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Abstract: We consider an optimal-velocity car-following model with reaction-time
delay of drivers, where the characteristics of the drivers change according to a
suitably calibrated random walk. In the absence of this stochasticity we find stable
and almost stable oscillations that correspond to stop-and-go traffic jams that
eventually merge or disperse. We study how the distribution of the merging times
depends on the parameters of the random walk. Our numerical simulations suggest
that the motion of the fronts into and out of traffic jams may be subject to a
‘macroscopic’ random walk. Copyright ©2006 IFAC
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1. INTRODUCTION

Stop-and-go traffic jams can often be observed
in real-life traffic situations (Kerner, 1999). In
such traffic jams high density and low veloc-
ities are found, while outside the traffic jams
there are free-flow conditions, that is, low den-
sity and high (close to the speed limit) veloci-
ties. This traffic scenario can be reproduced by
so-called car-following models where vehicles are
modelled as discrete entities that move in con-
tinuous one-dimensional space and time. In such
models the reaction-time delay of drivers can be
included explicitly (Helbing, 2001). In (Orosz et
al., 2004; Orosz et al., 2005) we investigated the
stop-and-go solutions in a simple optimal velocity
car-following model with drivers’ reaction time.
The question arises as to whether the dynam-
ics of stop-and-go traffic jams explored in car-
following models is robust. Should the inconsistent
psychological behaviour of drivers and external
disturbances such as weather and road unevenness
be taken into account? One approach is to model

such influences by stochastic effects. As an initial
investigation, in this paper we model drivers’ sen-
sitivity parameter with a random walk and study
the effect of stochasticity on traffic jam dynamics.

2. MODEL DETAILS

We place n cars on a unidirectional single-lane
circular road of length L and consider drivers with
identical parameters. (For the sake of simplicity,
we mainly restrict ourselves to the representative
case of n = 9 vehicles in this paper.) The velocity
of the i-th vehicle is denoted by v; and its distance
to the preceding (i + 1)-st vehicle, known as the
headway, is denoted by h;. We assume that the
acceleration of vehicles is given by

vl(t):al(t)(V(hl(tfl))fvl(t)), iil,...,n,

(1)
where dot refers to the derivative with respect
to the time ¢; that is, each driver approaches
an optimal velocity (OV), given by the function

V(h) > 0 so that they react to their headway



via a reaction-time delay which here is rescaled to
one. The sensitivity a; of each vehicle fluctuates
around the average semsitivity «. The quantity
1/« gives the characteristic relaxation time for
approaching the optimal velocity V(h).

Further, we consider the ring-road kinematic con-
ditions

}:Li (t) = ’Ui+1(t) — V; (t) )
hin(t) = vi(t) —vn(t).

Note that the length of the ring enters via the
constraint Y., h; = L.

i=1,...,n—1,

(2)

In this paper we use the continuously differen-
tiable, nonnegative, and monotone increasing OV
function
0, if 0<h<1,
V(h) = o (h—1)3 .
—_— f h>1,
“Tymh-ons !
(3)
which has a sigmoidal shape. Note that V(h) — v°
as h — oo, where v° is known as the desired speed,
which corresponds to the (high) free-flow speed
of drivers when traffic is sparse. Furthermore,
V(h) = 0 for h € [0,1], so that 1 is the rescaled
jam headway. If a vehicle’s headway becomes less
than 1 it will attempt to come to a stop.

The above model with constant sensitivity «;(t) =
a for i = 1,...,n was investigated by analytical
and numerical methods in (Orosz et al., 2005;
Orosz and Stépén, 2006). In this paper we assume
that drivers change their behavior stochastically
which we model by assuming that each sensitivity
«; is subject to a biased random walk around the
average sensitivity a:

di(t> = v(a—ai(t)) +HCi(t) s

Here (; is assumed to be white (uncorrelated)
Gaussian noise, that is,

G(t) =0, ¢(t)Ck(s) =0 d(t—s). (5)
The overbar stands for averaging, 1/v is a relaa-
ation time for the random walk, and & is the noise
strength.

i=1,...,n. (4)

Equations (1), (4), and (2) constitute a system of
stochastic delay differential equations (SDDEs).
For the special case of kK = 0, v — oo equation
(4) simplifies to «;(t) = « for ¢« = 1,...,n.
Thus, stochasticity is eliminated and equations (1)
and (2) constitute the system of delay differential
equations (DDEs) studied in (Orosz et al., 2005;
Orosz and Stépdn, 2006). First, we investigate
the dynamics of traffic jams in this deterministic
system in Section 3. Then, in Section 4, we study
how the dynamics changes when the parameters ~y
and x are tuned. Finally, we conclude and discuss
some future directions of research in Section 5.

3. DETERMINISTIC CASE

For a;(t) = a for i = 1,...,n equations (1) and
(2) are deterministic and can be studied with

tools from analytical and numerical bifurcation
theory. We summarize some of the results shown
in (Orosz et al., 2005; Orosz and Stépdn, 2006)
which are necessary for understanding the further
investigation of the system.

It is possible to investigate analytically the linear
stability of the uniform flow equilibrium

hit)=h*=L/n, vt)=VH*), i=1,...,n

(6)
where the parameter h* is called the average head-
way. Varying this parameter one may find Hopf
bifurcation points where small amplitude oscilla-
tions can appear, which correspond to travelling
waves with discrete wave numbers k = 1,...,n/2
(evenn)ork=1,...,(n—1)/2 (odd n). Further,
it is possible to determine the branches of oscil-
lations originating in these Hopf points when the
parameter h* is varied. Close to the Hopf points
the oscillations can be obtained analytically by
using normal form calculation, while far from the
Hopf points they can be followed with numerical
continuation. Note that both stable and unstable
oscillations can be found in this way. There are
parameter ranges where the oscillations belonging
to different wave numbers may coexist with each
other and with the uniform flow equilibrium. For
such parameters, the ¢ — oo behavior may depend
on the initial condition.

In Fig. 1 oscillations for wave numbers k£ = 1,2
are shown for parameter values where the uni-
form flow equilibrium is unstable; they were found
with the continuation package DDE-BIFTOOL
(Engelborghs et al., 2001). On the left the time
profiles of velocity and headway oscillations are
displayed while on the right they are shown in
the headway velocity phase plane. Only the os-
cillations for the first car are displayed since the
oscillations for the other vehicles are copies that
are shifted by %Tp where Tj, is the period. Hence,
travelling wave solutions are obtained that prop-
agate against the flow of vehicles.

When the wave number k is relatively small com-
pared to the car number n (k = 1,2 is small in
this case) stop-and-go oscillations appear. That
is, there are high and low (practically zero) ve-
locity plateaux that are connected by stop-fronts
(connecting a high velocity to an almost zero
velocity) and go-fronts (connecting an almost zero
velocity to a high velocity). Indeed, the headway
oscillations possess similar features. Such periodic
orbits have a shape similar to a heteroclinic orbit
in the phase plane. However, the period T}, is
finite and approximately proportional to 1/k, as
is demonstrated by the red dashed vertical lines.
As the wave number is increased the time spent
in the plateaux becomes smaller while the stop-
fronts and the go-fronts remain similar.

It is possible to investigate the stability of these
oscillations with DDE-BIFTOOL via the Floquet
multipliers of the periodic solutions. Floquet mul-
tipliers measure the expansion or contraction of
a vector over one period as the flow is followed
along the periodic orbit. A periodic solution is
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Fig. 1. Oscillations for n = 9 cars for wave numbers k = 1,2. On the left-hand side, the velocity vi of the first car is
shown in dark blue to the scale on the left; the headway hy of the first car is shown in green to the scale on the right;
the oscillations are shown on the scale of one period of T}, ~ 34.84 for k = 1 and the period of T}, ~ 17.41 for k = 2
is indicated by the red dashed vertical lines. On the right-hand side, the oscillations are shown in (h1,v1) plane. The
desired speed is v0 = 1.0, the sensitivity is a = 1.0, and the average headway is h* = 2.0.
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Fig. 2. Panels (a) and (b) show the eigendirections in the form of a direction fields plotted over twice the period of the
periodic solution as projections onto the velocity vy of the first car for the periodic solution k = 2 and n = 9. The red
curves show the corresponding modulated solutions. Panels (c¢) and (d) display the positions z; of all n = 9 cars when
two traffic jams merge and when a traffic jam disperses, respectively. The trajectory of the first car is emphasized in
black and traffic jams are indicated in red when the velocity drops below v9/3. Panel (a) corresponds to the merging
of traffic jams as shown in panel (c), while panel (b) corresponds to dispersion of one of the traffic jams as depicted
in panel (d). The parameters are v° = 1.0, a = 1.0, and h* = 2.0.

stable if all Floquet multipliers are inside the
unit circle of the complex plane, and unstable if
there exists a multiplier outside the unit circle.
It turns out that the oscillations and the corre-
sponding travelling wave solutions are only stable
for k = 1. In other words, for ¢ — oo only one

wave travels along the circular road, for generic
choices of initial data. For k& > 1 there exist 2k
multipliers outside the unit circle. However, when
the wave number is relatively small compared to n
(k = 2 in the present case) the unstable Floquet
multipliers may be very close to the unit circle



(n = —1.01367 and p = —1.00445 in this case).
Consequently the stop-and-go oscillations are only
weakly unstable in the sense that solutions can
stay in their vicinity for a long time. That is,
oscillations as in Fig. 1(bl) can survive for many
periods.

The eigendirections belonging to the unstable Flo-
quet multipliers can be computed and represented
by DDE-BIFTOOL in the form of a direction
field that shows how a vector changes along the
periodic orbit under the action of the variational
equation (Green et al., 2004). In Fig. 2(a) and
(b) we show the unstable direction and the corre-
sponding modulated solution with respect to the
velocity profile of the first car. It can be seen
that the instability of the periodic orbit is not
‘spread evenly’ along the periodic orbit, but that
it is larger near the fronts and smaller near the
plateaux. Notice the difference between the two
cases in Fig. 2(a) and (b) in terms of the direction
of motion of the modulated fronts. In panel (a)
the stop-front and the go-front of a low-velocity
plateau move in the same direction and the fronts
of one and the other low-velocity plateaux move
in opposite directions. In panel (b) the stop-front
and the go-front of a given low-velocity plateau
move in opposite directions either towards each
other or apart.

The results of numerical simulation show that the
above front dynamics is responsible for merging
or dispersing traffic jams. In Fig. 2(c) and (d)
the positions of all vehicles are plotted in time.
The low-velocity regions (i.e., the traffic jams)
can be found where the gradient of the position
curves is small; this is highlighted in red. It can
be seen that two stop-and-go waves are formed
by the collective motion of vehicles, and they
persist for a long time before they either merge
or one of them disperses. Indeed, stop-fronts and
go-fronts can be identified in these figures where
vehicles enter and leave the traffic jams. These
fronts move with approximately the same speed,
that is, they move slowly relative to each other.
When the fronts of a given traffic jam move in
the same direction and the traffic jams move
in opposite directions they merge as shown in
Fig. 2(c). When the fronts of a given traffic jam
move in opposite directions one of the traffic
jams disperses while the other becomes slightly
wider. Whether merging or dispersion occurs and
when it happens depends on the initial condition.
However, one may expect that merging is more
dominant since the Floquet multiplier belonging
to this behavior is larger. In the next section we
investigate the dynamics of fronts changes when
stochasticity is introduced into the system.

4. MERGING TIME DISTRIBUTION

We now investigate the system of stochastic de-
lay differential equations (1), (2), (4) considering
finite constants x,v > 0 in (4) which governs the
random walk of the sensitivities a;. Here we study

the case when in the deterministic limit x = 0,
v — o0, the two traffic jams merge. Thus, in
the remainder of this paper we use the initial
conditions used in Fig. 2(c).

Equation (4) is sometimes called an Ornstein-
Uhlenbeck process, and the solution for the dis-
tribution of «; can be obtained from the related
Fokker-Planck equation; see (Finch, 2004). In par-
ticular, the (stable) equilibrium distribution of
is given by

cd(p )= | g rmlai—a)
P ey) l€27Te i=1,...,n.

(7)
By using this as an initial distribution for ay,
stochastic transients are eliminated. Note that
drivers are still considered to be identical in the
sense that all a; fluctuate around the same mean
value with the same variance according to the

same distribution.

We keep the quantity x2?/v = 0.01 fixed in order
to keep the equilibrium distribution (7) of a; un-
changed. Thus, by increasing the noise strength
k the relaxation time 1/ of the random walk
decreases. Two realizations of the random walk
are shown in Fig. 3(al) and (bl) for the sensi-
tivity of the first vehicle. Notice that the random
variable changes between approximately the same
boundaries in both cases, but drivers change their
sensitivity less rapidly in panel (al) since the
relaxation time is ten times larger.

The corresponding dynamics of traffic jams are
depicted in Fig. 3(a2) and (b2). One can see that
the noise effects do not destroy the qualitative
dynamics of traffic jams, i.e., two traffic jams
appear and persist for a long time before they
either merge or one of them disperses. However,
the front motions become ‘noisy’ even thought the
trajectories of individual vehicles are still smooth.
In both cases the sane initial condition is used as
in Fig. 2. In other words, the traffic jams are ‘set to
merge’. In correspondence to this initial condition,
most of the realizations lead to the merging of
traffic jams, as shown in Fig. 3(a2), but, due to
the stochasticity, some of the realizations result in
dispersion of one of the traffic jams, as depicted
in Fig. 3(a2). Furthermore, the time T}, needed
for merging/dispersion differs for each realization;
compare the horizontal scales in Fig. 3(a2) and
(b2).

In order to obtain a quantitative description of
how the merging/dispersion time T}, changes we
computed its distribution obtained by 5000 real-
izations. This is shown in the panels of Fig. 4 for
different values of parameters x and . It can be
seen that the most probable merging/dispersion
time TMP | given by the position of the maximum
of the distribution, is smaller than the determinis-
tic merging time (red vertical line) but the merg-
ing time distribution has an exponential-like tail.
According to the literature of passage-time dis-
tributions (Noskowicz and Goldhirsch, 1990), this
distribution suggests that on the top of the macro-
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Fig. 3. Random walks of sensitivity a; of the first car are shown in panels (al) and (b1); and the corresponding positions
z; of all n = 9 cars in panels (a2) and (b2) so that the trajectory of the first car is emphasized in black and traffic
jams are indicated in red when the velocity drops below v0/3. The parameters k = 0.0316, v = 0.1 are used in the left
side and the parameters x = 0.1, v = 1 in the right side. The other parameters are v0 = 1.0, @ = 1.0, and h* = 2.0.
Both simulations were started with the initial condition corresponding to Fig. 2(c).
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Fig. 4. Distributions of the merging/dispersion time Ty, for different values of parameters x and ~ as indicated in each
panel. The red vertical lines at Ty, = 1011.96 shows the merging time in the deterministic case. The other parameters
are v¥ = 1.0, = 1.0, and h* = 2.0. All simulations were started from the same initial condition as used in Fig. 2(c).

scopic nonlinear dynamics of the fronts there is a
‘macroscopic’ random walk, which originated from
the ‘microscopic’ random walk of the sensitivity.

When changing the noise strength s and the relax-
ation time v (so that x2/vy = 0.01), both the most
probable merging/dispersion time TMF and the
standard deviation o7, of the merging/dispersion

time distribution change as can be seen when
comparing the panels of Fig. 4. Increasing x and
7, the location of the maximum TMF moves first
further then closer to the deterministic merging
time (red vertical line) and the standard deviation
or,, first becomes larger than smaller again. This
is possible since on the one hand the applied noise
is not simple additive noise; and on the other hand
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Fig. 5. The most probable merging/dispersion time TP
(a) and the standard deviation o7, of the merg-
ing time distribution (b) as a function of the noise
strength . The points at x = 0.01, x = 0.0316,
x = 0.1, and k = 0.2 corresponds to the panels (a)—
(d) of Fig. 4. For all values of  the initial conditions
were the same as in Fig. 2.

increasing the noise strength x and the relaxation
time 1/ is decreased so that the distribution
(7) of the sensitivity remains the same. That is,
drivers vary their sensitivity between the same
boundaries but they vary that less or more rapidly.

In order to show the changes of the distribution
in a more concise way we plotted these quantities
as a function of the noise strength in Fig. 5. Here
each data point is a result of 5000 realizations.
One can see that when varying x, the most prob-
able merging time TMP has a minimum around
£ =~ 0.03 while the standard deviation o, of
the merging time distribution has a maximum
around k ~ 0.1. The latter might correspond to
the fact that k ~ 0.1 implies v ~ 1.0, that is, the
relaxation time of the random walk is equal to the
average relaxation time 1/« and to the delay time
as well.

Finally, we remark that for a small noise strength
(that is, for large relaxation time) we observed
collisions of vehicles for several realizations. This
might be due to the fact that «; can stray far
from its mean value for long periods when the
relaxation time is large (see Fig. 3(al)). Indeed,
collisions are likely to occur for a; < 0.795 as was
shown in (Orosz et al., 2005).

5. CONCLUSION AND DISCUSSION

We investigated an optimal velocity car-following
model where the reaction time delay of drivers is
taken into account. Stochasticity is introduced by
subjecting the sensitivity of drivers to a random
walk. It was shown that without the stochastic
terms robust oscillations may appear that cor-
respond to stop-and-go travelling wave solutions.
These oscillations and waves are either stable (in
the case of one wave) or weakly unstable (in the

case of two or more waves) resulting in slow dy-
namics of the stop-and-go traffic jams via their
front dynamics. Merging and dispersion of these
waves lead to a single wave solution as ¢t — oco.

The merging and dispersing dynamics of traf-
fic jams is robust in the sense that it per-
sists when stochasticiy is switched on. A ‘macro-
scopic’ random walk of fronts is obtained on
the top of their nonlinear dynamics resulting in
a merging/dispersion time distribution with an
exponential-like tail. Furthermore, by varying the
noise strength a minimal value of the most prob-
able merging/dispersion time is found which is
smaller than the merging time in the deterministic
model.

Here stochasticity was introduced in such a way
that drivers may still be considered identical in
terms of their sensitivity distribution. An alterna-
tive (perhaps more realistic) approach might be
for «; to be sampled from different distributions
so as to model different driver/vehicle classes.
However, even when the «;(t) = «o; are time
dependent but different from each other the full
periodic solution structure of the «;(t) = « case
may not be inherited. The resulting dynamics is
an interesting challenge for future research.
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