middle sections given by (4) and (5). c Saturation function

(6)
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F(h) =
vmax

2

(
1 − cos

(
𝜋

h − hst
hgo − hst

))
, (5)

that makes the range policy smooth as shown in Fig. 2b. Indeed, one may design

range policies with higher level of smoothness as shown in [13].

The second term on the right-hand side of (2) contains the saturation function

W(vL) =

{
vL if vL ≤ vmax ,

vmax if vL > vmax ,
(6)

shown in Fig. 2c, that is introduced to avoid the situation that the vehicle follows

a leader whose velocity is larger than vmax. Notice that when the leader’s velocity

is smaller than vmax, the delayed value of the derivative of the headway ̇h = vL − v
appears on the right-hand side. Thus, in model (2) all quantities on the right hand

side have clear physical meaning and we only compare quantities at the same

time moment. When presenting the results below we use the numbers hst = 5 m,

hgo = 35m, and vmax = 30m/s that corresponds to traffic data for human drivers [15].

Let us assume that the leader is traveling with a constant speed, that is, sL(t) =
v∗t + s̄L and vL(t) ≡ v∗, where 0 < v∗ < vmax and s̄L is given by the initial condition.

Then the follower admits the equilibrium

s(t) = v∗t + s̄ , v(t) ≡ v∗ , s̄L − s̄ − 𝓁 = V−1(v∗) = F−1(v∗) ∶= h∗ . (7)

In the vicinity of the equilibrium we define the time gap as Tgap = 1∕V ′(h∗) =
1∕F′(h∗) which indeed changes with the equilibrium headway h∗ (or equivalently

with the equilibrium velocity v∗). Note that for v∗ = 0 any constant headway smaller

than hst is possible while for v∗ = vmax any constant headway larger than hgo may

occur; see (3). For v∗ > vmax no equilibrium exists and the headway between the

leader and follower increases in time.

Since time delays often lead to instabilities and undesired oscillations in dynamic

systems, one may try to eliminate some delays on the right hand side of (2). For

example, the model

ṡ(t) = v(t) ,
v̇(t) = 𝛼

(
V(sL(t − 𝜎) − s(t − 𝜎) − 𝓁) − v(t)

)
+ 𝛽

(
W(vL(t − 𝜎)) − v(t − 𝜎)

)
,

(8)

still contains the delayed values of the headway h = sL − s − 𝓁 and its derivative ̇h =
vL − v (when vL ≤ vmax), but we consider the instantaneous value of the velocity v (as

it may be measured by on-board sensors). The model (8) still satisfies the equilibrium

(7) but in the first term on the right-hand side we compare a delayed value with an

instantaneous value.
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To further eliminate delays one may consider

ṡ(t) = v(t) ,
v̇(t) = 𝛼

(
V(sL(t − 𝜎) − s(t − 𝜎) − 𝓁) − v(t)

)
+ 𝛽

(
W(vL(t − 𝜎)) − v(t)

)
,

(9)

where both terms on the right-hand side compare delayed values to instantaneous

values. In fact, the velocity difference in the second term can be created since the

leader’s velocity is received via wireless communication while the vehicle’s own

velocity is measured on board. This is not accessible when using range sensors to

measure the headway and its derivative. The model (9) also satisfies the equilibrium

(7).

One may argue that the delay in the position s may be neglected as well. How-

ever, in this case the desired equilibrium (7) cannot be achieved by the system. In

particular, the equilibrium headway becomes s̄L − s̄ − 𝓁 = V−1(v∗) + v∗𝜎 that may

lead to safety hazards.

In the next section, we will compare the three models (2), (8) and (9) in terms

of the stability and disturbance attenuation in the vicinity of the equilibrium (7) by

plotting stability charts for different values of the communication delay 𝜎.

3 Linear Stability Analysis

In order to analyze the behavior of the models proposed above, we consider two

different configurations. In the open chain configuration, N + 1 vehicles are placed

on a straight road such that the motion of the head vehicle is prescribed. Then the

system is viewed as an input–output system, such that the speed of the head vehicle

vN+1 serves as the input and the speed of the tail vehicle v1 serves as an output. In the

ring-road configuration, N vehicles are placed on a circular road of length L + N𝓁
(yielding h∗ = L∕N and the periodic boundary conditions sN+1 = s1, vN+1 = v1).

When considering vehicles with identical range policies, there exists a uniform

flow equilibrium where all vehicles travel with the same velocity while keeping the

same headway; see (7). Our goal is to choose the gain parameters 𝛼 and 𝛽 such

that the velocity perturbations are attenuated as they propagate backward along the

vehicle chain, and the system is able to maintain the uniform flow equilibrium [13].

In order to analyze the dynamics in the vicinity of the equilibrium (7) one

may define the perturbations s̃L(t) = sL(t) − v∗t − s̄L, ṽL(t) = vL(t) − v∗, s̃(t) = s(t) −
v∗t − s̄, ṽ(t) = v(t) − v∗ and linearize the above models about the equilibrium. In par-

ticular, model (2) results in

̇s̃(t) = ṽ(t) ,
̇ṽ(t) = 𝛼f ∗ (s̃L(t − 𝜎) − s̃(t − 𝜎)) + 𝛽ṽL(t − 𝜎) − (𝛼 + 𝛽)ṽ(t − 𝜎) ,

(10)
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where we introduced the notation f ∗ = V ′(h∗) = F′(h∗). In this paper, we consider

the equilibrium v∗ = 15 m/s, that is, h∗ = 20 m yielding the maximum f ∗ = 𝜋∕2 1/s;

see (3, 5). This corresponds to the minimum value of the time gap Tgap = 1∕f ∗, which

gives the worst case scenario in terms of stability.

Taking the Laplace transform with zero initial conditions one may derive the

transfer function

𝛤 (s) =
̃V(s)
̃VL(s)

=
𝛽s + 𝛼f ∗

es𝜎s2 + (𝛼 + 𝛽)s + 𝛼f ∗
, (11)

where ̃V(s) and ̃VL(s) denote the Laplace transform of ṽ(t) and ṽL(t), respectively.

The transfer function allows us to evaluate stability and the amplitude ratio between

the input and the output in steady state when applying sinusoidal input.

In order to ensure plant stability (that is, s̃(t) → 0, ṽ(t) → 0 as t → 0 when s̃L(t) ≡
0 and ṽL(t) ≡ 0) one needs to make sure that the infinitely many poles of the transfer

function (11) are located in the left half complex plane. In order to determine the

stability boundary in the parameter plane of 𝛼 and 𝛽, we consider two different types

of stability loss. When a real pole crosses the imaginary axis, substituting s = 0 into

the characteristic equation es𝜎s2 + (𝛼 + 𝛽)s + 𝛼f ∗ = 0 yields the stability boundary

𝛼 = 0 . (12)

On the other hand, when a complex conjugate pair of poles crosses the imaginary

axis, substituting s = i𝛺 with 𝛺 > 0 into the characteristic equation and separating

the real and imaginary parts result in the stability boundary

𝛼 = 𝛺

2 cos(𝛺𝜎)
f ∗

,

𝛽 = 𝛺 sin(𝛺𝜎) − 𝛼 ,

(13)

that is parameterized by the angular frequency 𝛺.

In the special case of 𝜎 = 0, (12) remains the same while (13) simplifies to 𝛽 = −𝛼
as shown by the thick black lines in Fig. 3a. One may use the Routh–Hurwitz criteria

to show that plant stability is achieved above the lines in the top right corner. For

different values of 𝜎 > 0 the curves (12) and (13) are shown as thick black curves in

the (𝛽, 𝛼)-plane in Fig. 4a, c, e. One may apply Stépán’s formulae [17] and show that

stability is maintained inside the lobe-shaped domain. As the delay is increased, the

plant stable domain shrinks and the size of the domain tends to zero as the delay is

increased to infinity.

To ensure string stability, that is, attenuation of velocity perturbations between

the leader and the follower, we consider sinusoidal excitation ṽL(t) = vamp
L sin(𝜔t),

which (assuming plant stability) leads to the steady state response ṽss(t) = vamp sin
(𝜔t + 𝜓), where vamp∕vamp

L = |𝛤 (i𝜔)| and 𝜓 = ∠𝛤 (i𝜔). Requiring |𝛤 (i𝜔)| < 1 for

all 𝜔 > 0 ensures attenuation of sinusoidal signals and, as superposition holds for
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β [1s ]

α
[ 1s ]

ω
[ rads ]

β [1s ]

α
[ 1s ]

ω
[ rads ]

open chain ring
σ

=
0[

s]
(a) (b)

Fig. 3 Stability diagrams for the system (10) for 𝜎 = 0 using the open chain configuration (left)
and the ring configuration (right). The system is plant stable above the thick black lines. The gray-
shaded region indicates string stability while coloring refers to the oscillation frequencies as indi-

cated by the color bar

linear systems, for the linear combination of those signals. This condition may be

rewritten as 𝜔
2P(𝜔) > 0 where

P(𝜔) = 𝜔

2 + 2𝛼𝛽 + 𝛼

2 − 2(𝛼 + 𝛽)𝜔 sin(𝜔𝜎) − 2𝛼f ∗ cos(𝜔𝜎) . (14)

The stability boundaries can be identified corresponding to the minima of P
becoming negative at 𝜔cr > 0 that is defined by

P(𝜔cr ) = 0 ,
𝜕P
𝜕𝜔

(𝜔cr ) = 0 ,
(15)

while satisfying
𝜕

2P
𝜕𝜔

2 (𝜔cr ) > 0. Solving this for 𝛼 and 𝛽 one may obtain the string

stability boundaries parameterized by 𝜔cr as

𝛼 = a ±
√
a2 + b ,

𝛽 =
𝜔cr + 𝛼f ∗𝜎 sin(𝜔cr𝜎)

sin(𝜔cr𝜎) + 𝜔cr𝜎 cos(𝜔cr𝜎)
− 𝛼 ,

(16)

where

a =
𝜔cr (f ∗𝜎 − 1) + f ∗ sin(𝜔cr𝜎) cos(𝜔cr𝜎)
(2f ∗𝜎 − 1) sin(𝜔cr𝜎) − 𝜔cr𝜎 cos(𝜔cr𝜎)

,

b =
𝜔

2
cr
(
sin(𝜔cr𝜎) − 𝜔cr𝜎 cos(𝜔cr𝜎)

)

(2f ∗𝜎 − 1) sin(𝜔cr𝜎) − 𝜔cr𝜎 cos(𝜔cr𝜎)
.

(17)
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For𝜔cr = 0, the equalities |𝛤 (0)| = 1 and
𝜕|𝛤 |
𝜕𝜔

(0) = 0 always hold. Thus for string

stability we need
𝜕

2|𝛤 |
𝜕𝜔

2 (0) < 0 which is equivalent to P(0) = 𝛼(𝛼 + 2𝛽 − 2f ∗) > 0.

That is, one of the boundaries is equivalent to the plant stability boundary (12) while

the other is given by

𝛼 = 2(f ∗ − 𝛽) . (18)

Notice that this zero-frequency boundary does not depend on the delay 𝜎.

In the special case of 𝜎 = 0, only the string stability boundaries (12) and (18)

appear as shown by the straight lines bounding the gray string stable domain in

Fig. 3a. The coloring outside the string stable area corresponds to the solution of

P(𝜔) = 𝜔

2 + 𝛼(𝛼 + 2𝛽 − 2f ∗) = 0 for the frequency 𝜔. The coloring indicates that

string stability is lost for low frequencies. For different values of 𝜎 > 0 the stabil-

ity boundaries (12, 16–18) enclose the gray-shaded string stability domain in the

(𝛽, 𝛼)-plane as depicted in Fig. 4a, c, e. The coloring outside the string stable area

corresponds to the solution of P(𝜔) = 0 for the frequency 𝜔 (cf. (14)). When there

exist multiple solutions we use the largest 𝜔 value. The coloring indicates that when

leaving the string stable area toward the left, string stability is still lost at low frequen-

cies. On the other hand, leaving the area to the right, high-frequency string instability

occurs. To demonstrate this behavior we marked the points A, B, C on Fig. 4a and

plot the corresponding amplification ratios as a function of the frequencies in Fig. 5a.

Indeed, for case B the amplification ratio stays below 1 for all frequencies. For cases

A and C it exceeds 1 for low and high frequencies, respectively.

One may observe that as the delay 𝜎 increases the string stable domain shrinks

and for 𝜎 = 0.3 s it almost disappears. In fact, there exists a critical value of the

delay such that for 𝜎 > 𝜎cr there exist no gain combinations that can ensure string

stability. To calculate the critical delay one may use the L’Hospital rule to show that

for 𝜔cr → 0 formulae (16, 17) yield the points

(𝛼+
, 𝛽

+) =
(

2f ∗𝜎 − 1
𝜎(f ∗𝜎 − 1)

,

2(f ∗𝜎)2 − 4f ∗𝜎 + 1
2𝜎(f ∗𝜎 − 1)

)
,

(𝛼−
, 𝛽

−) =
(
0, 1

2𝜎

)
,

(19)

which are located along the stability boundary around the yellow shading in Fig. 4a.

These points move closer to each other when the delay increases and coincide when

the delay takes the value

𝜎cr =
1
2f ∗

=
Tgap
2

. (20)

Finally notice that for an open chain of N + 1 vehicles, one may derive the head-

to-tail transfer function (𝛤 (s))N = ̃V1(s)∕ ̃VN+1(s) between the head vehicleN + 1 and
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α
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gnirniahcnepo
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σ

=
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2[
s]

σ
=

0.
3[

s]

Fig. 4 Stability diagrams for the system (10) for different delay values as indicated using the open

chain configuration (left) and the ring configuration (right). The system is plant stable within the

lobe-shaped domain enclosed by the thick black curve. The gray-shaded region indicates string

stability while coloring refers to the oscillation frequencies as indicated by the color bar

the tail vehicle 1. Thus, the string stability condition still remains the same indepen-

dent of N.

When having N vehicles on a ring-road, one may define the state X = [s̃1, ṽ1,… ,

s̃N , ṽN]T where T denotes the transpose. Then (10) can be written into the compact

form



To Delay or Not to Delay—Stability of Connected Cruise Control 273

0 3 6 9 12
0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5
-12

-6

0

6

12

ω

|Γ(iω)|
(a)

A

B

C Im(s)

Re(s)

(b)
Case A

-1 -0.5 0 0.5
-12

-6

0

6

12

-1 -0.5 0 0.5
-12

-6

0

6

12

Im(s)

Re(s)

(c)
Case B

Im(s)

Re(s)

(d)
Case C

Fig. 5 a Amplification ratios for the points marked A, B, C in Fig. 4a, b when considering two

consecutive cars in an open chain. b, c, d Corresponding characteristic roots in case of the ring

configuration

̇X(t) = (𝐈⊗ 𝐚)X(t) + (𝐈⊗ 𝐛 + 𝐑⊗ 𝐜)X(t − 𝜎)

=
⎡
⎢
⎢
⎢
⎣

𝐚
⋱

⋱
𝐚

⎤
⎥
⎥
⎥
⎦

X(t) +
⎡
⎢
⎢
⎢
⎣

𝐛 𝐜
⋱ ⋱

𝐛 𝐜
𝐜 𝐛

⎤
⎥
⎥
⎥
⎦

X(t − 𝜎) ,
(21)

where ⊗ denotes the Kronecker product and 𝐈 is the N-dimensional identity matrix.

Also, the N-dimensional matrix 𝐑 is given by

𝐑 =

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 ⋯ 0
0 0 1 ⋱ ⋮
⋮ ⋱ ⋱ 0
0 0 ⋯ 0 1
1 0 ⋯ 0 0

⎤
⎥
⎥
⎥
⎥
⎦

, (22)

while the two-dimensional nonzero blocks are
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𝐚 =
[
0 1
0 0

]
, 𝐛 =

[
0 0

−𝛼f ∗ −(𝛼 + 𝛽)

]
, 𝐜 =

[
0 0
𝛼f ∗ 𝛽

]
. (23)

Then one can block-diagonalize the matrices in (21) using the coordinate trans-

formation

X = (𝐓⊗ I)Z , (24)

where the N-dimensional matrix 𝐓 is constructed from the eigenvectors of 𝐑 while

I is the two-dimensional identity matrix. This yields

̇Z(t) =
⎡
⎢
⎢
⎢
⎣

𝐚
⋱

⋱
𝐚

⎤
⎥
⎥
⎥
⎦

Z(t) +

⎡
⎢
⎢
⎢
⎢
⎣

𝐛 + 𝐜
𝐛 + ei

2𝜋
N 𝐜

⋱

𝐛 + ei
2(N−1)𝜋

N 𝐜

⎤
⎥
⎥
⎥
⎥
⎦

Z(t − 𝜎) , (25)

where ei
2k𝜋
N , for k = 0, 1,… ,N − 1 are the eigenvalues of the matrix 𝐑 in (22). The

corresponding eigenvectors, that constitute the columns of 𝐓 in (24), are given by

[1, ei
2k𝜋
N
, ei

2k𝜋
N
2
,… , ei

2k𝜋
N
(N−1)]T, for k = 0, 1,… ,N − 1. Thus, the physical meaning

of k is a discrete wave number of the appearing traveling waves and the corresponding

spatial wavelengths are 𝛬 = (L + N𝓁)∕k for k ≤ N∕2 and 𝛬 = (L + N𝓁)∕(N − k) for

k > N∕2. In other words, the same spatial pattern arises for wave numbers k and

N − k.

The block-diagonal matrices in (25) allow us to analyze the stability of the trav-

eling waves separately for each wave number k. In particular, using the trial solution

Z(t) ∼ est one may obtain the characteristic equation

N−1∏

k=0
det

[
sI − 𝐚 −

(
𝐛 + ei

2k𝜋
N 𝐜

)
e−s𝜎

]
= 0 . (26)

Using the definitions (23), this yields

es𝜎s2 + (𝛼 + 𝛽)s + 𝛼f ∗ −
(
𝛽s + 𝛼f ∗

)
ei

2k𝜋
N = 0 (27)

for k = 0, 1,… ,N − 1. Notice that using the transfer function (11) and the periodic

boundary conditions imply (𝛤 (s))N = 1 and taking the N-th root results in the char-

acteristic equation (27).

The system is stable if the characteristic roots are located in the left half com-

plex plane for all k. To determine the corresponding stability boundaries we con-

sider the critical scenarios when characteristic roots cross the imaginary axis. For

wavenumber k = 0, one may notice s = 0 satisfies (27) for all values of 𝛼 and 𝛽.

This corresponds to the translational symmetry of the ring configuration: the system

is invariant when shifting all vehicles with the same distance along the road [14]. For

wavenumbers k > 0, substituting s = 0 into (27) yields the stability boundary (12).
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On the other hand, when considering that a pair of complex conjugate roots crosses

the imaginary axis, substituting s = ±i𝜔 into (27) results in the stability boundaries

𝛼 =
𝜔

2( cos(𝜔𝜎) − cos(𝜔𝜎 − 2k𝜋
N
)
)

−𝜔 sin( 2k𝜋
N
) + 2f ∗

(
1 − cos( 2k𝜋

N
)
) ,

𝛽 =
−𝜔2 cos(𝜔𝜎) + f ∗𝜔

(
sin(𝜔𝜎) − sin(𝜔𝜎 − 2k𝜋

N
)
)

−𝜔 sin( 2k𝜋
N
) + 2f ∗

(
1 − cos( 2k𝜋

N
)
)

(28)

for k = 0, 1,… ,N − 1 as depicted in Fig. 3b and in Fig. 4b, d, f for different values

of the delay 𝜎 while considering N = 100 vehicles. Each curve is parameterized by

the frequency 𝜔 as highlighted by the color code. Notice the remarkable similarity

between the stability charts shown in the left and the right of Fig. 4 despite the fact

that panels (a, c, e) correspond to the steady state response of the open chain while

panels (b, d, f) correspond to the transient response of the ring configuration. To

further emphasize this similarity we plot the characteristic roots (the solutions of

(27)) in the complex plane in Fig. 5b, c, d for the points marked A, B, C in Fig. 4b.

For cases A and C the crossing frequencies in Fig. 5a and in Fig. 5b, d show a good

correspondence.

Linearizing the model (8) about the equilibrium (7) yields

̇s̃(t) = ṽ(t) ,
̇ṽ(t) = 𝛼f ∗ (s̃L(t − 𝜎) − s̃(t − 𝜎)) + 𝛽ṽL(t − 𝜎) − 𝛼ṽ(t) − 𝛽ṽ(t − 𝜎) .

(29)

Taking the Laplace transform with zero initial conditions we obtain the transfer func-

tion

𝛤 (s) =
̃V(s)
̃VL(s)

=
𝛽s + 𝛼f ∗

es𝜎(s2 + 𝛼s) + 𝛽s + 𝛼f ∗
. (30)

The corresponding plant stability boundaries are given by (12) and

𝛼 = 𝛺

2 cos(𝛺𝜎)
f ∗ −𝛺 sin(𝛺𝜎)

,

𝛽 = 𝛺 sin(𝛺𝜎) − 𝛼 cos(𝛺𝜎) ,
(31)

that are shown as thick black curves in the (𝛽, 𝛼)-plane in Fig. 6a, c, e. Applying

Stépán’s formulae [17] shows that the system is plant stable when parameters are

chosen from the region above the black curves. Again, increasing the delay leads to

smaller plant stable domains.

In this case, the string stability condition can be rewritten as 𝜔Q(𝜔) > 0 where

Q(𝜔) = 𝜔

3 + 𝛼

2
𝜔 − 2(𝛼2f ∗ + 𝛽𝜔

2) sin(𝜔𝜎) + 2(𝛼𝛽 − 𝛼f ∗)𝜔 cos(𝜔𝜎) . (32)
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For 𝜔cr > 0 the string stability boundaries can be obtained by substituting P with

Q in (15) which yields

3∑

p=0
ap𝛼p = 0 ,

𝛽 =
𝜔

3
cr + 𝛼

2
𝜔cr − 2𝛼f ∗

(
𝛼 sin(𝜔cr𝜎) + 𝜔cr cos(𝜔cr𝜎)

)

2𝜔cr
(
𝜔cr sin(𝜔cr𝜎) − 𝛼 cos(𝜔cr𝜎)

) ,

(33)

where

a0 = 𝜔

4
cr cos(𝜔cr𝜎)

(
− sin(𝜔cr𝜎) + 𝜔cr𝜎 cos(𝜔cr𝜎)

)
,

a1 = 𝜔

2
cr cos(𝜔cr𝜎)

(
𝜔

2
cr𝜎 sin(𝜔cr𝜎) − 2f ∗ sin(𝜔cr𝜎) cos(𝜔cr𝜎) + 2𝜔cr cos(𝜔cr𝜎) − 2f ∗𝜔cr𝜎

)
,

a2 = 𝜔cr cos(𝜔cr𝜎)
(
𝜔cr sin(𝜔cr𝜎) − 4f ∗ sin2(𝜔cr𝜎) + 𝜔

2
cr𝜎 cos(𝜔cr𝜎)

)
,

a3 = cos(𝜔cr𝜎)
(
𝜔

2
cr𝜎 sin(𝜔cr𝜎) + 2f ∗ sin(𝜔cr𝜎) cos(𝜔cr𝜎) − 2f ∗𝜔cr𝜎

)
.

(34)

For 𝜔cr = 0, the inequality
𝜕

2|𝛤 |
𝜕𝜔

2 (0) < 0 is equivalent to
𝜕Q
𝜕𝜔

(0) = 𝛼

(
(1 − 2f ∗𝜎)𝛼 +

2𝛽 − 2f ∗
)
> 0, that yields the boundaries (12) and

𝛼 =
2(f ∗ − 𝛽)
1 − 2f ∗𝜎

. (35)

That is, in this case, the gradient of the zero-frequency boundary is influenced by

the delay as shown by the boundary on the left of the gray string stable region in

Figs. 3a and 6a, c, e. Here the coloring corresponds to the solution of Q(𝜔) = 0 for

the frequency 𝜔 (cf.( 32)). Again, on the left string stability is lost at low frequencies

while on the right high-frequency string instability occurs. The string stable domain

is not closed from above but it still shrinks as the delay increases and it disappears

when the delay exceeds

𝜎cr ≈
0.785
f ∗

= 0.785Tgap , (36)

but this value cannot be calculated analytically.

When comparing Figs. 4a, c, e and 6a, c, e one may notice a trade-off. While the

critical delay is significantly larger in the latter case, it also requires larger gains to

make the systems string stable as the delay is increased. This may be difficult to

achieve in practice due to the saturation of the actuators.

In case of the ring configuration we may still write the system into the form (21)

where 𝐑 is still given by (22), but the blocks are given by

𝐚 =
[
0 1
0 −𝛼

]
, 𝐛 =

[
0 0

−𝛼f ∗ −𝛽

]
, 𝐜 =

[
0 0
𝛼f ∗ 𝛽

]
. (37)
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Fig. 6 Stability diagrams for the system (29) using the open chain configuration (left) and the ring

configuration (right). The same notation is used as in Fig. 4

After obtaining the block-diagonal form (25) we can obtain the characteristic

equation in the form (26) that yields

es𝜎
(
s2 + 𝛼s

)
+ 𝛽s + 𝛼f ∗ −

(
𝛽s + 𝛼f ∗

)
ei

2k𝜋
N = 0 (38)
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for k = 0, 1,… ,N − 1. The corresponding stability boundaries are given by

𝛼 =
𝜔

2( cos(𝜔𝜎) − cos(𝜔𝜎 − 2k𝜋
N
)
)

−𝜔
(
sin(𝜔𝜎) − sin(𝜔𝜎 − 2k𝜋

N
)
)
+ 2f ∗

(
1 − cos( 2k𝜋

N
)
) ,

𝛽 =
−𝜔2 + f ∗𝜔

(
sin(𝜔𝜎) − sin(𝜔𝜎 − 2k𝜋

N
)
)

−𝜔
(
sin(𝜔𝜎) − sin(𝜔𝜎 − 2k𝜋

N
)
)
+ 2f ∗

(
1 − cos( 2k𝜋

N
)
)

(39)

for k = 0, 1,… ,N − 1 as depicted in Fig. 6b, d, f for different values of the delay 𝜎

while considering N = 100 vehicles. Again, comparing panels (a, c, e) to panels (b,

d, f) shows very good correspondence with each other.

Finally, the linearization of (9) about the equilibrium (7) takes the form

̇s̃(t) = ṽ(t) ,
̇ṽ(t) = 𝛼f ∗ (s̃L(t − 𝜎) − s̃(t − 𝜎)) + 𝛽ṽL(t − 𝜎) − (𝛼 + 𝛽)ṽ(t) ,

(40)

and the corresponding transfer function is given by

𝛤 (s) =
̃V(s)
̃VL(s)

=
𝛽s + 𝛼f ∗

es𝜎
(
s2 + (𝛼 + 𝛽)s

)
+ 𝛼f ∗

. (41)

Then the plant stability boundaries are given by (12) and

𝛼 = 𝛺

2

f ∗ cos(𝛺𝜎)
,

𝛽 = 𝛺 tan(𝛺𝜎) − 𝛼 ,

(42)

that are displayed as thick black curves in Fig. 7a, c, e. According to Stépán’s for-

mulae [17] the system is plant stable above the curves and increasing the delay still

deteriorates plant stability (though this effect is not so pronounced when comparing

to the other two cases discussed above).

Again the string stability condition can be written as 𝜔R(𝜔) > 0 where

R(𝜔) = 𝜔

3 + 𝛼

2
𝜔 + 2𝛼𝛽𝜔 − 2𝛼f ∗(𝛼 + 𝛽) sin(𝜔𝜎) − 2𝛼f ∗𝜔 cos(𝜔𝜎) , (43)

and substituting P with R in (15) results in the string stability boundaries

𝛼 = â ±
√
â2 + ̂b ,

𝛽 =
𝜔

3
cr + 𝛼

2
𝜔cr − 2𝛼f ∗

(
𝛼 sin(𝜔cr𝜎) + 𝜔cr cos(𝜔cr𝜎)

)

2𝛼
(
f ∗ sin(𝜔cr𝜎) − 𝜔cr

) ,

(44)
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Fig. 7 Stability diagrams for the system (40) using the open chain configuration (left) and the ring

configuration (right). The same notation is used as in Fig. 4

where

â =
−𝜔2

cr𝜎 sin(𝜔cr𝜎) − f ∗ sin(𝜔cr𝜎) cos(𝜔cr𝜎) + f ∗𝜔cr𝜎

sin(𝜔cr𝜎) − 𝜔cr𝜎 cos(𝜔cr𝜎)
,

̂b =
𝜔

2
cr
(
3f ∗ sin(𝜔cr𝜎) − f ∗𝜔cr𝜎 cos(𝜔cr𝜎) − 2𝜔cr

)

f ∗
(
sin(𝜔cr𝜎) − 𝜔cr𝜎 cos(𝜔cr𝜎)

) .

(45)

However, we remark that these do not give stability boundaries in the physically

realistic parameter ranges.
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For 𝜔cr = 0, we obtain
𝜕R
𝜕𝜔

(0) = 𝛼

(
(1 − 2f ∗𝜎)𝛼 + 2(1 − f ∗𝜎)𝛽 − 2f ∗

)
> 0, that

yields the boundaries (12) and

𝛼 =
2
(
f ∗ − (1 − f ∗𝜎)𝛽

)

1 − 2f ∗𝜎
. (46)

That is, both the gradient and the position of the zero-frequency boundary is influ-

enced by the delay which can be observed when looking at the left boundary in

Figs. 3a and 6a, c, e. As shown by the coloring, only low-frequency string instability

occurs and the gray string stable domain is open from above and from the right. By

investigating when the gradient of (46) becomes zero one can calculate the critical

delay

𝜎cr =
1
f ∗

= Tgap , (47)

above which the string stable domain disappears.

Again comparing Figs. 4a, c, e, 6a, c, e, and 7a, c, e one may notice that the critical

delay increases but larger gains are required to make the system string stable which

may not be possible due to the limitation of the actuators.

In case of the ring configuration (25) contains

𝐚 =
[
0 1
0 −(𝛼 + 𝛽)

]
, 𝐛 =

[
0 0

−𝛼f ∗ 0

]
, 𝐜 =

[
0 0
𝛼f ∗ 𝛽

]
, (48)

while (26) yields

es𝜎
(
s2 + (𝛼 + 𝛽)s

)
+ 𝛽s + 𝛼f ∗ − 𝛼f ∗ei

2k𝜋
N = 0 , (49)

resulting in the stability boundaries

𝛼 =
𝜔

2(1 − cos(𝜔𝜎 − 2k𝜋
N
)
)

𝜔 sin(𝜔𝜎 − 2k𝜋
N
) + f ∗

(
1 − cos( 2k𝜋

N
) + cos(𝜔𝜎) − cos(𝜔𝜎 − 2k𝜋

N
)
) ,

𝛽 =
−𝜔2 + f ∗𝜔

(
sin(𝜔𝜎) − sin(𝜔𝜎 − 2k𝜋

N
)
)

𝜔 sin(𝜔𝜎 − 2k𝜋
N
) + f ∗

(
1 − cos( 2k𝜋

N
) + cos(𝜔𝜎) − cos(𝜔𝜎 − 2k𝜋

N
)
)

(50)

for k = 0, 1,… ,N − 1 as shown in Fig. 7b, d, f for different 𝜎 values and N =
100 vehicles. Indeed, panels (a, c, e) show very good correspondence with panels

(b, d, f).
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4 Conclusion

The effect of time delays has been investigated in connected cruise control scenarios

where each vehicle controls its longitudinal motion based on the V2V information

received from the vehicles immediately ahead. In order to evaluate the stability of

uniform traffic flow we considered open chain and ring configurations and our results

show that these configurations give the same results when the number of vehicles

is large enough. We also demonstrated that as the delay increases the stable areas

shrink, and that when the delay exceeds a critical value no gain combinations can

stabilize the uniform flow. Moreover, using the instantaneous values of quantities

measured on board may not necessarily improve the performance. On one hand, one

may increase the critical value of the delay, but on the other hand it requires larger

gains to stabilize the system (that may not be available due to actuator limitations).

Thus, it may in fact be beneficial to delay the values of the on-board quantities to

achieve high-performance CCC design.
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