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Abstract: A nonlinear car-following model that includes the reaction-time delay of
drivers is considered. When investigating the linear stability of the uniform flow
solution, boundaries of Hopf bifurcations are determined in the parameter space.
Crossing these boundaries, oscillations may appear corresponding to travelling
wave solutions. Hopf normal form calculations prove robustly subcritical behavior
which leads to bistability between the stable uniform traffic flow and the stop-
and-go waves travelling against the flow of vehicles. Analogies with wheel shimmy
dynamics and machine tool vibrations are presented. Copyright c©2006 IFAC

Keywords: vehicular traffic, reaction-time delay, translational symmetry,
subcritical Hopf bifurcation, bistability

1. INTRODUCTION

There are two important goals of traffic manage-
ment when cars follow each other on a ring like
M25 around London. The first goal is that the
drivers travel with a speed close to their desired
speed without hitting each other. The second goal
is that the vehicles travel with the same constant
velocity in a stable way, that is, the corresponding
uniform traffic flow should be stable. In other
words, this uniform traffic flow should survive
smaller and/or larger perturbations, like a truck
pulling out of its lane, without producing traffic
jams on the road.

The first goal can be achieved with the help of
the local control strategies of the drivers. This
strategy involves a kind of optimal velocity func-
tion that describes how the drivers use the brake
and the gas pedals to tune their velocities to the
distances between their cars. The second goal is
not always achieved just by means of the local
control strategies of the drivers. When traffic jams
develop as congestion waves travelling opposite to
the flow of vehicles (Kerner, 1999), the stable uni-
form traffic flow may be achieved with appropriate
traffic control that uses temporary speed limits by
overhead gantries or may limit the number of cars
entering the roads, etc.

In order to work out reasonable control strategies
and to apply them properly, we must understand
the nonlinear dynamics of the car-following sys-
tems. In this paper, we investigate a delayed car-
following model and show the subcriticality of
Hopf bifurcations related to the drivers’ reaction-
time delay. This explains how a stable uniform
flow can coexist with a stable congestion wave,
and why this nonlinear phenomenon has an essen-
tial role in future traffic management strategies.

The car-following model considered in this pa-
per was first introduced in (Bando et al., 1995)
without the reaction-time delay of drivers where
the system was investigated by numerical simu-
lation. In (Gasser et al., 2004) Hopf calculations
have been carried out and numerical continuation
technique, namely the package auto (Doedel et
al., 1997), was used to investigate the model, still
without considering delay effects.

The reaction-time delay of drivers was first in-
troduced in (Bando et al., 1998), and its impor-
tance was shown by the study (Davis, 2003). In
these papers numerical simulation was used to
explore the nonlinear dynamics of the system.
The first systematic global bifurcation analysis of
the delayed model (Davis, 2003) was presented
in (Orosz et al., 2004) where numerical continua-
tion technique, namely the package dde-biftool
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Fig. 1. Three vehicles on circular road.

(Engelborghs et al., 2001), was used. The contin-
uation results were extended to large numbers of
cars in (Orosz et al., 2005) where the dynam-
ics of oscillations, belonging to different traffic
patterns, were also analyzed. In this paper, we
perform an analytical Hopf bifurcation calculation
and determine the criticality of the bifurcation as
a function of parameters for 3 vehicles on a ring
in the presence of the drivers’ reaction delay.

The appearance of the delay leads to delay
differential equations (DDEs) and to infinite-
dimensional phase spaces. The corresponding bi-
furcation theory of DDEs is available in (Hale and
Verduyn Lunel, 1993). The infinite-dimensional
dynamics make the bifurcation analysis more ab-
stract. In particular, the stability analysis, the
Jordan normal form, the center manifold reduc-
tion, and the Hopf normal form calculations re-
quire complicated algebraic formalism and algo-
rithms, as shown in (Hassard et al., 1981; Stépán,
1989; Campbell and Bélair, 1995; Orosz, 2004).
In (Orosz and Stépán, 2004), the Hopf calcula-
tions have been extended for systems with trans-
lational symmetry. This translational symmetry
is an essential property of car-following mod-
els. The method was demonstrated on the over-
simplified case of 2 cars on a ring; see (Orosz
and Stépán, 2004). Although this model already
presented some of the most important properties
of the nonlinear dynamics of the delayed mod-
els, the center manifold reduction still involved a
simplification that cannot occur for systems with
more than 2 cars.

In this study, these calculations are extended to 3
cars that increases the complexity of the center
manifold reduction. This provides generalizable
conclusions for the subcriticality of the bifurca-
tions and its consequences for traffic jams and
congestion waves. We prove that the delay makes
the subcriticality of Hopf bifurcations robust, and
bistability can occur. In the concluding part of
the paper, we also present analogous nonlinear dy-
namics for shimmying wheels and that for cutting
processes on machine tools.

2. MODELLING

Recall the basic features of the car-following
model introduced and non-dimensionalized in
(Orosz et al., 2004) for n vehicles with periodic
boundary conditions on the ring. As the num-
ber n of cars is increased, the significance of

the periodic boundary conditions usually tends
to become smaller. Still, in order to demonstrate
the algebraic calculations in a manageable form,
we only consider the lowest number of cars that
does not lead to any trivial simplifications in the
nonlinear analysis. Consequently, n = 3 vehicles
are assumed to be distributed along a circular
road of overall length L; see Fig. 1.

We assume that the 3 drivers have identical char-
acteristics described by the scalar function V and
the scalar parameter α. Considering that the 1st
vehicle follows the 2nd vehicle, the 2nd follows the
3rd, and the 3rd follows the 1st, the equations of
motion can be given as

ẍ1(t) = α
(
V(x2(t− 1)− x1(t− 1))− ẋ1(t)

)
,

ẍ2(t) = α
(
V(x3(t− 1)− x2(t− 1))− ẋ2(t)

)
,

ẍ3(t) = α
(
V(x1(t− 1)− x3(t− 1) + L)− ẋ3(t)

)
,

(1)

where the position, the velocity, and the accel-
eration of the ith car (i = 1, 2, 3) are denoted
by xi, ẋi, and ẍi, respectively; i.e., dot stands
for time derivative. The so-called optimal velocity
function V: R+ → R+ depends on the distance of
the cars hi = xi+1 − xi, which is also called the
headway. The argument of the headway contains
the reaction-time delay of drivers which now is
rescaled to 1. The dimensionless parameter α > 0
is known as the sensitivity. The dimensionless
equation (1) expresses that each driver approaches
an optimal velocity, given by V, in an exponen-
tially decaying way characterised by the relaxation
time 1/α > 0. In the meantime, each driver reacts
to its headway via a reaction-time delay 1.

One might, for example, consider the optimal
velocity function to take the form

V(h) =





0 , if 0 ≤ h ≤ 1 ,

v0 (h− 1)3

1 + (h− 1)3
, if h > 1 ,

(2)
as already used in (Orosz et al., 2004; Orosz et
al., 2005). This function is shown together with its
derivatives in Fig. 2. The dimensionless parameter
v0 = max V(h) > 0 is called the desired speed,
while the jam headway, up to which we have
V(h) ≡ 0, is now rescaled to 1.

Note that the time is rescaled with respect to the
delay and the space is rescaled with respect to
the jam headway. Consequently, the ratio of the
dimensional time delay and relaxation time gives
the dimensionless sensitivity α, while the dimen-
sional desired speed times reaction delay over jam
headway provides the dimensionless desired speed
v0; see details in (Orosz et al., 2004).

3. HOPF BIFURCATIONS

The stationary motion of the vehicles, the so-
called uniform flow equilibrium is described by

xeq
i (t) = v∗ t+x∗i , ⇒ ẋeq

i (t) ≡ v∗ , i = 1, 2, 3 ,
(3)

where

x∗2−x∗1 = x∗3−x∗2 = x∗1−x∗3+L = L/3 := h∗ , (4)
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Fig. 2. The optimal velocity function (2) is shown in panel (a), and its derivatives are displayed in panels (b)–(d).

and
v∗ = V(h∗) < v0 . (5)

Note that one of the constants x∗i can be cho-
sen arbitrarily due to the translational symmetry
along the ring. Henceforward, we consider the
average headway h∗ = L/3 as a bifurcation pa-
rameter. Increasing h∗ increases the length L of
the ring, which involves scaling all headways hi
accordingly.

Let us define the perturbation of the uniform flow
equilibrium by

xp
i (t) : = xi(t)− xeq

i (t) , i = 1, 2, 3 . (6)

Using Taylor series expansion of the optimal ve-
locity function V(h) about h = h∗(= L/3) up to
third order of xp

i , we can eliminate the zero-order
terms

ẍp
1(t) = −αẋp

1(t)

+ α
∑

k=1,2,3

bk(h∗)
(
xp

2(t− 1)− xp
1(t− 1)

)k
,

ẍp
2(t) = −αẋp

2(t)

+ α
∑

k=1,2,3

bk(h∗)
(
xp

3(t− 1)− xp
2(t− 1)

)k
,

ẍp
3(t) = −αẋp

3(t)

+ α
∑

k=1,2,3

bk(h∗)
(
xp

1(t− 1)− xp
3(t− 1)

)k
,

(7)

where we introduce the notation

b1(h∗) = V′(h∗) , b2(h∗) =
1
2
V′′(h∗) ,

b3(h∗) =
1
6
V′′′(h∗) .

(8)

At a critical bifurcation point h∗cr the derivatives
take the values b1cr = V′(h∗cr), b2cr = 1

2V′′(h∗cr),
and b3cr = 1

6V′′′(h∗cr), where prime denotes differ-
entiation with respect to the headway.

Introducing the notation

y := col [ ẋp
1 ẋp

2 ẋp
3 xp

1 xp
2 xp

1 ] , (9)

equation (7) can be rewritten as

ẏ(t) = Ly(t) + R(h∗)y(t− 1) + F
(
y(t− 1); h∗

)
,

(10)
where

L ≡




−α 0 0 0 0 0
0 −α 0 0 0 0
0 0 −α 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




,

R(h∗) = αb1(h∗)




0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 1 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, (11)

F
(
y(t− 1); h∗

)

= α




∑

k=2,3

bk(h∗)
(
y5(t− 1)− y4(t− 1)

)k

∑

k=2,3

bk(h∗)
(
y6(t− 1)− y5(t− 1)

)k

∑

k=2,3

bk(h∗)
(
y4(t− 1)− y6(t− 1)

)k

0
0
0




.

The steady state y(t) ≡ 0 of (10) corresponds to
the uniform flow equilibrium (3) of the original
system (1). Considering the linear part of (10) and
using the trial solution y(t) = Seλt with S ∈ C6

and λ ∈ C we obtain(
λ− L− R(h∗)e−λ

)
S = 0 . (12)

which provides the characteristic equation

D
(
λ; b1(h∗)

)
= det

(
λ− L− R(h∗)e−λ

)

=
(
λ2 + αλ + αb1(h∗) e−λ

)3 − (
αb1(h∗) e−λ

)3 = 0 .
(13)

System (10) possesses a translational symmetry
that is there exist a non-zero vector S0 ∈ R:(

L + R(h∗)
)
S0 = 0 ,

F
(
y(t− 1) + S0;h∗

)
= F

(
y(t− 1); h∗

)
,

(14)

The first equation of (14) results in

det
(
L + R(h∗)

)
= −D

(
0; b1(h∗)

)
= 0 , (15)

i.e., there exist a zero characteristic root for any
value of the parameter b1, that is, for any value of
the bifurcation parameter h∗:

λ0(h∗) = 0 . (16)



Furthermore, by solving the first equation of (14)
we have

S0 = col [ 0 0 0 1 1 1 ] . (17)

At a bifurcation point defined by b1 = b1cr, i.e., by
h∗ = h∗cr, Hopf bifurcations may occur. Then there
exists a complex conjugate pair of pure imaginary
characteristic exponents

λ1,2(h∗cr) = ±iω , ω ∈ R+ , (18)

which satisfies (13). To find the Hopf stability
boundaries in the parameter space we substitute
λ1 = iω into (13). Separation of the real and
imaginary parts gives

b1cr =
ω√

3 cos(ω − π
3 )

,

α = −ω cot(ω − π
3 ) ,

(19)

where the resulting frequency ω ∈ (0, π
3 ) is

bounded.

Note that the function b1(h∗) = V′(h∗) shown
in Fig. 2(b) is non-monotonous, and so a b1cr
boundary typically leads either to two or to zero
h∗cr boundaries. In Fig. 3, the horizontal axis
represents the uniform flow equilibrium and the
Hopf bifurcation points are denoted by black
stars. The equilibrium is unstable between the
Hopf points (red dashed line) and stable otherwise
(solid green lines).

Considering (12) at h∗cr, substituting λ1(h∗cr) =
iω into that, and using (19) one obtains the
eigenvector

S1 = col [ ei 2π
3 ei 4π

3 ei2π 1
iω ei 2π

3 1
iω ei 4π

3 1
iω ei2π ] .

(20)

By varying the parameter b1 , the necessary con-
dition for Hopf bifurcation can be calculated by
implicit differentiation of the characteristic equa-
tion (13):

Re
(

dλ1(b1cr)
db1

)
=

1
b1cr

(
ω2 + α2 + α

)
(

α
ω − ω

)2 +
(
2 + α

)2

︸ ︷︷ ︸
> 0 ,

:= P(ω, α)
(21)

Since (21) is always positive, this Hopf condition
is always satisfied. Now, using the chain rule and
definition (8), condition (21) can be calculated
further as the average headway h∗ is varied to
give

Re
(
λ′1(h

∗
cr)

)
= Re

(
dλ1(b1cr)

db1
b′1(h

∗
cr)

)

=
2b2cr

b1cr
P(ω, α) 6= 0 .

(22)

This condition is fulfilled if and only if b2cr 6= 0,
which is usually satisfied except at some special
points; see Fig. 2(c).

At the critical parameter h∗cr , (10) can be rewrit-
ten in operator differential equation form such
that its linear and nonlinear parts contain the ma-
trices L,R(h∗cr) and the function F

(
y(t− 1); h∗cr

)
,

respectively. Using (16,17), the translational sym-
metry related singularities can be eliminated as
shown in (Orosz and Stépán, 2004). Then, with

the help of (18,20), the system can be projected to
the center manifold, where the essential dynamics
take place. By taking into account the curvature
of the center manifold, this essential dynamics can
be identified. Finally, one can determine the so-
called Poincaré-Lyapunov constant

∆ =
3

8b1crω2
P(ω, α)

(
6b3cr +

(2b2cr)2

b1cr
R(ω, α)

)

(23)
that determines the type of the bifurcation. The
bifurcation is supercritical (i.e., the appearing
oscillations are stable) for negative ∆, and it
is subcritical (i.e., the appearing oscillations are
unstable) for positive ∆. The rather complicated
expression of R(ω, α) is not given here, but it
is possible to prove that R(ω, α) > 0 except for
some large values of ω (that corresponds to fast
oscillations in real traffic). Since b1cr, b3cr > 0 for
realistic parameters, ∆ > 0 is obtained. This leads
to robust subcriticality of the Hopf bifurcation.

Note that zero reaction-time delay results in
R(ω, α) ≡ −1 as shown in (Gasser et al., 2004),
while this ratio becomes positive for realistic
reaction-time delay resulting in positive ∆. Con-
sequently, the presence of the drivers’ reaction-
time delay has an essential role in the robustness
of the subcritical nature of the Hopf bifurcation.
This subcriticality explains how traffic waves can
be formed even when the uniform flow equilibrium
is stable, as detailed in the next section.

Using definition (8) and formulae (19,22,23), the
amplitude A of the unstable oscillations is ob-
tained in the form

A =

√
−Re

(
λ′1(h∗cr)

)

∆
(h∗ − h∗cr)

= ω

√√√√√√
−8

3
V′′(h∗cr) (h∗ − h∗cr)

V′′′(h∗cr) +

(
V′′(h∗cr)

)2

V′(h∗cr)
R(ω, α)

.

(24)

Close to the critical bifurcation parameter h∗cr the
unstable oscillations can be approximated by the
first Fourier component:

y(t) = A
(
Re(S1) cos(ωt)− Im(S1) sin(ωt)

)
. (25)

4. GLOBAL DYNAMICS

The unstable periodic motion given in (25) corre-
sponds to a spatial wave formation in the traffic
flow, which is actually unstable. Substituting (20)
into (25) and using definitions (3,5,6,9), one can
determine the velocity of the ith car as

ẋi(t) = ẋeq
i (t) + ẋp

i (t)
= V(h∗) + A cos

(
2π
3 i + ωt

)
, i = 1, 2, 3 .

(26)

This describes a discrete wave travelling with the
speed V(h∗) − 3

2π h∗ω which is negative for most
parameter values, i.e., the wave propagates oppo-
site to the car flow. These analytically estimated
unstable periodic motions are presented in Fig. 3.
The horizontal axis corresponds to the uniform
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Fig. 3. The amplitude A of velocity oscillations as a
function of the average headway parameter h∗ for
parameters α = 1.0 and v0 = 1.0. The horizontal
axis (A ≡ 0) represents the uniform flow equilibrium
and the analytical results are colored: green solid
and red dashed curves represent stable and unstable
branches, black stars stand for Hopf bifurcations, and
blue crosses denote fold bifurcations. Grey curves
correspond to numerical continuation results: solid
and dashed curves refer to stable and unstable states,
and grey crosses represent fold bifurcations.

flow equilibrium, that is, stable for small and
large values of h∗ (shown by green solid line) but
unstable for intermediate values of h∗ (shown by
red dashed line) in accordance with formula (19)
and Fig. 2(b). The equilibrium loses its stability at
Hopf bifurcations that are marked by black stars.
The emerging branches of the unstable periodic
motions given by (24) are shown as red dashed
curves.

Since the optimal velocity function is bounded
so that V ∈ [0, v0], an attractor must exist in
our car-following system ‘outside’ the unstable
limit cycle. Traffic experiments and also numer-
ical simulations show that the external attractor
is periodic again, and it includes travelling with
speed close to the desired v0, then decelerating,
stopping for a while, and accelerating again close
to the desired speed v0. Since this heuristically
constructed stable periodic motion has a peak-to-
peak velocity value 2A ≈ v0 − 0, the stable stop-
and-go oscillation is represented by a horizontal
green line at A = v0/2 in Fig. 3 This stop-and-
go wave also propagates against the traffic flow
with about the same speed as the unstable traffic
jam. The above simple heuristic construction re-
veals wide regions of bistability on both sides of
the unstable equilibrium between the Hopf point
(black star) and the heuristic fold point (blue
cross) where the branches of stable and unstable
oscillations meet. In such domains, depending on
the initial condition, the system either tends to
the uniform flow equilibrium or to the stop-and-
go wave.

In order to check the reliability of the Poincaré-
Lyapunov constant (23), the amplitude estima-
tion (24) for the unstable periodic motion, the
amplitude estimation v0/2 for the heuristic sta-
ble stop-and-go motion, and the width of the
resulting bistable parameter regime, we compared
these analytical results with those obtained by
the numerical continuation package dde-biftool

(Engelborghs et al., 2001). In Fig. 3, the numerical
continuation results are depicted in grey: grey
solid curves represent stable oscillations while
grey dashed curves represent unstable ones. The
fold bifurcation points, where the branches of sta-
ble and unstable oscillations meet, are marked by
grey crosses.

The comparison of the results shows that the ana-
lytical approximation of the unstable oscillations
is quantitatively reliable in the vicinity of the Hopf
bifurcation points. The heuristic amplitude v0/2
of the stop-and-go oscillations is slightly larger
than the numerically computed ones. The ana-
lytically suggested bistable region is larger than
the computed one, since the third degree approx-
imation is not able to predict fold bifurcations
of periodic solutions. In order to find these fold
bifurcation points, it is necessary to use numerical
continuation techniques as presented in (Orosz
et al., 2005). Nevertheless, qualitatively the same
structure is obtained by the two different tech-
niques.

5. CONCLUSION AND ANALOGOUS
NONLINEAR PHENOMENA

In the non-delayed model of (Bando et al., 1995),
subcriticality and bistablity occur only for ex-
tremely high values of the desired speed v0, as it is
demonstrated in (Gasser et al., 2004). We proved
that subcriticality and bistablity are robust fea-
tures of the system due to the drivers’ reaction-
time delay, even for moderate values of the de-
sired speed. This delay, which is smaller than
the macroscopic time-scales of traffic flow, plays
an essential role in this complex system because
it changes the qualitative nonlinear dynamics of
traffic.

Due to the subcriticality, stop-and-go traffic jams
can develop for large enough perturbations even
when the desired uniform flow is linearly stable.
These perturbations can be caused, for example,
by a slower vehicle (such as a lorry) joining the
inner lane flow for a short time interval. In order to
dissolve this undesired situation, an appropriate
control can be applied using temporary speed
limits given by overhead gantries that can lead the
traffic back ‘inside’ the unstable travelling wave
and then to reach the desired uniform flow.

The above described qualitative nonlinear dynam-
ics has been explored in other physical applica-
tions where the presence of the unstable periodic
motion causes similar problems in system design
and control. In Fig. 4(a), the simplest mechanical
model of wheel shimmy is shown (Stépán, 1998).
The corresponding bifurcation diagram is dis-
played in Fig. 4(c) where one can identify subcrit-
ical Hopf bifurcations, unstable periodic motions,
and also periodic (sometimes chaotic) attractors
‘outside’. The appearance of the sliding of the
wheel/ground contact point provides a similar
nonlinearity as the stopping part of the optimal
velocity function V(h) for h ≤ 1. More details
about shimmy can be found in (Takács, 2005).

In Fig. 4(c), the simplest model of machine tool vi-
bration is shown for turning (Stépán, 1989). This
dynamics involves time delay, shows subcritical
Hopf bifurcations again as the angular velocity of
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Fig. 4. Mechanical models of wheel shimmy and regenerative machine tool are shown in panels (a)–(b). The amplitude of
caster angle as a function of the towing speed and the amplitude of chip thickness variation as a function of the angular
velocity of rotation are depicted in panels (c)–(d) where the horizontal axis correspond to the equilibria. Stable and
unstable states are represented by green solid and red dashed curves, respectively. Hopf bifurcations are shown by
black stars and fold bifurcations by blue crosses. The shaded regions indicate the possibility of more complicated,
e.g., chaotic dynamics.

rotation is varied as displayed in Fig. 4(d). Here
the external periodic, sometimes chaotic attractor
is provided by the nonlinearity originated in the
loss of contact between the tool and the workpiece
for y(t) = y0 + x(t− τ)− x(t) ≤ 0 ⇒ Ay−y0 ≥ y0.
This, is, again, analogous to the part h ≤ 1 of the
nonlinear optimal velocity function V(h) which
prescribe that reversing of vehicles do not occur.
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