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Abstract—1In this paper we propose a data-based algorithm
to identify parameters in a human car-following model, in order
to facilitate the implementation of connected cruise control in
real traffic. We first present a four-car experiment where the
trajectory of each vehicle is recorded. Using the experimental
data we identify the car-following parameters for each driver.
Using the mean values of human parameters, we implement
an optimal connected cruise controller on the last vehicle in
the four-car string. We demonstrate by numerical simulation
that the optimal connected vehicle design based on human
parameter estimation has much smaller variations in headway
and velocity, and acceleration compared with the human driver.

I. INTRODUCTION

Various advanced driver assistance systems have been
proposed over the past decades in order to improve road
transportation. Specifically, adaptive cruise control (ACC)
uses onboard sensors such as radar/lidar to obtain motion
information faster and more accurately than human drivers,
and provides more adequate commands for the longitudinal
motion control [8], [16]. With the availability of affordable
wireless communication devices, connected cruise control
(CCC) may be used to exploit motion information of vehicles
that are beyond the line of sight and undesired accelera-
tion/deceleration can be further suppressed [12]. This may
lead to higher road efficiency, less fuel consumption and
improved safety in connected vehicle systems.

Existing research on connected vehicle design generally
assumes a priori knowledge on the dynamics of preceding
vehicles whose signals are used in the connected controller
[15], [17], [18]. Such an assumption may not hold as humans
may change their behavior in time and vehicles may join and
leave the connected vehicle network. Thus, it is necessary to
consider online identification of car-following dynamics of
preceding vehicles [14]. However, in car-following dynamics,
we have to estimate both the feedback gains and the driver
reaction time, as the latter has been found to have significant
influences on the performance of connected vehicle systems
which include human-driven, ACC, and CCC vehicles [3].
While there exist well-developed techniques for parameter
identification in systems without time delay [9], estimating
the delay time and feedback gains simultaneously is still
a challenging problem. The existing researches often have
stringent convergence conditions and may only work for
fixed parameters [1], [2], [4], [7], [11]. Thus, we need new

Jin I. Ge and Gédbor Orosz are with the Department of Mechanical
Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
gejin@umich.edu, orosz@umich.edu

This work was supported by the National Science Foundation (award
number 1351456)

978-1-5090-2872-6/17/$31.00 ©2017 IEEE

h

0 Dy

Do

Fig. 1. (a): Single-lane car-following of human-driven vehicles showing
the headway and the velocities. (b): The range policy (2) where vmax is
the maximum allowed velocity, hgt ; is the smallest headway before the
vehicle intends to stop, and hgo,; is the largest headway after which the
vehicle intends to maintain vmax-.

estimation methods that can be implemented in real time
when connected vehicles exchange motion information using
dedicated short range communication (DSRC).

Therefore in this paper, we propose a sweeping least
square method to simultaneously identify the feedback gains,
range policy slope, and driver reaction time of human-driven
vehicles, based on headway and velocity data collected via
GPS and DSRC. Then, by selecting the mean values of the
estimated parameters, we design an optimal connected cruise
controller to replace the human driver of the last vehicle in
the chain. We show by simulation that the connected cruise
controller indeed outperforms the human driver.

The structure of this paper is as follows: in Section II
we introduce the car-following behavior of human-driven
vehicles. In Section III we introduce the estimation algorithm
and use it to estimate the parameters of two drivers in
an experiment. In Section IV we present the connected
vehicle design and demonstrate the performance of the CCC
controller based on the mean parameter values obtained from
the estimation. In Section V we reach the conclusion and lay
out future works.

II. DESCRIBING CONVENTIONAL CAR-FOLLOWING
BEHAVIOR

In this section we model the car-following behavior
of human-driven vehicles in non-emergency situations; see
Fig. 1(a). While many existing car-following models [10]
can be used to describe the longitudinal behavior of human-
driven vehicles, the optimal velocity model has very simple
mathematical form and provides great physical intuition.
Thus, we choose this to model human-driven vehicles and
also use it as a basis for connected vehicle controller.

Based on [6], [12], [13], the optimal velocity model for
the human-driven vehicle ¢ is given by

hi(t) = viga (t) — vi(t),
”Uz(t) = Oy (‘/z(hl(t — 7'7)) — Uj,(t — TZ))
—+ 5i(vi+1(t — ’Ti) — ’Ui(t — Tz)) .

(D
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Here the dot stands for differentiation with respect to time ¢,
h; denotes the headway, (i.e., the bumper-to-bumper distance
between the vehicle ¢ and its predecessor), and v; denotes
the velocity of vehicle ¢; see Fig. 1(a). According to (1)
the acceleration is determined by two terms: the difference
between the headway-dependent desired velocity and the
actual velocity, and the velocity difference between the
vehicle and its predecessor. The gains «; and (; are used to
correct velocity errors, while 7; is the driver reaction time.

The desired velocity is determined by the nonlinear range
policy function

0 if h<hg,
‘/L(h) = /iz(h - hst,i) if hst,i <h< hgo,i ) (2)
Umax if h 2 hgo,i )

shown in Fig. 1(b). That is, the desired velocity is zero
for small headways (h < hg ;) and equal to the maximum
speed vmax for large headways (h > hgo ;). Between these,
the desired velocity increases with the headway linearly,
with gradient ;. Many other range policies may be chosen,
but the qualitative dynamics remain similar if the above
characteristics are kept [13].

Note that (2) defines the steady-state behavior of vehicle
1 and, in aggregation, the steady-state traffic flow where
vehicles travel with the same constant velocity:

hi(t) = h;, wvi(t)=v" =V(h]). 3)
In a vehicle string, the equilibrium velocity v* is determined
by the head vehicle while the equilibrium headway h; can
be calculated from the range policy (2).

While (h*,v*) can be deduced from aggregated traffic
data, there has been few research in the past investigating
the distribution and variation of parameters «;, [3;, ki, 7; for
individual drivers. However, as geolocation, inertial measure-
ment units and wireless communication devices become less
expensive and more widespread, the time is ripe for such
investigations. In particular, there may be significant benefits
for connected vehicle designs.

III. CAR-FOLLOWING PARAMETER ESTIMATION

In order to identity the gains «;, (3;, the range policy slope
ki, and the reaction time 7; in the optimal velocity model (1),
we designed an experiment where a string of four human-
driven vehicles run consecutively on a single-lane road; see
Fig. 2. Each vehicle was equipped with a Commsignia on-
board unit that provides GPS data and vehicle-to-vehicle
communication based on DSRC. We record the vehicles’
GPS coordinates (latitude ¢, longitude A, elevation r) and
speed v every 0.1 [s]. Then the Haversine formula

i+
dij == (R + 2 J )
X 2 arcsin\/sin2 (@) +c0s ¢; cos ¢; sin? (%)
“)

Fig. 2. The experiment setup: a string of four vehicles on a single-lane
road where all vehicles are equipped with GPS and DSRC devices. The test
route is a three-mile section of Mast Road near Dexter, MI.
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Fig. 3. Headway and velocity profiles of the four-car vehicle string during
one test run. The black, red, and blue curves correspond to the headway
and velocity of vehicles 3, 2, 1, respectively. The magenta curve in (b) is
the velocity of the head vehicle 4.

is used to calculate the great-circle distance d;; between two
GPS points (¢;, A;, ;) and (¢, A;, ;). Here R = 6371000
[m] is the nominal radius of the earth.

Thus, the headway for vehicle ¢ is

hi = di@iy1y — iy (5)

where [; is the vehicle length. The headway and velocity
profiles during one of the test runs are shown in Fig. 3.
In Fig. 3(b) we can see that the velocity v4 of the head
vehicle (magenta curve) is almost constant before decreasing
at ¢t ~ 125 [s], while the velocities of following vehicles
3,2,1 (black, red, and blue curves) start to oscillate before
125 [s] and eventually exhibit more severe deceleration than
the head vehicle 1 (magenta curve). This shows that it is
difficult for human drivers to suppress the speed fluctuations
propagating along the vehicle chain. Such amplifications may
not only lead to stop-and-go traffic jams, but can also result
in rear-end crashes in heavy traffic.

A connected vehicle is capable to be safer and more
efficient as it can suppress such fluctuations by exploiting
motion information received from multiple vehicles ahead
[18]. However, such a connected controller requires the
knowledge of human parameters, so that the human car-
following model (1) used in connected cruise control design
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matches well with the behavior of preceding vehicles. For
example, in order to design a connected cruise controller for
the tail vehicle 1, we need to identify parameters «;, [3;, k;
and 7; for vehicles ¢ = 2,3, such that given the velocity
vy of the head vehicle 4 (magenta curve in Fig. 3(b)), the
headway and velocity response of vehicles 3 and 2 (black
and red curves in Fig. 3) can be reproduced with minimal
mismatches.

A. The sweeping least square method

In order to identify the gains «;, 3;, the range policy slope
K;, and the reaction time 7,;, we assume that the GPS and
speed data from vehicles ¢ and ¢+ 1 are available via DSRC.
We discretize the second equation in (1) using explicit Euler
method with time step At = 0.1 [s]:

vilk + 1] — v;[k] = At a;(kihilk — m]) — vilk — m])

+ At Bi(vig1 [k —m] —vi[k —m]) .

where m = round(7; /At). For simplicity we assume hg ; =

0 [m]. However, the least square method will remain valid
without this assumption.

We consider N data points over a timespan of NAt and
rewrite the unknown parameters «;, (;, K; in (6) as

c=pi. ™

We consider the possible range of driver reaction time 7; €
[Tmins Tmax], and sample it such that 7, = mAt¢t. Then for
each m, the least square estimation yields

(6)

a=—a; — B, b=k,

a(m)
b(m)| = (ATA)"'ATB(m), (8)
c(m)
where
vill]  hil] wiga[l]
A=| Lo
vi[N] hi[N] v [N]
. vilm + 2] — v;[m + 1] 2
B(m) =+ : :
vilm + N + 1] — v;[m + N|
and the corresponding fitting error is
a(m)
R(m)=A bgmg —B(m). (10)

Therefore, we obtain the estimated human reaction time as
7; = mAt, where

(an

Correspondingly the estimated human feedback gains are

m = arg min||R(m)||2.

a&; = —a(m) —c(m),
Bi = (i), (12)
Fi = b(1m)/d; .

Given reasonable N, each least square calculation (8,9)
exhibits a small computational load. Thus, the estimation
algorithm (8,9,10,11) can be implemented in real time.
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Fig. 4. (a): Headway of vehicle 2 during one test run. (b): Velocity of
vehicles 3 (black curve) and 2 (red curve) during one test run.

B. Variations of estimated driver parameters

The estimation algorithm (8,9,10,11) produces the estima-
tion &;, Bi, ki, T; for each data segment with size IN. For
example, at time stamp to = koAt an estimation is obtained
using the motion information w;[k], h;[k], and v;41[k] for
k€ {ko— N,...,ko — 1}. As the car receives new motion
information and the window shifts forward in time, the
estimation &;, Bi, Ki, and 7; changes. Thus, the estimated
parameters will be time-varying.

As an example, we estimate the driver parameters aso,
Ba, Ko, To for vehicle 2 using the headway hs and the
velocities vo and v3 shown in Fig. 4. We consider data length
N = 150 and human reaction time 0.2 < 75 < 2 [s], that
is m € {2,...,20}. The corresponding estimations start at
t = 15 [s], as shown in Fig. 5. As the data window moves
forward in time, the estimated delay time 7o varies between
Tmax = 2 [s] and Tnin, = 0.2 [s], while for most time it stays
around 1 [s]. The estimated feedback gains & and B are also
time-varying. While they are significantly smaller than values
previously assumed (« = 0.6 [1/s], 8 =~ 0.9 [1/s]) based on
macroscopic data [6], they remain to be positive for most of
the time. Since the algorithm for <o involves division (cf.
(12)), we present ko after filtering the noise using a third-
order Savitzky-Golay filter with window size NAt/2 = 7.5
[s], see Fig. 5(d).

In Fig. 5, the human reaction time, feedback gains, and
range policy slope varies in time. In the simplified case, a
connected vehicle design can use their mean values, but it
is desirable to examine their distributions over a larger data
set.

C. Distributions of estimated driver parameters

As we did multiple test runs and accumulated over 10000
estimations for every driver parameter for vehicles 2, 3, and
4, we are interested in the distributions of those parameters
and the difference among human drivers. In particular, we
present the distributions of driver parameters for vehicles 2
and 3.
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Fig. 5. Estimated driver parameters of vehicle 2 starting from ¢ = 15
[s] in a test run. The related headway and velocity information is shown in
Fig. 4. (a): The time profile of estimated delay time 7> with data window
size¢ N = 150, quantization step At = 0.1 [s], and the range of possible
delay 7 € [0,4] [s]. (b,c): The time profile of estimated feedback gains
&g, B2. (d): The time profile of estimated range policy slope <2 filtered by
a third-order Savitzky-Golay filter with window size 7.5 [s]. The dashed
black lines are the mean values.

In Fig. 6(a,b) we show the histogram of estimated driver
reaction time 7, and 73, respectively. It seems that both
Gamma and Gaussian distributions could be used to describe
the stochasticity of the human reaction time. The mean and
variance of the driver reaction time for car 3 is (1.16,0.15)
[s], while for car 2 we have (0.90,0.09) [s].

It is noted that the driver for vehicle 2 less driving experi-
ence compared with the driver for vehicle 3. While a much
larger sample is needed to establish the relation between
driving proficiency and human car-following parameters, the
comparison between Fig. 6(a) and Fig. 6(b) provides some
intuition on the variation between different drivers. Note
that the experienced driver has smaller and more consistent
reaction time, which may lead to more reliable response to
the traffic environment. However, the values of mean reaction
time are not significantly different for the two drivers, which
may be exploited in connected vehicle design.

In Fig. 7 we show the histograms of human feedback
gains &y, f3; and range policy slope <; for vehicle 2 (panels
(a,c,e)) and vehicle 3 (panels (b,d,f)). In each panel the
histogram can be approximated by a Gaussian distribution
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Fig. 6. (a, b) Histogram of estimated driver reaction time for vehicles 2
and 3, respectively.
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Fig. 7. (a,c,e): Histogram of estimated human feedback gains &, 52 and
range policy slope <2 for vehicle 2. (b,d,f): Histogram of estimated human
feedback gains &3, 83 and range policy slope <3 for vehicle 3.

with different mean and variance. By comparing Fig. 7(a,c,e)
and Fig. 7(b,d,f) we can see that while there exist some
difference§ between the histograms, the human feedback
gains &;, 3; and range policy slope &; vary in the same range
for the two drivers. Thus, it is feasible to use a nominal &,

B, i for both drivers in connected vehicle design.

IV. CLOSE-LOOP VERIFICATION OF ESTIMATION
ALGORITHM

To verify the effectiveness of the proposed identification
algorithm (8,9,10,11), we use the estimated parameters of
drivers 2 and 3 to design an optimal connected cruise
controller for the tail vehicle 1, so that it utilizes motion
information from all three vehicles ahead, see Fig. 8. Then
we examine the performance of the connected cruise con-
troller through numerical simulation.

For simplicity, we describe the dynamics of vehicles
i = 2,3 using the optimal velocity model with nominal
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Fig. 8. A string of 341 vehicles in a single-lane scenario. The tail vehicle
1 is driven by a connected cruise controller that uses motion information
from human-driven vehicles ahead. Dashed arrows indicate the flow of
information used by the connected cruise control.
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Fig. 9. (a, b): The optimized feedback gains a1, B81i,¢ = 1,2,3 of the
CCC vehicle in a string of (3+1) vehicles. (c, d): The optimized distribution
kernels f;(6), gi(0) for the CCC vehicle. The green, red, and black curves
correspond to ¢ = 1, 2, 3, respectively. The human parameters are ov = 0.2
[1/s], B = 0.4 [1/s], kK = 0.6 [1/s], and 7 = 0.9 [s]. The design parameters
are 41 = 0.01 [1/52], v2 = 0.04[1/s?].

parameters « = 0.2 [1/s], 8 = 0.4 [1/s], K = 0.6 [1/s],
and driver reaction time 7 = 0.9 [s]. However, the algorithm
still works for heterogeneous human parameters; see [5]. We
assume that the tail vehicle 1 receives motion information
from vehicles 2,3,4 every 0.1 [s] and packet drops are
negligible. Thus, when the tail vehicle is driven by a CCC
controller, its car-following dynamics becomes

;11 (t)
v1(t)

V2 (t) — {}1 (t) s

13)
u(t),

where u(t) is the acceleration to be designed using the
velocity and headway information obtained via V2V com-
munication, and hy, v; are the headway and velocity of the
tail vehicle equipped with CCC controller.

We define the cost function based on the CCC controller’s
acceleration and deviations from the uniform flow

t¢ _
J(u) = / <U2 + Y1 (Iihq — 171)2+72 (Ug — 171)2) dt,
0
(14)

where 1 > 0, 72 > 0 and the nominal human parameter xk =
0.6 [1/s] is used so that the connected cruise controller would
generate similar behaviors as the human drivers nearby. In
(14) the first term is related with the fuel economy of the
CCC vehicle, and the latter two terms account for the active
safety and traffic efficiency. While other cost functions may
be chosen, the quadratic form of (14) allows us to obtain
analytical optimal solutions, requiring little computation load
and providing great physical intuition.

Using results in [5], the optimal CCC controller is given

by
u(t) = 11 (K?h (t) -1 (t)) + 511 (UQ (t) — 1 (t))

+ Z (ali (khi(t)—vi(t)) + Bri(vis1(2) _'Ui(t)))
+> 0 £i(0) (iha(t + 0) — vit + 0)) dO

3
+> /0 9i(0) (Vi1 (t +0) — vi(t + 6)) db,
- (15)
where the optimal feedback gains and kernels are
[ Bu] =[1 1] Py,
50) 0] =11 1] AR+ Py,

for ¢ = 1,2,3. Here Py; is the decomposed solution of the
Riccati equation that corresponds to optimal feedback terms
from vehicle <. It can be calculated recursively,

vec(Py;) = M tvec(Pyy), 17

where vec(-) gives a column vector by stacking the columns

of the matrix on the top of each other, and the first block

P _ |P11 P12
1n =

P12 P22
parameters 71, v2 and the range policy parameter «:

VY e 2

K

is solely determined by the design

P11

P12 = ﬁ — P11,

D22 = —2y/71 + \/’71 + 72 + 264/71 + D11 -
The matrix in (17) is given by

M=—(I0A +AT@I+B® ™) (B @ ™),
(19)

(18)

with the coefficient matrices
Ai=A'-P,D,D,

_ |0~ _ _|a B oo -1
wbin [ gef o]
(20)

Note that the first row in the optimal controller (15) can
be implemented without connectivity, indicating that when
V2V connectivity is lost, the CCC controller degrades to an
optimal ACC controller. Based on (16,18), the corresponding
feedback gains are

a1 = VAL Bu= A e+ 2R @)

In Fig. 9, we show the optimal feedback gains and kernels
of the CCC vehicle 1, when it receives motion information
from vehicles 2,3,4, and the car-following dynamics of
vehicle 2,3 are described by (1) for the human parameters
mentioned above. We also use design parameters v; =
0.01[1/s?] and v = 0.04[1/s?]. We can see that the
feedback gains and kernels decrease as ¢ increases.
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Fig. 10. The headway, velocity, and acceleration profiles of a (3 + 1)-car
vehicle string. The color scheme is the same as in Fig. 3. The green curves
correspond to the response of the tail vehicle when it is driven by the CCC
controller (15).

In order to evaluate the performance of the optimal CCC
design, we simulate the motion of the CCC vehicle using
the measured headway and velocity of vehicles 2,3,4. In
Fig. 10(a) the black, red, and blue curves are the headway
hs, ha, hy observed in the experiment, while the green curve
is the headway hy of the tail vehicle controlled by CCC.
We find the CCC vehicle (green curve) has much smaller
fluctuations in headway than any human-driven vehicle.
While the real tail vehicle 1 almost collided with vehicle
2 in the experiment (at ¢ ~ 210 [s], h1(t) = 0 [m]), such
safety hazard is avoided when the tail vehicle is driven by
the CCC. In Fig. 10(b) the magenta curve is the velocity v;
of the head vehicle, while the other curves have the same
color scheme as in panel (a). Again, the tail vehicle will
have smaller fluctuations in velocity compared with other
vehicles when it is driven by a CCC controller. In Fig. 10(c)
we compare the acceleration v; of the tail vehicle (blue
curve) and the acceleration u of the CCC vehicle (green
curve). Notice that the CCC vehicle reduces harsh braking
and acceleration maneuvers. In general the CCC controller
demonstrates significant performance improvements com-
pared with human-driven vehicles. The next step for this
research is to implement the CCC controller based on real-
time parameter estimation on experimental vehicles and test
it in real traffic.

V. CONCLUSIONS

In this paper a connected cruise controller has been de-
signed based on real measurement data. We used the position
and headway measurements to estimate the range policy, the

feedback gains and the reaction time delay simultaneously
for the human-driven vehicles ahead by a sweeping least
square approach. After identifying the distributions of the
human parameters we used their mean values in an optimal
connected cruise control design. We demonstrated that the
CCC outperformed the human drivers and reduced the un-
wanted oscillations in the system.
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