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Abstract— In this paper, linear quadratic tracking (LQT)
is used to optimize the control gains for connected cruise
control (CCC). We consider a vehicle string where the CCC
vehicle at the tail receives position and velocity signals through
wireless vehicle-to-vehicle (V2V) communication from other
vehicles ahead (that are not equipped with CCC). An optimal
feedback law is obtained by minimizing a cost function defined
by headway and velocity errors and the acceleration of the CCC
vehicle on an infinite horizon. We show that the feedback gains
can be obtained recursively as signals from vehicles farther
ahead become available, and that the gains decay exponentially
with the number of cars between the source of the signal and
the CCC vehicle. The effects of the cost function on the head-to-
tail string stability are investigated and the robustness against
variations in human parameters is tested. The analytical results
are verified by numerical simulations.

I. INTRODUCTION

Connected cruise control (CCC) has been proposed to
maintain smooth traffic flow in heterogeneous connected
vehicle systems by exploiting vehicle-to-vehicle (V2V) com-
munication [1]. The CCC controller receives information
about the motion of multiple vehicles ahead, and actuates
the vehicle or assists the driver based on these signals.
The influence of connectivity structures, signal types, packet
drops, and communication delays on the longitudinal motion
of vehicular chains that include CCC vehicles has been
investigated [2]–[5]. Our goal here is to optimize the feed-
back gains in order to maximize the benefit of connectivity
and reduce the complexity of tuning gains individually in
large systems; see [6], [7] for initial attempts using simple
configurations. Moreover, the design parameters should be
chosen so that additional performance requirements(such as
string stability) are satisfied.

In this paper we optimize the gains of a CCC vehicle
that receives position and velocity information from multiple
human-driven vehicles ahead. The goal of optimization is
to obtain a CCC controller that ensures the stability of
uniform traffic flow (i.e. the attenuation of perturbations
along the vehicular chain), while minimizing velocity and
headway error and acceleration of the CCC vehicle. This
problem is solved by using linear quadratic tracking (LQT)
with design parameters being the weights on the error terms
and the acceleration term in the cost function. We show
that the gains of the optimized controller follow the spatial
causality of traffic systems: information from vehicles farther
downstream have less influence on the CCC vehicle and does
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not change the feedback laws on signals from closer vehicles.
The optimal gains are determined by the weights used in the
optimization (design parameters) and the driver parameters
of other vehicles. The range of design parameters ensuring
head-to-tail string stability, and their robustness against vari-
ations of driver parameters are also demonstrated. Finally,
simulations are performed to demonstrate the effectiveness
of the optimal design.

II. CONNECTED CAR-FOLLOWING MODELS

We consider a chain of n+1 vehicles traveling on a single
lane as shown in Fig. 1(a). The tail vehicle (the last vehicle
of the chain) implements a CCC algorithm using position
and velocity signals received through V2V communication
from n preceding vehicles, while other vehicles are human
driven and only transmit information about their motion. The
dynamics of the CCC vehicle is modeled by

ḣ1(t) = v2(t)− v1(t) ,

v̇1(t) = u(t) , (1)

where the dot stands for differentiation with respect to time
t, h1 is the headway (i.e., the bumper-to-bumper distance be-
tween the CCC vehicle and the vehicle immediately ahead),
and v1 is the velocity of the CCC vehicle; see Fig. 1(a).
Finally, u(t) is the control input that will be designed using
LQT based on the velocity and headway of other vehicles
(the latter obtained from position information).

For simplicity, we consider that vehicles i = 2, . . . , n are
identical and are described by the car-following model

ḣi(t) = vi+1(t)− vi(t) ,
v̇i(t) = α

(
V (hi(t))− vi(t)

)
+ β

(
vi+1(t)− vi(t)

)
, (2)

that can be obtained as a simplification of the physics-based
model presented in [1]. Here hi and vi denote the headway
and velocity of vehicle i; see Fig. 1(a). The first term in
the second equation represents the driver’s intention to drive
at a distance-dependent velocity (given by V (h)), while the
second term represents the driver’s aim to match the velocity
to that of the vehicle immediately ahead. The corresponding
gains are denoted α and β. We remark that the proposed
algorithm can also be applied in case of non-identical drivers
as well.

The desired velocity in (2) is determined by the range
policy

V (h) =


0 if 0 ≤ h ≤ hst ,
vmax

2

(
1− cos

(
π h−hst

hgo−hst

))
if hst < h < hgo ,

vmax if h ≥ hgo ,
(3)
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Fig. 1. (a): A chain of n + 1 vehicles with a CCC vehicle at the tail
receiving signals from other vehicles via V2V communication. (b): The
nonlinear range policy (3) used in this paper.

which is shown in Fig. 1(b). The desired velocity is zero for
small headways (0 ≤ h ≤ hst) and equal to the maximum
speed vmax for large headways (h ≥ hgo). Between these, it
increases with the headway monotonically. To ensure smooth
longitudinal dynamics, the function (3) and its derivative are
chosen to be continuous at hst and hgo. Here we consider
vmax = 30 [m/s], hst = 5 [m], hgo = 35 [m] that
corresponds to realistic traffic data [8]. Many other range
policies may be chosen, but the qualitative dynamics remain
similar if the above characteristics are kept [2], [9], [10].

We remark that model (1,2,3) may not adequately describe
longitudinal dynamics when vehicles are driven near physical
limits, e.g., tire force saturation due to emergency braking
or severe maneuvering. In this paper we focus on the
potentials of wireless connectivity, while understanding such
limitations is left for future research.

III. LINEAR QUADRATIC TRACKING OF UNIFORM
TRAFFIC FLOW

In this section, the optimal control problem under dis-
turbance is formulated, where the CCC vehicle is tracking
the uniform flow state. The cost function is constructed
in order to minimize the headway and velocity errors and
the acceleration of the CCC vehicle. The solution gives the
gains for the CCC vehicle with respect to the headways and
velocities of other vehicles.

The dynamics of the connected vehicle system (1,2) is
investigated in the vicinity of an equilibrium where all
vehicles travel with the same constant velocity and maintain
constant headways. While the equilibrium velocity v∗ is
determined by the head vehicle (the first vehicle in the
chain), the equilibrium headway h∗i is obtained for each
non-CCC vehicle using a range policy v∗ = Vi(h

∗
i ), i =

2, . . . , n. When considering identical range policies (cf. (3)),
the vehicles are equidistant and we obtain the uniform flow
equilibrium

hi(t) ≡ h∗ , vi(t) ≡ v∗ = V (h∗) , (4)

for i = 2, . . . , n. We define headway perturbations h̃i(t) =
hi(t) − h∗ and velocity perturbations ṽi(t) = vi(t) − v∗,

i = 2, . . . , n, and linearize (2) about the equilibrium (4):

˙̃
hi(t) = ṽi+1(t)− ṽi(t) ,
˙̃vi(t) = α

(
f∗h̃i(t)− ṽi(t)

)
+ β

˙̃
hi(t) , (5)

for i = 2, . . . , n. Here f∗ = V ′(h∗) is the derivative of the
range policy at the equilibrium and the corresponding time
headway is th = 1/f∗. In this paper, we use (h∗, v∗) =
(20 [m], 15 [m/s]), which results in the maximum slope f∗ =
π/2 [1/s] corresponding to the minimum time headway th =
2/π ≈ 0.64 [s]; cf. (3) with vmax = 30 [m/s], hst = 5 [m],
and hgo = 35 [m].

For the CCC vehicle, we define headway perturbation
h̃1(t) = h1(t) − h∗1 and velocity perturbation ṽ1(t) =
v1(t)− v∗. Then (1) yields the linearized dynamics

˙̃
h1(t) = ṽ2(t)− ṽ1(t) ,

˙̃v1(t) = u(t) . (6)

Let’s define the state x = [h̃1, ṽ1, . . . , h̃n, ṽn]T ∈ R2n,
and write dynamics (5,6) in the form

ẋ(t) = Ax(t) + Bu(t) + Dṽn+1(t) , (7)

where u(t) is the input, ṽn+1(t) is the disturbance, and the
coefficient matrices take the form

A =


A1 A2

A3 A4

. . . . . .
A3 A4

A3

 ,B =


B1

0
...
0
0

 ,D =


0
0
...
0

D1


(8)

where the block matrices are given by

A1 =

[
0 −1
0 0

]
, A2 =

[
0 1
0 0

]
, A4 =

[
0 1
0 β

]
,

A3 =

[
0 −1
αf∗ −α− β

]
, B1 =

[
0
1

]
, D1 =

[
1
β

]
. (9)

Since our goal is to track the uniform flow equilibrium
x∗ ≡ 0 (cf. (4)) under velocity disturbance ṽn+1(t) from the
head vehicle, we minimize the cost function

Jτ (u, x) =

∫ τ

0

(
xT(t)Qx(t) + r u2(t)

)
dt . (10)

The first term corresponds to the variation of the headways
and velocities which we call tracking errors, the second
term corresponds to the “magnitude” of the CCC vehicle’s
acceleration, and τ is the time horizon (we use τ →∞ later).
The weight matrix Q is chosen to be diagonal, that is,

Q = diag ([q1, q2, . . . , q2n−1, q2n]) , (11)

where q2i−1 and q2i are the weights on the headway and
velocity errors for vehicle i, respectively. Since only vehicle
1 has the CCC controller, h̃i, ṽi, i = 2, . . . , n are not
controllable and the choice of q2i−1, q2i, i = 2, . . . , n does
not influence the optimal control input. Thus we set q2i−1 =
q2i = 0, i = 2, . . . , n.
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Fig. 2. (a): The solution P(t) of (13) with A = 1, B = 1,Q =
1, r = 1, τ = 30 [s]. (b): The corresponding solution w(t) of (14) with
perturbation ṽn+1(t) = sin(2t), using P(t) shown in panel (a) (red dashed
curve) and using the approximation P = P(0) (blue solid curve).

Based on the linear quadratic tracking theory [11], the
solution of the optimal control problem (7,8,10,11) is given
by

u(t) = −1

r
BT
(
P(t)x(t) + w(t)

)
, (12)

where P(t) ∈ R2n×2n is a symmetric, positive definite
matrix that satisfies the Riccati differential equation

Ṗ(t) =
1

r
P(t)BBTP(t)−ATP(t)−P(t)A−Q , (13)

with end boundary condition P(τ) = 0, while w(t) ∈ R2n

is the solution of

ẇ(t) = −
(
A− 1

r
BBTP(t)

)T
w(t)−P(t)Dṽn+1(t) , (14)

with end boundary condition w(τ) = 0. Note that with-
out disturbance, i.e., ṽn+1(t) ≡ 0, the LQT problem
(7,10) simplifies to an LQR problem with input u(t) =
− 1
rB

TP(t)x(t), where P(t) is the solution of (13).
According to [11], when the system (7,8) is stabilizable,

then (13) has uniformly bounded solution. Moreover, in the
infinite-time horizon τ → ∞, the solution P(t) can be
approximated by a constant matrix given by the algebraic
Riccati equation

ATP + PA + Q− 1

r
PBBTP = 0 . (15)

From now on we use P without t to denote this time-
independent matrix. Substituting P into (14), and consid-
ering that (A − 1

rBBTP) is Hurwitz, the boundary value
problem can be viewed as an initial value problem with
a special initial condition that eliminates the transients. A
simple example is given in Fig. 2 for the simplified problem
ẋ(t) = x(t) + u(t) + ṽn+1(t), x, u ∈ R using the weights
Q = 1, r = 1. Panel (a) shows that P(t) is approximately
constant when t � τ . Panel (b) shows that using constant
P = P(0) instead of P(t) in (14) only influences w(t)
near time τ . Thus for large τ , P(t) can be approximated
by P = P(0) and the latter can be used to calculate w(t).

Let us define the notation

P =

Π11 . . . Π1n

...
. . .

...
Πn1 . . . Πnn

 , (16)

where Πij = ΠT
ji ∈ R2×2, i, j = 1, . . . , n. Considering

infinite time horizon τ → ∞, the feedback law (12) gives
the acceleration of the CCC vehicle in (6) as

u(t) =
n∑
i=1

(
αi h̃i(t) + βi ṽi(t)

)
− 1

r
w2(t) , (17)

where w2(t) denotes the second element of w(t) and the
gains αi and βi are given by

αi = −1

r
Π1i[2, 1] , βi = −1

r
Π1i[2, 2] , (18)

for i = 1, . . . , n, where [k, l] represents the element in the
kth row and lth column.

Due to the particular form of the coefficient matrices (8),
for i = j = 1, (15) yields

Π11B̃1Π11−Π11A1−AT
1 Π11−diag([q1, q2]) = 0 , (19)

where B̃1 =
1

r
B1B

T
1 ; c.f. (9). Moreover, using (15) it can

be shown that the first row of block matrices in P (cf. (16))
satisfy the recursive equations(

AT
1 −Π11B̃1

)
Π12 + Π12A3 = −Π11A2 ,(

AT
1 −Π11B̃1

)
Π1j + Π1jA3 = −Π1(j−1)A4 , (20)

where j = 3, . . . , n. Also, the second row of block matrices
satisfy the recursive equations

AT
3 Π22 + Π22A3 = Π21B̃1Π12 −ΠT

12A2 −AT
2 Π12 ,

AT
3 Π2j + Π2jA3 = Π21B̃1Π1j −Π2(j−1)A4 −AT

2 Π1j ,
(21)

where j = 3, . . . , n and Π21 = ΠT
12. For the remaining n−2

rows of block matrices, we obtain the recursive equations

AT
3 Πij+ΠijA3 = Πi1B̃1Π1j−Πi(j−1)A4−AT

4 Π(i−1)j ,
(22)

where i = 3, . . . , n, j = i, . . . , n and Πi1 = ΠT
1i. Thus,

the solution of the Riccati equation (15) can be obtained by
solving (19,20,21,22) consecutively.

In the physically realistic case q1, q2, r > 0, the only
feasible solution of (19) is given by

Π11 =

√q1q2 + 2
√
q31r −√q1r

−√q1r
√
q2r + 2

√
q1r3

 , (23)

and thus (18) yields

α1 =
√
q1/r, β1 = −

√
q2/r + 2

√
q1/r . (24)

Moreover, according to (18), the gains αi, βi obtained from
(20) can be rewritten as

vec(Π12) = M0vec(Π11),

vec(Π1i) = Mvec(Π1(i−1)), (25)
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Fig. 3. The optimized headway and velocity gains αi, βi, i = 2, . . . , n of
the CCC vehicle in a (n + 1)-car platoon for n = 5 (red circles) and for
n = 10 (blue crosses).

where vec(Π1i), i = 3, . . . , n, is a vector obtained by writing
columns of Π1i into a vector and we have

M = −
(
I⊗

(
AT

1 −Π11B̃1

)
+ AT

3 ⊗ I
)−1

(AT
4 ⊗ I),

M0 = −
(
I⊗

(
AT

1 −Π11B̃1

)
+ AT

3 ⊗ I
)−1

(AT
2 ⊗ I) .

(26)

Therefore,

vec(Π1i) = Mi−2M0vec(Π11) (27)

is a map between Π11 and Π1i, for i = 2, . . . , n, and
thus αi, βi, i = 2, . . . , n can be obtained as functions of
α1, β1, α, β, f

∗; cf. (9,18,26). Moreover, (27) indicates that
the feedback gains of vehicle i are determined by the car-
following dynamics of vehicles 1, 2, . . . , i − 1 and are not
influenced by the dynamics of vehicles i+1, . . . , n+1. This
property means that our CCC design is scalable, since the
values of gains can be kept constant regardless how many
vehicles ahead are monitored. Finally, we note that (21,22)
are only needed to obtain w(t); cf. (14).

One may show that the eigenvalues of M in (27) are
inside the unit circle for human gains α > 0, β > 0.
Therefore, (27) is a contracting map in realistic scenarios and
αi and βi converge to zero following geometric series as i
increases. This indicates that the CCC vehicle relies more on
signals obtained from closer vehicles, and this characteristic
behavior is not influenced by the choice of weights q1 and
q2 in the cost function (10,11).

As an example, we consider q1 = 2 [1/s2], q2 = 4, r =
1 [s2] and assume non-CCC vehicles with gains α = 0.6 [1/s]
and β = 0.9 [1/s]. In this case (24) gives the gains α1 ≈
1.41 [1/s2], β1 ≈ −2.61 [1/s]. The exponential decay of
the gains αi, βi with the vehicle index i = 2, . . . , n is
demonstrated graphically in Fig. 3 for a (5 + 1) vehicle
chain (red circles) and for a (10 + 1) vehicle chain (blue
crosses). This is supported by the fact that the eigenvalues
of M in (27) are λ1 = 0.61, λ2 = 0.37 and λ3,4 = 0,
which are located inside the unit circle. We remark that the
gains on signals for vehicles 7–10 are small, indicating that
close-to-optimal design can be obtained when only observing
approximately 5–6 vehicles ahead. In this sense, the benefits
of increasing the number of cars ahead saturate, and having
very long connections may not be favorable as they only
make the network structure more complicated.

IV. HEAD-TO-TAIL STRING STABILITY

In this section, we discuss how the optimal CCC design
influences the longitudinal stability of the connected vehicle
system. In particular, we analyze plant stability and string
stability.

The plant stability of a CCC vehicle is given as follows:
suppose that the vehicles whose signals are used by a CCC
vehicle are driven at the same constant velocity, then the
velocity of the CCC vehicle approaches this constant veloc-
ity. String stability characterizes the attenuation of velocity
fluctuations as they propagate upstream [12]. However, string
stability can only be ensured for the CCC vehicle (as we
have no control over the non-CCC vehicles). Therefore,
we evaluate the head-to-tail string stability, i.e., compare
the velocity fluctuations of the head vehicle and the CCC
vehicle at the tail. Notice that this definition allows that
vehicles in the middle may amplify the velocity fluctuations
of vehicles ahead. Despite the presence of such intra-platoon
string instability, a CCC vehicle can be used to ensure head-
to-tail string stability.

We consider the velocity perturbation ṽn+1 of the head
vehicle as the input and the velocity perturbation ṽ1 of the
tail vehicle as the output. Since perturbation signals can
be represented using Fourier components and superposition
holds for linear systems, the head-to-tail string stability is
ensured when sinusoidal signals are attenuated between the
head and the tail vehicles for all excitation frequencies. Thus,
we consider the periodic excitation ṽn+1(t) = vamp sin(ωt)
and steady-state solution of (7,12,14,15), see Fig. 2(b) for
illustration.

Then taking the Laplace transform of (14) with zero initial
condition and reversed time while using P(t) ≡ P leads to

W (s) = (sI−A +
1

r
BBTP)−TPDṼn+1(s) , (28)

where W (s) is the Laplace transform of w(t), Ṽn+1(s) is
the Laplace transform of ṽn+1(t).

Taking the Laplace transform of the system (7,12) with
zero initial conditions and eliminating the velocities of the
other vehicles and the headways, we obtain the head-to-tail
transfer function

Γ(s) =
Ṽ1(s)

Ṽn+1(s)
=

1

G1(s)

(
α1Γn−10 (s) +

sFn+1(s)

G1(s)

+
n∑
i=2

(
αi + (βis− αi)Γ0(s)

)
Γn−i0 (s)

)
. (29)

Here Ṽ1(s) and Ṽn+1(s) denote the Laplace transform of
ṽ1(t) and ṽn+1(t), respectively, and

Γ0(s) =
F0(s)

G0(s)
, G0(s) = s2 + (α+ β)s+ αf∗

F0(s) = βs+ αf∗ , G1(s) = s2 − β1s+ α1,

Fn+1(s) = (αn + ββn)s+ Π1n[1, 1] + βΠ1n[1, 2] . (30)

Plant stability at the linear level is determined by the
denominator of the transfer function in (29). The system
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Fig. 4. String stability charts of a (5+1)-car platoon in the (q1, q2)-plane
for different human parameters α, β as indicated. The string stable domains
are shaded.

is linearly plant stable, if and only if all solutions of the
characteristic equation Gn0 (s)G1(s) = 0 are located in the
left half complex plane. Notice that plant stability is only
influenced by the human parameters α, β and the CCC
gains α1, β1. Using Routh-Hurwitz criteria, we obtain the
conditions for plant stability

α > 0 , α+ β > 0 , α1 > 0 , β1 < 0 . (31)

In the following analysis, we only consider plant stable
human parameters α, β. Solution (23) provides the gains
α1, β1 that have to satisfy (31). These can be used to obtain
all other gains αi and βi, i = 2, . . . , n; see (18,27).

At the linear level the necessary and sufficient condition
of head-to-tail string stability is given by

|Γ(iω)|2 − 1 = ω2f(ω) < 0 , ∀ω > 0 , (32)

where Γ(iω) is defined by (29,30); see [4], [13]. The order of
f(ω) increases with the number of vehicles n. String stability
is violated when the maximum of f(ω) is larger than 0, and
thus, the string stability boundary is given by the equations

f(ωcr) = 0 ,
∂f(ωcr)

∂ω
= 0 , (33)

subject to
∂2f(ωcr)

∂ω2
< 0, where ωcr indicates the location of

the maximum of f(ω). To obtain string stability charts, we
solve (33) numerically and plot the string stability boundary
in the (q1, q2)-plane and in the (α, β)-plane. Note that in
practical ranges of human parameters α and β the string
instability only occurs at zero frequency (i.e., ωcr = 0).

When the human parameters α and β change, the range
of weights q1, q2, r that results in a string stability changes.
Without loss of generality, we fix r = 1 [s2] and only
consider the change of weights q1, q2. As observed in the
previous section, gains on vehicles i, i > 6, are small, and
therefore we consider n = 5.

Fig. 5. Magnitude of transfer function as a function of the excitation
frequency. Panels (a–c) correspond to points marked A–C in Fig. 4 (c).

q 1
=

1
q 2

=
1

α α α

α α α

β β β

β β β

q2 = 1 q2 = 5 q2 = 10

q1 = 2 q1 = 5 q1 = 10

(a) (b) (c)

(d) (e) (f)

Fig. 6. String stability charts of a (5+1)-car platoon in the (α, β)-plane.
The notation is the same as in Fig. 4.

In Fig. 4 we fix the human parameters α = 0.6, 0.9 [1/s]
and β = 0.6, 0.9 [1/s] and shade the string stable domains in
the (q1, q2)-plane. It has been shown [3] that without CCC,
the system is string unstable when

α+ 2β − 2f∗ > 0 , (34)

and thus, we have a string unstable system for q1 = q2 = 0.
Fig. 4(a) shows that increasing the weights q1, q2 on tracking
errors is beneficial for string stability, and that no string
stability exists for q1 . 1, q2 . 4. However, q1 and q2 cannot
be chosen independently. Similar results are observed in
panels (b–d). Comparing the four panels, one can notice that
increasing either α or β increases the size of the string stable
domain, while the minimum q2 ensuring string stability
decreases to zero. However, for q2 = 0 the range of string
stable q1 is very small.

We remark that string stability loss in the connected
vehicle system analyzed here only happens at zero frequency.
Fig. 5 demonstrates such stability loss for the points A–
C marked in Fig. 4(c). As q2 decreases, the magnitude of
transfer function (29) increases and it exceeds 1 in the low-
frequency domain in case C.

The robustness of optimized CCC designs is investigated
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by varying the human parameters α and β and the results
are summarized in Fig. 6. We fix q1 = 1 [1/s2] in panels
(a–c) and q2 = 1 in panels (d–f), and shade the string stable
domains. Increasing α and β improves string stability in
each case. For fixed q1, increasing q2 enlarges the string
stabile area (cf. panels (a) and (b)), but too large q2 results
in smaller string stability region (cf. panels (b) and (c)).
For fixed q2, string stability increases with larger q1; see
(d–f). We remark that string stability may be lost when
increasing q1 even further, although q1 < 10 is considered
to be physically realistic. Thus weighting heavily on either
h1 or v1 is detrimental for string stability.

Finally, to evaluate the performance of our CCC algorithm,
we consider a (5+1)-car system with string unstable human
parameters and investigate the evolution of headway and ve-
locity errors by numerical simulations. Fig. 7 shows the sim-
ulation results of the (5+1)-car system with gains generated
using different design parameters q1 and q2. The simulation
results are presented for the parameters corresponding to
points A and C in Fig. 4(c), while using the disturbance
signal ṽn+1(t) = vamp sin(ωt) with amplitude vamp = 1
[m/s] and frequency ω = 0.3 [rad/s]; see Fig. 5(a,c) for the
amplification plots. The simulation results demonstrate that
case A is head-to-tail string stable, as the CCC vehicle’s
velocity fluctuation (thick blue curve) has smaller amplitude
than the velocity input (dashed curve) in Fig. 7(a). On the
other hand, the CCC vehicle’s velocity fluctuation in Fig. 7(c)
has larger amplitude than the velocity input, indicating string
instability. Note that in both cases the amplitude of velocity
fluctuations are amplified by non-CCC vehicles, because the
human parameters α = 0.6 [1/s], β = 0.9 [1/s] are string
unstable; see (34). Still, the CCC vehicle is able to maintain
string stability when q1, q2 are chosen appropriately. On the
other hand, the comparison of panels (b) and (d) shows a
trade-off. While an increased weight on velocity error q2
ensures string stability, the relative weight on q1 decreases,
and the headway error increases (though still attenuated
compared to head vehicle).

V. CONCLUSION

In this paper, we proposed a connected cruise control
design based on linear quadratic tracking and analyzed the
head-to-tail string stability. It was shown that the gains
depend on the human parameters and the design parameters
in the cost function. We found that the optimal gains on
preceding vehicles are not influenced by dynamics of vehi-
cles farther downstream, and that the gains decrease with the
number of cars between the CCC vehicle and the signaling
vehicle. The optimized CCC is shown to be able to stabilize
an otherwise string unstable systems when the weights on the
headway and velocity errors are chosen appropriately. The
design was robust against variations of human parameters,
and the results were verified using numerical simulations. Fu-
ture research includes optimizing nonlinear CCC algorithms
while considering more complicated connectivity structures
and imperfect communication.
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Fig. 7. Velocity and headway responses of a (5 + 1)-car vehicle string
with human parameters α = 0.6 [1/s], β = 0.9 [1/s]. (a,b): using design
parameters q1 = 2 [1/s2], q2 = 4. (c,d): using design parameters q1 =
2 [1/s2], q2 = 1. Thick curves denote the CCC vehicle, thin curves are used
for non-CCC vehicles, while dashed curves indicate the velocity disturbance
of the head vehicle.
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