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ABSTRACT
In this paper the dynamics and stability of a linear system

with stochastic delay are investigated. We assume that the delay
may take finitely many different values and its dynamics are mod-
eled by a continuous-time Markov chain. Semi-discretization is
used to derive the dynamics of the second moment which leads
to necessary and sufficient stability conditions for the trivial so-
lution. We apply these results to investigate the stability of the
steady state of an auto-regulatory gene-protein network. We
demonstrate that stochastic delay may stabilize the system when
the corresponding deterministic system with average delay is un-
stable.

INTRODUCTION
The presence of vast amounts of biological data along with

the increase of computational capabilities raises hope for being
able to develop quantitative models for complex biological pro-
cesses in living cells and analyze their behavior. In particular, the
process of protein production inside living cells has generated
a lot of interests in systems biology. The two major processes
involved in protein production are transcription and translation.
During transcription the information contained in a gene (a seg-
ment of DNA) is copied into messenger RNA (mRNA). Then,
through translation, protein is produced from mRNA. Some pro-
teins (called transcription factors) can bind to a particular site of
a gene (called the promoter region) and effect transcription ei-
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ther repressing or activating the gene. An arising network of in-
teractions among genes and proteins is called a gene regulatory
network (GRN).

Modeling and analysis of GRNs have attracted a lot of atten-
tion among researchers in systems biology [1–4]. Earlier models
used ordinary differential equations (ODEs) to describe the dy-
namics of GRNs [5–7], that can be used to characterize stability
of equilibria and find periodic solutions emerging through bifur-
cations. However, transcription and translation processes com-
prise of many steps that take significant time to be completed,
and thus, their products become active after some delay time.
Consequently, a more accurate way to describe the dynamics of
GRNs is to introduce delays in the describing equations [8–11].
For instance, it has been shown that delay may lead to oscilla-
tions in models with negative feedback [6, 11–13]. Also, experi-
mental data shows robust oscillations in synthetic networks as a
result of transcriptional delay [14, 15]. When delay is incorpo-
rated, the dynamics can be described by delay differential equa-
tions that can be analyzed with existing analytical and numerical
tools [16–18].

Another key feature of biochemical reactions taking place in
cells is their highly stochastic nature [19]. Providing a quantita-
tive description of these processes in macroscopic scale, while
considering delays and stochasticity is a challenging task. One
way to attack this problem is to incorporate delays in stochas-
tic simulations at the molecular level where delays were typi-
cally considered to be constant [20–22]. However, some effects
of stochastic delay variations were taken into account [13]. A
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difficulty of using molecular-level stochastic description of gene
expression is that it becomes unfeasible for large numbers of
molecules and species. On one hand, the analytical framework
becomes very involved due to the large number of partial differ-
ential equations required to describe the time evolution of proba-
bility distribution functions. On the other hand, numerical meth-
ods become computationally very expensive [22]. Additionally,
important concepts, such as stability and robustness, are difficult
to characterize using this approach.

The effects of time delay on stochastic gene expression were
investigated in [23] by adding noise to a deterministic delayed
dynamical system. The resulting stochastic delay differential
equations (SDDEs) may provide a tractable description to evalu-
ate stability. However, there is no work in the literature that con-
siders stochasticity in the delays in the framework of delay dif-
ferential equations, so we target this challenging problem here.
Our description can be used to capture the macroscopic behav-
ior of gene regulatory networks while still representing essential
stochastic effects in the delay originated at the molecular level.
In particular, this framework allows us to derive necessary and
sufficient conditions for stability of equilibria.

Linear delay differential equations with a random delay
were investigated in [24, 25] where the delay was modeled by
a continuous-time Markov chain. Lyapunov stability theorems
were used to obtain sufficient conditions of stability and this ap-
proach was extended to nonlinear systems in [26]. The Lya-
punov approach has also been applied to discrete-time systems
in [27–29] where, again, it leads to sufficient conditions for sta-
bility that are typically very conservative. For discrete-time lin-
ear systems with random delays the mean-square dynamics were
analyzed in [30–32]. For example, in [31] the delay was assumed
to be independent and identically distributed (i.i.d.) at each time
step and necessary and sufficient conditions were derived for the
stability of the trivial solution.

In this paper, we consider a linear continuous-time system
described by a delay differential equation where the stochasticity
in the delay is modeled as a continuous-time Markov chain. This
system has two sources of randomness: jump probabilities be-
tween delay values and randomness in the duration of the times
the delay is held at a value. We use semi-discretization and find
an approximating discrete-time system. Then we conclude about
the stability of this discrete map by looking at the asymptotic be-
havior of the first and second moments of the state. This allows
us to derive necessary and sufficient stability conditions. We ap-
ply our results to a linearized model of an auto-regulatory GRN
with transcriptional negative feedback, called self-repressor. We
draw a stability chart in the plane of system parameters and em-
phasize on the difference between the stochastic system and its
deterministic counterpart.

MODELING AND DISCRETIZATION
In order to investigate the effects of stochastic delay varia-

tions, we consider the following linear dynamical system

ẋ(t) = ax(t)+bx(t − τ), (1)

where x ∈ R and the delay τ is considered to be a continuous-
time Markov chain such that it takes values from the finite set
{τ1,τ2, ...,τN}. The probability transition matrix which governs
the jumps between these delay values is given by

Q =


q11 q21 · · · qN1
q12 q22 · · · qN2

...
...

. . .
...

q1N q2N · · · qNN

 , (2)

where the probability of jumping from τ = τi to τ = τ j is denoted
by qi j. Note that, for each column, the sum of the elements is 1
and also qii = 0 for i = 1, . . . ,N, because at the time of jump the
delay must jump to another value. We assume that the matrix Q
is fixed over time.

The delay remains constant before jumping to another value
and the corresponding holding time is a random variable with
exponential distribution due to the properties of a continuous-
time Markov chain, namely, being memoryless and having time-
homogeneity. We denote these holding times by Tk = tk − tk−1
where tk is the time right before the delay jumps for the kth time
(i.e., k = 1,2,3, . . . counts the number of jumps.) Fig. 1(a) depicts
a sample realization of the time evolution of the delay. Here we
suppose that at time t = 0 the delay is τ = τm1 , m1 ∈ {1, . . . ,N}.
Then we generate a random real number T1 from an exponen-
tial distribution and the delay is kept constant along the time in-
terval 0 ≤ t < T1 = t1. Then it jumps to a new value τ = τm2 ,
m2 ∈ {1, . . . ,N}, m2 ̸= m1, based on the transition probabilities
qm1 j, j = 1, . . . ,N, cf. Eq. (2). Now another random number
T2 is generated based on the same exponential distribution in-
dependently of T1. The delay is held at the new value during
T1 ≤ t < T1 +T2 = t2 and so forth. We remark that the random-
ness in the delay makes the state x(t) in Eq. (1) to be a stochastic
variable.

Our aim is to analyze the stability of the trivial solution
x(t) ≡ 0 of system (1). To this end, first we discretize the sys-
tem using semi-discretization [17]. As mentioned above, the de-
lay is fixed for a random amount of time Tk (holding time) and
then it jumps to another value. First, we discretize time by di-
viding it into small intervals of length h and approximate the
holding times by multiples of h, i.e., Tk ≈ ℓ(k)h where ℓ(k) is
a random integer. Here we denote the time right before the de-
lay jumps for the kth time by t ′k, that is, t ′k − t ′k−1 = ℓ(k)h; see
Fig. 1(a). That is, the delay is kept constant at τ = τm1 along the
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time interval 0 ≤ t < ℓ(1)h = t ′1 and τ = τm2 along the interval
ℓ(1)h ≤ t < (ℓ(1)+ ℓ(2))h = t ′2 and so on. For a continuous-time
Markov chain the holding times are independent, exponentially-
distributed random variables. Since the geometric distribution
may be regarded as a discrete version of the exponential distri-
bution, we assume that the ℓ(k)-s are geometrically distributed:

P
(
ℓ(k) = ℓ

)
= δ (1−δ )ℓ−1, ℓ= 1,2,3, . . . (3)

where P stands for the probability and the parameter 0 ≤ δ ≤ 1 is
assumed to be fixed over time and does not depend on the value
of the delay. Figure 1(b) depicts a possible realization of the
approximated delay process.

To complete the description, we apply semi-discretization
where we approximate the delayed term as a constant along each
time interval of length h. This assumption results in an ordinary
differential equation with a piece-wise constant term on the right
hand side, that is, the approximation of (1) can be written as

ẋ(t) = ax(t)+bx(ti−rm), t ∈ [ih,(i+1)h) , (4)

where ti−rm =(i−rm)h, rm = ⌊ τm
h ⌋, and τm is the delay in the time

interval [ih,(i+1)h) and m ∈ {1,2, ...,N}. Assuming a constant
delayed term is equivalent to saying that the delay increases lin-
early from rmh to (rm +1)h in the time interval t ∈ [ih,(i+1)h);
see [17]. Figure 1(c) illustrates this approximation by zooming
in a part of Fig. 1(b).

To build up a discrete map for time evolution of system (4),
we first introduce the notation x(ti) = x(i) and x(ti−rm) = x(i−
rm). Applying the variation of constants method we can solve
(4) along the time interval [ih,(i+1)h) which yields

x(i+1) = αx(i)+βx(i− rm), (5)

where α = eah and β = − b
a (1− eah). This equation updates the

state based on its current and past values. Using an augmented
state vector z(i) = [x(i) x(i−1) · · · x(i−R−1)]T ∈RR, where
R = max

m
{rm}+1, we can construct the discrete map

z(i+1) = Gs(k)z(i), (6)

where Gs(k) ∈ {Gm, m = 1, . . . ,N} and Gm ∈ RR×R such that

Gm =


α 0 · · ·β · · · 0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . . 0 0

0 · · · 0 1 0

 . (7)
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FIGURE 1. (a) A sample realization of the time evolution of the delay
τ with N = 3 possible values; (b) A sample realization of the approx-
imated process of delay evolution; (c) Delay variation after applying
semi-discretization technique.

The matrices {Gm, m = 1,2, . . . ,N} correspond to the N
different delay values such that β lies in the first row and in
the (rm + 1)th column. At each delay jump a different matrix
Gs(k) is chosen and it is kept constant for ℓ(k) time steps (the
discrete analogy of the holding time). Hence, if we consider
the state vectors at the ends of the holding times X(k + 1) =
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z
(
ℓ(1)+ · · ·+ ℓ(k)

)
∈ RR, we can write

X(k+1) =
(
Gs(k)

)ℓ(k) X(k). (8)

Indeed, s(k) is a finite state Markov chain with support
{1,2, , . . . ,N} and transition probabilities described by matrix Q
in (2), because the jumps in the delay τ in (1) corresponds to
jumps in s(k) in (8). In the following section, we derive equa-
tions for the first and second moments of system (8).

DYNAMICS AND STABILITY
In this section, we establish conditions for the stability of

the trivial solution of the stochastic dynamical system (8). First
we derive equations for the time evolution of the mean. Then
the dynamics of the second moment are derived that result in
necessary and sufficient stability conditions.

Behavior of the mean
First we characterize the dynamics of the mean of system

(8), i.e., E[X(k)], where E stands for the expected value of a
random variable. If the mean is unstable then the system will
be unstable, that is, stability of the mean provides a necessary
condition for the stability of the stochastic system.

From (8) we can derive

E [X(k+1)|s(k+1) = j] = E
[
(Gs(k))

ℓ(k)X(k)|s(k+1) = j
]

=
N

∑
i=1

E
[
(Gs(k))

ℓ(k)X(k)|s(k+1) = j,s(k) = i
]

×P(s(k) = i|s(k+1) = j) , (9)

We exploit the independence of ℓ(k) and X(k) along with Bayes’
rule to write (9) as follows

E [X(k+1)|s(k+1) = j]

=
N

∑
i=1

E
[
(Gi)

ℓ(k)|s(k+1) = j,s(k) = i
]
E [X(k)|s(k+1) = j,s(k) = i]

× P(s(k+1) = j|s(k) = i)P(s(k) = i)
P(s(k+1) = j)

. (10)

Now, we note that ℓ(k)-s are independent, identically dis-
tributed (i.i.d.), and they are also independent of all s(k)-s which
yields E

[
(Gi)

ℓ(k)|s(k+1) = j,s(k) = i
]
= E

[
(Gi)

ℓ(k)
]
. We fur-

ther note that based on Eq. (8), X(k) depends on s(k−1). More-
over, since the jump occurs from s(k − 1) to s(k), information

about s(k) gives information about s(k − 1). However, due to
the Markov property of the jump process, information about
s(k + 1) gives no extra information about s(k − 1), given that
s(k) is already known, that is, E [X(k)|s(k+1) = j,s(k) = i] =
E [X(k)|s(k) = i]. Thus, (10) simplifies to

E [X(k+1)|s(k+1) = j]

=
N

∑
i=1

E
[
(Gi)

ℓ(k)
]
E [X(k)|s(k) = i]

qi j P(s(k) = i)
P(s(k+1) = j)

, (11)

where we used the substitution qi j = P
(
s(k+1) = j|s(k) = i

)
, cf.

(2).
Defining

f (Gi) := E
[
(Gi)

ℓ(k)
]
=

∞

∑
ℓ=1

(Gi)
ℓ P

(
ℓ(k) = ℓ

)
, (12)

and rearranging Eq. (11) we obtain

E [X(k+1)|s(k+1) = j] P(s(k+1) = j)

=
N

∑
i=1

f (Gi)qi j E [X(k)|s(k) = i] P(s(k) = i). (13)

Let m j(k) := E [X(k)|s(k) = j] P(s(k) = j) ∈ RR. Then Eq. (13)
can be written as

m j(k+1) =
N

∑
i=1

qi j f (Gi)mi(k). (14)

Now defining m̂(k) :=
[
m1(k)T · · · mN(k)T

]T ∈ RNR, we can
write

m̂(k+1) = M m̂(k), (15)

where M ∈ RNR×NR is given by

M =


q11 f (G1) q21 f (G2) · · · qN1 f (GN)
q12 f (G1) q22 f (G2) · · · qN2 f (GN)

...
...

...
q1N f (G1) q2N f (G2) · · · qNN f (GN)


= (Q⊗ IR)diag

(
f (Gi)

)
. (16)

Here ⊗ denotes the Kronecker product, IR is the R × R iden-
tity matrix, and diag

(
f (Gi)

)
is a block diagonal matrix with

f (G1), · · · , f (GN) as diagonal elements.
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Let

m(k) :=E [X(k)]=
N

∑
j=1

E [X(k)|s(k) = j] P(s(k) = j)=
N

∑
j=1

m j(k).

(17)
If the spectral radius ρ(M) of matrix M is less than 1, then
system (15) is stable (i.e., m̂(k) → 0 as k → ∞), which im-
plies m(k) → 0 as k → ∞. (The spectral radius is defined by
ρ(M) = max

i
{|λi|} where λi, i = 1, . . . ,NR, are the eigenvalues

of M.) Of course, to ensure stability, the series in (12) must also
converge. We summarize these results in the following theorem.

Theorem 1 Consider system (8) where s(k) is a Markov
chain with transition matrix (2) and domain {1, . . . ,N}, Gs(k) are
R×R matrices, and ℓ(k) are independent, identically distributed
(i.i.d.) random variables. Assume that ℓ(k) is independent of s(k)
and X(k). Then m(k) = E[X(k)]→ 0 as k → ∞ (i.e., the mean is
stable), if

(a) f (Gi) exists for i = 1, . . . ,N,

(b) ρ(M)< 1, (18)

where f (Gi) is defined by (12) and M is defined by (16).
Proof . The proof is given by the arguments shown before

the theorem.
Condition (a) in (18) can be further refined, since ℓ(k)-s

are geometrically distributed. One can substitute Eq. (3) into
Eq. (12) and write

f (Gi) =
∞

∑
ℓ=1

(Gi)
ℓP
(
ℓ(k) = ℓ

)
=

∞

∑
ℓ=1

(Gi)
ℓδ (1−δ )ℓ−1

= δGi

∞

∑
ℓ=0

[(1−δ )Gi]
ℓ = δGi [I − (1−δ )Gi]

−1 . (19)

The summation in Eq. (19) is convergent if ρ
(
(1− δ )Gi

)
< 1.

Thus we can state the following theorem.

Theorem 2 Consider system (8) with the same assump-
tions stated in Theorem 1. Further assume that ℓ(k) obey the
geometric distribution (3). Then m(k) = E[X(k)]→ 0 as k → ∞,
if

(a) (1−δ )ρ(Gi)< 1, i = 1, . . . ,N,

(b) ρ(M)< 1, (20)

where M is defined by (16).
Proof . The proof is given by the arguments shown before

the theorem.

Behavior of the second moment
Theorems 1 and 2 give conditions for the stability of the

mean of the stochastic system (8). Since our main quest is to
find necessary and sufficient criteria for the stability of (8), we
use the definition of the mean-square stochastic stability [33].
Equation (8) is mean square stable if for any initial distributions
on X(1) and s(1) we have

(a) ∥E[X(k)]∥→ 0 as k → ∞,

(b) ∥E
[
X(k)X(k)T]∥→ 0 as k → ∞. (21)

where E
[
X(k)X(k)T

]
is the second moment matrix of system

(8). To ensure part (b) of (21), we seek a necessary and sufficient
condition for the stability of the second moment. We proceed as
follows

E
[
X(k+1)X(k+1)T|s(k+1) = j

]
= E

[
(Gs(k))

ℓ(k)X(k)X(k)T
(
(Gs(k))

ℓ(k)
)T

|s(k+1) = j
]

=
N

∑
i=1

E
[
(Gs(k))

ℓ(k)X(k)X(k)T
(
(Gs(k))

ℓ(k)
)T

|s(k+1) = j,s(k) = i
]

×P(s(k) = i|s(k+1) = j) . (22)

Now we use the law of total probability along with the Bayes’
rule to write (22) as

E
[
X(k+1)X(k+1)T|s(k+1) = j

]
=

N

∑
i=1

∞

∑
ℓ=1

E
[
(Gi)

ℓ(k)X(k)X(k)T
(
(Gi)

ℓ(k)
)T∣∣∣s(k+1) = j,

s(k) = i, ℓ(k) = ℓ

]
P
(
ℓ(k) = ℓ|s(k+1) = j,s(k) = i

) qi jP(s(k) = i)
P(s(k+1) = j)

.

(23)

Similar to the derivation of (11), noticing the fact that ℓ(k) is
independent of X(k) and s(k), and that the statistical properties
of X(k) given s(k) do not change by further knowing s(k+ 1),
Eq. (23) simplifies to

E
[
X(k+1)X(k+1)T|s(k+1) = j

]
=

N

∑
i=1

∞

∑
ℓ=1

(Gi)
ℓE

[
X(k)X(k)T|s(k) = i

](
(Gi)

ℓ
)TP

(
ℓ(k) = ℓ

)
×

qi jP(s(k) = i)
P(s(k+1) = j)

. (24)
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Defining S j(k) := E
[
X(k)X(k)T|s(k) = j

]
P(s(k) = j) ∈ RR×R

and rearranging Eq. (24), we obtain

S j(k+1) =
N

∑
i=1

∞

∑
ℓ=1

qi j(Gi)
ℓSi(k)

(
(Gi)

ℓ
)T

P
(
ℓ(k) = ℓ

)
. (25)

Notice that

S(k) := E
[
X(k)X(k)T]

=
N

∑
j=1

E
[
X(k)X(k)T|s(k) = j

]
P(s(k) = j) =

N

∑
j=1

S j(k),

(26)

that is, summing (25) for all j-s we obtain the dynamics of
the second moment. However, the second moment is a matrix-
valued quantity and further transformations are needed in or-
der to characterize its stability. Let H = [h1 · · · hR] be an
R×R matrix with hi being its ith column and define the oper-
ator vec(H) := [hT

1 · · · hT
R]

T ∈ RR2
that puts the columns of the

matrix below each other. Then we define the NR2-dimensional
vector

v̂(k) =
[(

vec
(
S1(k)

))T
· · ·

(
vec

(
SN(k)

))T
]T

, (27)

and use this definition to reformulate Eq. (25):

v̂(k+1) = D v̂(k), (28)

where the matrix D ∈ RNR2×NR2
is given by

D = (Q⊗ IR2)

[
∞

∑
ℓ=1

diag
(
(Gi)

ℓ⊗ (Gi)
ℓ
)

P
(
ℓ(k) = ℓ

)]
. (29)

This matrix can be further simplified by using definition (12) and
noting that

(
Gℓ

i ⊗Gℓ
i
)
= (Gi ⊗Gi)

ℓ:

D = (Q⊗ IR2)diag
(

f (Gi ⊗Gi)
)
. (30)

For the second moment of system (8) to be stable,
f (Gi ⊗Gi) must exist for i = 1, . . . ,N, which means the series
inside brackets in Eq. (29) must converge. Also, if ρ(D) < 1,
system (28) is stable meaning that v̂(k)→ 0 as k → ∞, which im-
plies S(k)→ 0 as k → ∞. The reverse is also true: if S(k)→ 0 for
any initial condition S(1), then f (Gi ⊗Gi) exists and ρ(D)< 1.

The first part is obvious, because otherwise the second moment
would not be well-defined. To prove the second part we note
that in Eq. (26) all S j-s are positive semi-definite and symmetric.
Thus,

0 ≤ S j(k)≤ S(k)→ 0 as k → ∞ for j = 1, . . . ,N, (31)

which shows S j(k)→ 0 as k → ∞ for j = 1, . . . ,N. Hence, def-
inition (27) implies that v̂(k)→ 0 as k → ∞ for any initial v̂(1).
Consequently, the spectral radius of D must be less than 1, i.e.,
ρ(D)< 1, since v̂(k+1) = Dkv̂(1). We state these results in the
following theorem.

Theorem 3 Consider system (8) where s(k) is a Markov
chain with transition matrix (2) and domain {1, . . . ,N}, Gs(k) are
R×R matrices, and ℓ(k) are independent, identically distributed
(i.i.d.) random variables. Assume that ℓ(k) is independent of
s(k) and X(k). Then S(k) = E

[
X(k)X(k)T

]
→ 0 as k → ∞ for

any initial condition S(1), if and only if

(a) f (Gi ⊗Gi) exist for i = 1, . . . ,N,

(b) ρ(D)< 1, (32)

when f (.) is defined in (12) and D is defined in (30).
Proof . The proof is given by the arguments shown before

the theorem.
Conditions (32) can be refined considering that ℓ(k) are ge-

ometrically distributed. Similar to our result from Eq. (19), we
know that f

(
Gi ⊗Gi

)
exists if ρ

(
(1− δ )(Gi ⊗Gi)

)
< 1. This

would require that

(1−δ )ρ (Gi ⊗Gi)< 1 ⇔ (1−δ )
(
ρ (Gi)

)2
< 1. (33)

Thus we can state the following theorem.

Theorem 4 Consider system (8) with the same assump-
tions stated in Theorem 3. Further assume that ℓ(k) obey the
geometric distribution (3). Then S(k) = E

[
X(k)X(k)T

]
→ 0 as

k → ∞ for any initial condition S(1), if and only if

(a) (1−δ )(ρ (Gi))
2 < 1, i = 1, . . . ,N,

(b) ρ(D)< 1. (34)

Proof . The proof is given by the arguments shown before
the theorem.

Note that stability of the second moment (converging to
zero) implies the stability of the first moment. In other words,
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part (b) in (21) implies part (a) in (21). This can be seen noting
that convergence in rth order implies convergence in sth order
if s ≤ r; see [33]. In particular, ||E

[
X(k)X(k)T

]
|| → 0 implies

E
[
|X(k)|2

]
→ 0 which implies E [|X(k)|] → 0 or E [X(k)] → 0.

Therefore, if conditions (34) hold the stochastic system (8) will
be mean-square stable according to definition (21).

CASE STUDY: ANALYSIS OF SELF-REPRESSOR
The self-repressor is a single-gene regulatory network in

which the protein produced by a gene binds to the promoter re-
gion of the same gene and represses its own production. The
production of the protein is performed through several biological
processes as shown by the sketch in Fig. 2.

A simplified mathematical model is given in [34]:

ṗ(t) =−γ p(t)+
σ

1+ p2(t − τ)
+σ0, (35)

where p(t) stands for the concentration of protein molecules
(measured in units of the number of proteins required to half-
maximally repress the gene) and γ is the ratio of the protein
degradation rate and mRNA degradation rate. In this model a Hill
function is used to represent how proteins repress the production.
In the presence of a saturating number of repressor proteins, the
promoter strength (number of mRNA transcripts produced per
unit time) is σ0 (due to ”leakiness” of the promoter), and when
there is no repressor around, it is σ +σ0. Also, τ is an aggre-
gated delay caused by all non-instantaneous biological reactions
measured in units of mRNA lifetime. Here we will use the pa-
rameters given in [35]: γ = 0.2069, σ = 44.59, and σ0 = 0.0446.

Proteins

FIGURE 2. A negative feedback auto-regulatory network, also called
a self-repressor. Proteins produced after transcription and translation
processes bind to the promoter of the same gene and repress it.

System (35) has an equilibrium point at p = p∗ which is the
solution of the equation γ p∗−σ0 = σ/(1+ p∗2). To study the

stability of this fixed point we linearize (35) about the equilib-
rium and obtain the following equation

˙̃p(t) = ap̃(t)+bp̃(t − τ), (36)

where p̃ = p − p∗ and for the parameters above, a = −γ =

−0.2069 and b =−2σ p∗/(1+ p∗2)
2
=−0.3882, cf. (1).

Let’s suppose the delay τ in Eq. (36) is stochastic taking
values in the set {2,10,13} with transition probability matrix

Q =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

 . (37)

2 4 6 8 10
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ty

 

 

P(τ = 2)
P(τ = 10)
P(τ = 13)

0 2 10 13
0

delay

pr
ob

ab
ili

ty

(a)

(b)

1
3

2
3

FIGURE 3. (a) Time evolution of the probability of being at delays
τ1, τ2, and τ3 versus jump number k given the initial distribution π(1) =
[0.2 0.3 0.5]T. (b) Probability distribution of delays for k → ∞.

From the finite-state Markov chain theory [36], we know
that given the initial probability distribution over delays, it can
be obtained using the update formula

π(k+1) = Qπ(k), (38)
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where π(k) ∈ RN is the probability distribution over delays in
kth jump. Equation (38) implies that the probability distribution
of the delays approaches a stationary distribution as time goes
to infinity if all eigenvalues of Q are inside the unit circle in the
complex plane. (Note that Q always has an eigenvalue at 1 that
is related to the constant column’s sum feature implied by the
normalization of the transition probabilities.) For the probability
transition matrix (37), the probability of the delays approach a
uniform distribution for any initial probability distribution. This
is demonstrated in Fig. 3 using the initial distribution π(1) =
[0.2 0.3 0.5]T.

Performing linear stability analysis for (36) with fixed de-
lay (deterministic system), it can be shown that for the param-
eters above, the fixed point is stable for τ . 6.5 and unstable
for τ & 6.5. Note that we use τ1 = 2 < 6.5, τ2 = 10 > 6.5,
and τ3 = 13 > 6.5. Let h = 0.4 and ℓavg = 7, i.e., the average
holding time for the delay is ℓavgh = 2.8. Since Eq. (3) implies
ℓavg = E(ℓ) = 1/δ , we have δ = 0.143. For the stochastic sys-
tem, we have ρ(D) = 0.9452< 1, which means the system is sta-
ble. In this example, even though two of the three possible values
for the delay are destabilizing, the resultant system is still stable.
This means that the stability results for the stochastic system can-
not be concluded by analyzing the behavior of the corresponding
deterministic system.

−0.4 −0.2 0   0.2 
−0.4

−0.2

0   

A

a

B

b

FIGURE 4. Stability chart in the plane of parameters a and b. Dark
shaded area is the region of stability; i.e., the second moment (and the
mean) are stable. Light shaded area shows the region in which only first
moment (but not the second moment) is stable. The black dashed curve
shows the boundary of stability region of a deterministic system with
a fixed average delay τavg ≈ 8.33. Simulations for points A and B are
displayed in Fig. 5(a) and 5(b), respectively.

To further elaborate on this, we vary the parameters a and
b in (36) and evaluate the stability. Figure (4) shows the stabil-
ity region in the (a,b)-plane. The dark shaded area shows the
region in which the stochastic system (36) is mean-square sta-
ble. Light shaded area indicates the region in which the first mo-
ment (mean) is stable, but the second moment is not. The black
dashed curve shows the boundary of the stable region for the de-
terministic system with a fixed delay τavg ≈ 8.33 that is equal
to the average of all possible delays. In Fig. 5, we demonstrate
the time evolution of the system by using the parameters of the
points marked A and B in Fig. 4. The 300 sample trajectories
are plotted as thin gray curves while the mean and the standard
deviation are indicated by thick black and thick red curves, re-
spectively. Indeed, the system is stable in case A and unstable in
case B.

0 50 150 250 350

−1

−0.5

0

0.5

1

t

x(t)

(a)

0 40 80 120
−400

−200

0

200

400

t
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FIGURE 5. (a) Simulation results for the system (36) using the pa-
rameters at point A in Fig. 4. (b) Simulation results using the parame-
ters at point B in Fig. 4. The black curve shows the mean and the red
curves show the mean plus and minus the standard deviation based on
the gray sample trajectories.
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DISCUSSION
We investigated the dynamics of a continuous-time linear

system with stochastic delay. We assumed that the delay is a
continuous-time Markov chain and approximated the holding
times of the delay by a discrete geometric distribution. Then
we discretized the system using semi-discretization technique to
be able to construct a map which describes the stochastic evo-
lution of the state. We used the definition of the mean-square
stability and found necessary and sufficient stability conditions.
We applied the results to analyze the stability of the steady state
of a simple genetic network. Our results show that the stability
of a stochastically delayed system cannot be simply speculated
from the behavior of the deterministic system. For instance, con-
servative ideas like only considering the most critical delay or
rough conjectures such as taking the average of delays could be
far from the stochastic case.
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