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Since a connected cruise controller utilizes motion information from multiple human-driven vehicles ahead, its performance signifi-
cantly depends on human driving behavior. Therefore, robust controller designis required to maintain a desired level of performance
against uncertainties in human parameters. In this paper, we apply structured singular value analysis to select robust control gains that
guarantee string stability against uncertainties arising from the feedback gains and reaction time delays of the human drivers ahead.
We demonstrate the results on a connected vehicle system where a connected automated vehicle follows three human-driven vehicles.

1 INTRODUCTION

In order to improve active safety, passenger comfort, and traf-
fic efficiency, automation of passenger vehicles has become a
widely studied area over the past few decades. While adaptive
cruise control (ACC) was invented to alleviate human drivers
from the constant burden of speed control [1], it only allows an
equipped vehicle to respond to its immediate predecessor [2].
To overcome this limitation, cooperative adaptive cruise control
(CACC) was proposed, which allows several automated vehicles
to drive cooperatively through vehicle-to-vehicle (V2V) com-
munication [3, 4, 5, 6]. However, to fully exploit the benefits
of V2V communication, the V2V signals from nearby human-
driven cars should also be utilized before automated vehicles
become widespread. Therefore, connected cruise control (CCC)
was proposed that allows an automated vehicle to respond to
multiple human-driven vehicles ahead via ad-hoc V2V commu-
nication [7, 8, 9, 10].

Since both CACC and CCC designs rely on the dynamics
of multiple preceding vehicles, parameter uncertainties among
these vehicles need to be considered in order to guarantee robust
performance. For CACC designs, [11, 12, 13] considered the un-
certainties among an automated platoon and synthesized robust
controllers using the H∞ framework. Some other methods were
also used in [14, 15, 16, 17] to discuss the effects of unmod-
eled dynamics, stochastic communication delay, and measure-
ment noise. However, to obtain robust CCC designs, a systematic
method is needed to not only consider the uncertain feedback
parameters but also the reaction time delay of nearby human
drivers. In this paper, we use structured singular value analysis
[18, 19] to evaluate the effects of uncertain human parameters

on CCC design, and demonstrate the results by ensuring robust
head-to-tail string stability on a four-vehicle configuration.

2 CONNECTED VEHICLE SYSTEMS

In this section we describe the longitudinal dynamics of a con-
nected vehicle system. We consider a heterogeneous chain of
vehicles where all vehicles are equipped with V2V devices and
some are capable of automated driving, as shown in Fig. 1. When
an automated vehicle receives motion information broadcasted
from several vehicles ahead, it may choose to use the informa-
tion in its motion control (see the dashed arrows), and thus, it
becomes a connected automated vehicle. Such a V2V-based con-
troller then defines a connected vehicle system consisting of the
connected automated vehicle and the preceding vehicles whose
motion signals are used by the connected automated vehicle.

Inside this connected vehicle system, we denote the connected
automated vehicle as vehicle 0, and the preceding vehicles as
vehicles 1, . . . , n. The longitudinal dynamics of human-driven
vehicle i can be described by

ḣi(t) = vi+1(t)− vi(t) ,

v̇i(t) = αi

(
Vi

(
hi(t− τi)

)
− vi(t− τi)

)
+ βi

(
vi+1(t− τi)− vi(t− τi)

)
, (1)

for i = 1, . . . , n, where hi and vi are the headway and speed of
vehicle i, αi and βi are the control gains and the time delay τi ac-
counts for the reaction time delay of a human driver plus the ac-
tuator delay of the vehicle. Moreover, Vi(hi) is the range policy
function that describes the desired velocity based on headway
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Figure 1: A connected vehicle system arising from the V2V-
based controller of a connected automated vehicle.

hi. Inspired by model (1) we design the longitudinal controller
for the connected automated vehicle 0 in the form of

ḣ0(t) = v1(t)− v0(t) ,

v̇0(t) = a1,0
(
V0

(
h0(t− σ1,0)

)
− v0(t− σ1,0)

)
+

n∑
j=1

bj,0
(
vj(t− σj,0)− v0(t− σj,0)

)
, (2)

where the control gains aj,0, bj,0 and delay σj,0 correspond to
the links between vehicle j and the connected automated vehicle
0. Note that the delay σj,0 arises from the actuators as well as
from communication intermittency and possible packet losses.

The range policy function is assumed to be similar for each
vehicle, i.e.,

Vi(hi) =


0 if hi ≤ hst,i ,

κi(hi − hst,i) if hst,i < hi < hgo,i ,

vmax if hi ≥ hgo,i ,

(3)

where κi = vmax/(hgo,i − hst,i). That is, the desired velocity is
zero for small headways (hi ≤ hst,i) and equal to the speed limit
vmax for large headways (hi ≥ hgo,i). Between these, the desired
velocity increases with the headway linearly, with gradient κi.
Many other range policies may be chosen, but the qualitative
dynamics remain similar if the above characteristics are kept.

Unlike many cooperative adaptive cruise control algorithms,
the preceding vehicles 1, . . . , n in the connected vehicle system
shown in Fig. 1 are not required to cooperate with the connected
automated vehicle. That is, aside from broadcasting their mo-
tion information through V2V communication, no automation
of these vehicles is required. Thus, the feedback gains and delay
time in (1) cannot be tuned for the connected automated vehicle
design. However, the connected automated vehicle 0 may fully
exploit V2V signals from vehicles 1, . . . , n with no constraint on
the connectivity topology.

We consider the stability of the connected vehicle system
(1-2) around the equilibrium where the vehicles travel with the
same speed vi(t) = v∗ and their corresponding headways are
hi(t) = h∗

i such that Vi(h
∗
i ) = v∗, i = 0, . . . , n. We define the

perturbations about the equilibrium (h∗
i , v

∗) as

h̃i(t) = hi(t)− h∗, ṽi(t) = vi(t)− v∗ . (4)

Since we are interested in how speed perturbations ṽi propagate
through the connected vehicle system, especially how a con-
nected automated vehicle attenuates such perturbations, we lin-
earize (1-2) around the equilibrium (h∗

i , v
∗) and obtain

˙̃
h0(t) = ṽ1(t)− ṽ0(t) ,

˙̃v0(t) = a1,0
(
κ0h̃0(t− σ1,0)− ṽ0(t− σ1,0)

)
+

n∑
j=1

bj,0
(
ṽj(t− σj,0)− ṽ0(t− σj,0)

)
, (5)

˙̃
hi(t) = ṽi+1(t)− ṽi(t) ,

˙̃vi(t) = αi

(
κih̃i(t− τi)− ṽi(t− τi)

)
+ βi

(
ṽi+1(t− τi)− ṽi(t− τi)

)
, (6)

for i = 1, . . . , n.
We assume that the connected vehicle system (5-6) is plant

stable, that is, when the input perturbation ṽn+1(t) ≡ 0, the
perturbations h̃i, ṽi of the preceding vehicles and h̃0, ṽ0 of
the connected automated vehicle will tend to zero regardless of
the initial conditions. Instead, we focus on how the connected
automated vehicle responds to speed perturbations propagating
through the system. When the speed fluctuation ṽ0 of the con-
nected automated vehicle has smaller amplitude than the input
ṽn, we call the connected automated vehicle design head-to-tail
string stable. That is, head-to-tail string stability allows speed
perturbations to be amplified among the uncontrollable vehicles
1, . . . , n, and we focus on how the connected automated vehi-
cle attenuates the perturbations. Being head-to-tail string stable
not only enables a connected automated vehicle to enjoy better
active safety, fuel economy, and passenger comfort, it can also
improve the efficiency of the traffic flow [8].

We assume zero initial conditions for (5-6) and obtain

Ṽ0(s) =

n∑
i=1

Ti,0(s)Ṽi(s), (7)

Ṽi(s) = Ti+1,i(s)Ṽi+1(s) , (8)

where Ṽ0(s) and Ṽi(s) denote the Laplace transform of ṽ0(t) and
ṽi(t), and the link transfer functions are

T1,0(s) =
(a1,0κ0 + b1,0s)e−sσ1,0

s2 + a1,0(κ0 + s)e−sσ1,0 +
∑n

l=1 bl,0se−sσl,0
,

Ti,0(s) =
bi,0se−sσj,0

s2 + a1,0(κ0 + s)e−sσ1,0 +
∑n

l=1 bl,0se−sσl,0
,

Ti+1,i(s) =
(αiκi + βis)e−sτi

s2 + (αiκi + (αi + βi)s)e−sτi
. (9)

for i = 1, . . . , n. Thus, the head-to-tail transfer function of the
connected vehicle system is

Gn,0(s) =
Ṽ0(s)

Ṽn(s)
= det (T (s)) , (10)

where the transfer function matrix is

T(s)

=


T1,0(s) −1 0 · · · 0
T2,0(s) T2,1(s) −1 · · · 0

...
...

...
. . .

...
Tn−1,0(s) Tn−1,1(s) Tn−1,2(s) · · · −1
Tn,0(s) Tn,1(s) Tn,2(s) · · · Tn,n−1(s)

 ,
(11)

see [8] for the proof.
The criterion for head-to-tail string stability at the linear level

is guaranteed if the perturbations are attenuated for any fre-
quency, that is, if∣∣det

(
T(iω)

)∣∣ < 1, ∀ ω > 0 , (12)

where we substituted s = iω. In order to facilitate robustness
analysis we rewrite (12) as

1− det
(
T(iω)

)
δc ̸= 0, ∀ ω > 0 , (13)

where δc is an arbitrary complex number inside the unit circle in
the complex plane, that is, δc ∈ C, |δc| < 1.
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Figure 2: Example configuration: (a) Connected vehicle struc-
ture. (b) Block diagram.
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Figure 3: Example transfer functions |T3,2(iω)|, |T2,1(iω)|,
|G3,0(iω)| and corresponding simulations with ω∗ = 0.6 [rad/s].

To illustrate the head-to-tail string stability, here we consider
a connected automated vehicle using motion information from
three vehicles ahead (n = 3), as shown in Fig. 2(a). The transfer
function matrix for this connected vehicle system is

T(s) =

[
T1,0(s) −1 0
T2,0(s) T2,1(s) −1
T3,0(s) 0 T3,2(s)

]
, (14)

where the elements T1,0(s), T2,0(s), T3,0(s), T2,1(s) and T3,2(s)
are given by (9), while (10) gives the head-to-tail transfer func-
tion

G3,0(s) = T3,2(s)
(
T2,1(s)T1,0(s) + T2,0(s)

)
+ T3,0(s). (15)

The flow of information is illustrated by a block diagram in
Fig. 2(b). We consider the case when the preceding vehicles
i = 1,2 have parameters αi = 0.2 [1/s], βi = 0.4 [1/s], κi = 0.9
[1/s], τi = 0.9 [s], and the design parameters are a1,0 = 0.4 [1/s],
b1,0 = 0.2 [1/s], b2,0 = 0.4 [1/s], b3,0 = 0.4 [1/s], κ0 = 0.9 [1/s],
and σ1,0 = σ2,0 = σ3,0 = σ = 0.6 [s] for the connected auto-
mated vehicle.

In Fig. 3(a) we plot the head-to-tail transfer function
|G3,0(iω)| of the connected automated vehicle (solid gray curve)
and the link transfer function |T3,2(iω)| that describes how vehi-
cle 2 responds to the motion of vehicle 3 (dotted purple curve).
Here this is equal to |T2,1(iω)| as vehicles 2 and 1 have the
same parameters. While the magnitude of the head-to-tail trans-
fer function stays below 1, the link transfer functions of vehicles
2 and 1 reach beyond 1 for low frequencies. This indicates that
speed perturbations at low frequency are amplified by vehicles 2
and 1 but eventually are suppressed by the connected automated
vehicle. This observation is supported by a simulation shown in
Fig. 3(b), where the speed input v3(t) = 15 + 5sin(ω∗t) is ap-
plied with ω∗ = 0.6 [rad/s]. The color code corresponds to the
vehicle colors in Fig. 2(a).

Note that the results shown in Fig. 3 strongly depend on the
parameters of the preceding vehicles. The same control param-
eters used in Fig. 3 may behave poorly with a different set of
parameters κi, αi, βi and τi. In the forthcoming sections, we
will assume additive perturbation in these parameters denoted

z

yu
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Figure 4: m− δ uncertain interconnection structure.

by κ̃i, α̃i, β̃i and τ̃i, and apply robust control design to ensure
head-to-tail string stability under these parameter changes.

3 ROBUST STRING STABILITY

Since a connected automated vehicle may not know the dynam-
ics of the preceding vehicles 1, . . . , n accurately, the V2V-based
controller should be robust against their parameter uncertainties
beside from the model uncertainties of the connected automated
vehicle itself. Based on the theory of robust control, we represent
the system uncertainty in the m− δ uncertain interconnection
structure, as shown in Fig. 4 [18, 19]. We present the formula-
tion of interconnected model for the two-vehicle configuration
briefly, then extend the results for connected vehicle systems.
Examples are given on a four-vehicle model, which can be eas-
ily generalized further.

3.1 Two-vehicle configuration

To introduce the robust string stability, we start with the sim-
plest case where vehicle i only uses information from the vehi-
cle immediately ahead, see Fig. 5(a). In this case the input of the
nominal system is ṽi+1(t) while the output is ṽi(t), and the link
transfer function is given by

Ti+1,i(s) =
(ακ+ βs)e−sτ

s2 + (ακ+ (α+ β)s)e−sτ , (16)

where we dropped the subscripts of the parameters κ, α, β, and
τ ; see (9).

While the additive uncertainties α̃, β̃, and κ̃ result in additive
uncertainty terms, an additive delay uncertainty τ̃ results in a
multiplicative exponential term e−sτ̃ in (16), that is,

Ti+1,i(s) + T̃i+1,i(s)

=

(
(κ+ κ̃)(α+ α̃) + (β + β̃)s

)
e−s(τ+τ̃)

s2 +
(
(κ+ κ̃)(α+ α̃) + (α+ α̃+ β + β̃)s

)
e−s(τ+τ̃)

,

(17)

where T̃i+1,i(s) represents the uncertainty. In order to formulate
the uncertainties in a way that can be represented by the m− δ
interconnection structure, we use the approximation

e−s(τ+τ̃) ≈ e−sτ
(
1 + ϑ̃(s)

)
, (18)

where

ϑ̃(s) =
τ̃ s

1 + τ̃ s/3.456
ϵ, ϵ ∈ C, |ϵ| < 1 (19)

estimates the uncertainty, see [20]. By taking into account the
uncertain parameters, the block diagram in Fig. 5(b) can be
drawn. This illustrates how uncertainties affect the system and
allows one to construct the m− δ structure by solving a number
of algebraic equations.

Based on Fig. 5(b), one can derive the linear system of equa-
tions in the form [

y
z

]
= m(s)

[
u
w

]
, (20)

u = δ(s)y, (21)



m(s) =
1

D(s)


−αe−sτ −e−sτ −e−sτ −2 s+ αe−sτ

s2 + βse−sτ −(κ+ s)e−sτ −(κ+ s)e−sτ 2(κ+ s) κs− βse−sτ

−αse−sτ −se−sτ −se−sτ 2s s2 + αse−sτ

αs3e−sτ s3e−sτ s3e−sτ −s3 + s
(
κα+ s(α+ β)

)
e−sτ (καs2 + βs3)e−sτ

αse−sτ se−sτ se−sτ −2s (κα+ βs)e−sτ

 , (23)

D(s) = s2 +
(
κα+ s(α+ β)

)
e−sτ , (24)
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Figure 5: Two-vehicle configuration: (a) Connected vehicle sys-
tem. (b) Block diagram of the uncertain transfer function.

where m(s) is partitioned as

m(s) =

[
m1,1(s) m1,2(s)
m2,1(s) m2,2(s)

]
. (22)

More precisely, the generalized transfer function matrix m(s)
can be given by (23-24), and the matrix of uncertainties are col-
lected in

δ(s) = diag
[
κ̃, α̃, β̃, ϑ̃(s)

]
. (25)

The transfer function between the input w = Ṽi+1(s) and output
z = Ṽi(s) with uncertainties can be written in terms of upper
linear fractional transformations (LFT), such that

Fu
(
m(s),δ(s)

)
= Ti+1,i(s) + T̃i+1,i(s)

= m2,2(s)︸ ︷︷ ︸
Ti+1,i(s)

+m2,1(s)δ(s)
(
I−m1,1(s)δ(s)

)−1
m1,2(s)︸ ︷︷ ︸

T̃i+1,i(s)

=

(
(κ+ κ̃)(α+ α̃) + (β + β̃)s

)
e−sτ (1 + ϑ̃(s))

s2 +
(
(κ+ κ̃)(α+ α̃) + (α+ α̃+ β + β̃)s

)
e−sτ (1 + ϑ̃(s))

(26)

under the condition det(I−m1,1(s)δ(s)) ̸= 0.
Note that the elements of (25) are not normalized and some

of them might be complex, while others are real parametric un-
certainties. Therefore we introduce the weight matrix r(s) in the
form

r(s) = diag [ρ1, ρ2, ρ3, ρ4(s)] , (27)

where κ̃ = ρ1δ
r
1, α̃ = ρ2δ

r
2, β̃ = ρ3δ

r
3, ϑ̃(s) = ρ4(s)δ

c
4 , for

|δr
k| < 1, δr

k ∈ R, k = 1,2,3, and |δc
4| < 1, δc

4 ∈ C. Thus, the
normalized perturbation matrix δ̂ reads

δ̂ = diag [δr
1, δ

r
2, δ

r
3, δ

c
4] , (28)

and

m̂(ω) =

[
m1,1(s)r(s) m1,2(s)
m2,1(s)r(s) m2,2(s)

]
, (29)

such that Fu
(
m(s),δ(s)

)
= Fu

(
m̂(s), δ̂(s)

)
.

In this paper we are interested in the robust stability analy-
sis of connected vehicle systems, therefore we do not go fur-
ther with the robust analysis of the two-vehicle configuration.
Instead, we apply these results when building larger systems. In
particular, the m − δ model is used to construct the M −∆
model for larger systems and investigate the robust string stabil-
ity of the head-to-tail transfer function afterwards.

3.2 Four-vehicle system

To demonstrate that the framework presented above can be ex-
tended for large connected vehicles networks, we consider the
four-vehicle scenario in Fig 6(a), where a connected automated
vehicle utilizes V2V signals from three human-driven vehicles
ahead, cf. Fig. 2(a). The corresponding block diagram with un-
certainties is presented in Fig. 6(b), which is the extension of
Fig. 2(b). While the nominal transfer function matrix is given in
(14), we assume each parameter for vehicles 2 and 1 have certain
levels of uncertainty and compute the robust string stable regions
in the parameter space (a1,0, b1,0, b2,0, b3,0).

Similarly to the two-vehicle configuration, we formulate the
M − ∆ uncertain interconnection structure for the connected
vehicle system as[

y1

y2

z

]
= M(s)

[
u1

u2

w

]
,

[
u1

u2

]
= ∆(s)

[
y1

y2

]
, (30)

where M(s) and ∆(s) is built up from m(s) and δ(s). Fig-
ure 6(b) is a graphical representation of the uncertain intercon-
nection structure and it results in

M(s) =

 m
(1)
1,1 m

(1)
1,2m

(2)
2,1 m

(1)
1,2T3,2

0 m
(2)
1,1 m

(2)
1,2

m
(1)
2,1T1,0 m

(2)
2,1(T2,0 + T1,0T2,1) G3,0

 ,
(31)

where m(1) and m(2) represent the uncertain interconnection
matrices of vehicles 1 and 2, see (22) and Fig. 6(b). The de-
pendence on s is not spelled out for conciseness in (31). The
uncertainty matrix is written as

∆(s) =

[
δ(1)(s) 0

0 δ(2)(s)

]
, (32)

where δ(1)(s) and δ(2)(s) are uncertainties of vehicles 1 and 2,
respectively, as introduced in (25). Similarly, the weight matrix
reads

R(s) =

[
r(1)(s) 0

0 r(2)(s)

]
, (33)

where r(1)(s) and r(2)(s) represent the weights of uncertainties
of vehicles 1 and 2 according to (27).

The perturbed transfer function between w = Ṽ3(s) and
z = Ṽ0(s) can be expressed by upper linear fractional transfor-
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Figure 6: Four-vehicle configuration with uncertainties: (a) Con-
nectivity topology. (b) Block diagram.

mation

Fu
(
M(s),∆(s)

)
= M2,2(s) +M2,1(s)∆(s)

(
I−M1,1(s)∆(s)

)−1
M1,2(s),

(34)

under the condition

det
(
I−M1,1(s)∆(s)

)
̸= 0 , (35)

which is related to the plant stability boundaries under parameter
uncertainty.

Recall the string stability criterion (13), similarly, the per-
turbed transfer function (34), needs to satisfy

1−Fu
(
M(iω),∆(iω)

)
δc
9 ̸=,0 , ∀ω > 0 (36)

and for any complex number within the unit circle, that is,
δc
9 ∈ C, |δc

9| < 1. Using the Schur formula (see [21]), we rewrite
(35) and (36) for s = iω as

det

([
I 0
0 1

]
−
[
M1,1(iω) M1,2(iω)
M2,1(iω) M2,2(iω)

][
∆(iω) 0

0 δc
9

])
̸= 0 .

(37)

This can be rewritten in the compact form

det
(
I− M̂(iω)∆̂

)
̸= 0 , (38)

where

M̂(iω) =
[
M1,1(iω)R(iω) M1,2(iω)
M2,1(iω)R(iω) M2,2(iω)

]
, (39)

∆̂ = diag
[
δr
1, δ

r
2, δ

r
3, δ

c
4︸ ︷︷ ︸

vehicle 1

, δr
5, δ

r
6, δ

r
7, δ

c
8︸ ︷︷ ︸

vehicle 2

, δc
9

]
, (40)

and δc
9 is required to fulfill robust string stability.

In order to quantify the robustness of the system, we use the
structured singular value analysis introduced by [18]. We define
the µ-value of M̂(iω) as the inverse of the smallest σ̄(∆̂) when
(38) fails at frequency ω, i.e.,

µ(ω) =

(
min
∆̂

{
σ̄(∆̂) : det

(
I− M̂(iω)∆̂

)
= 0
})−1

, (41)

where σ̄(∆̂) denotes the largest singular value of ∆̂. As µ(ω)

increases, a smaller perturbation value in ∆̂ may lead to a singu-
lar
(
I− M̂(iω)∆̂

)
and results in string instability. When singu-

larity holds for arbitrarily small perturbations, then µ(ω) → ∞
and robustness cannot be guaranteed. On the other hand, if
det
(
I− M̂(iω)∆̂

)
̸= 0 for any perturbation ∆̂, then µ(ω) = 0

and the system is robust. Therefore, the condition for robust
string stability against bounded parameter variation is

µ(ω) < 1, ∀ω > 0 , (42)

otherwise there exists a perturbation matrix ∆̂, σ̄(∆̂) < 1 such
that det

(
I− M̂(iω)∆̂

)
= 0. If µ(ω) goes above 1, the system

can lose string stability around that frequency for certain param-
eters within that perturbation level. If µ(ω) remains below 1,
then robustness is guaranteed for that perturbation level.

The definition of µ according to (41) does not yield directly
any tractable way to compute it, since the optimization problem
is not convex in general, therefore multiple local extrema might
exist [22]. Instead, we are interested in computing upper and/or
lower bounds, for which several alternative formulations have
been developed, see [18, 22, 23, 24]. In this paper, we use the
mussv function in MATLAB µ-Analysis and Synthesis Toolbox
[25], which implements these algorithms, and we only focus on
the results, not on the numerical issues.
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Figure 7: Four-vehicle configuration: (a) Robust stability charts
in the (b2,0, b3,0) plane for different values of a1,0 and b1,0.
The black curves indicate the nominal string stability bound-
aries, red curves indicate the exact robust boundaries for 20%
parameter uncertainty obtained from parameter sweeping, and
blue curves indicate the robust boundaries obtained from µ
analysis. (b) µ(ω)-curves (blue) and the nominal head-to-tail
transfer function at parameter point A (a1,0, b1,0, b2,0,b3,0) =
(0.3,0.2,0.4,0.4) [1/s].



The results are presented in Fig. 7, where we assumed that
each parameter of each uncertain vehicle is perturbed by the
same percentage of their nominal value, i.e. αi, βi, κi and τi
have identical relative uncertainties. The nominal human driver
parameters are κi = 0.8 [1/s], αi = 0.25 [1/s], βi = 0.5 [1/s]
and τi = 0.8 [s] (same for both vehicles for simplicity, i = 1,2),
while the fixed parameters of the connected automated vehicle
are κ0 = 0.6 [1/s] and σ = σ1,0 = σ2,0 = σ3,0 = 0.6 [s]. Fig 7(a)
shows how the uncertain parameters affect the robust stable do-
main of control parameters (a1,0, b1,0, b2,0, b3,0). While the nom-
inal system (black curve) provides a relatively large string stable
domain, having 20% relative uncertainty in the human parame-
ters significantly reduces it (blue curve). In order to quantify the
conservatism, the exact robust string stability boundaries are cal-
culated by parameter sweeping (red curves). While approxima-
tion of delay uncertainty results in a conservative approximation
making the blue and red curves differ, the robust domain is still
captured despite the approximation.

The µ(ω)-curves are presented in Fig. 7(b) corresponding
to parameter point A (a1,0, b1,0, b2,0,b3,0) = (0.3,0.2,0.4,0.4)
[1/s], with uncertainty level 20%. The black curve indicates
the absolute value of the nominal head-to-tail transfer function
|G3,0(iω)|, while solid and dashed blue curves correspond to the
upper and lower bounds of the exact µ(ω), respectively. Since
point A in Fig. 7(a) is almost at the boundary (blue curve), the
µ(ω)-curve almost reaches 1 at about ω = 1.3 [rad/s].

4 CONCLUSION

We applied the structured singular value analysis to investi-
gate the influences of uncertain human driver parameters on the
head-to-tail string stability of connected cruise controllers. The
method was applied in a four-vehicle configuration where the ro-
bustness results were used to design connected automated vehi-
cles that could reject traffic perturbations well despite uncertain
human gains and reaction time delay.
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