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Abstract: A simple car-following model that includes the reaction time of drivers is
analyzed by numerical continuation techniques for the case of five cars on a ring. A
two-dimensional bifurcation diagram is computed that summarizes the dynamics
of steady states, oscillating solutions, collisions, and stopping as a function of
model parameters. Further, a mechanism is proposed by which different spatial
patterns may appear. Copyright c©2004 IFAC

Keywords: vehicle dynamics, nonlinear analysis, bistability

1. INTRODUCTION

In this paper a car-following model of highway
traffic is studied which regards vehicles as dis-
crete entities moving in continuous time and one-
dimensional space. Furthermore, the model incor-
porates delay due to the drivers’ reaction time.

Specifically, an Optimal Velocity model is consid-
ered, which was first presented without delay in
(Bando et al., 1995). The delay was first added
in (Bando et al., 1998). The model introduced in
Section 2 has recently been investigated by Davis
(2002; 2003) with linear analysis and numerical
simulation to find stable solutions. Note that there
exist other delayed car-following models which can
be either simple like in (Holland, 1998), or highly
complicated like in (Wilson, 2001).

The first systematic global study of stable and
unstable solutions was presented in (Orosz et
al., 2004) for the case of n = 3 vehicles driving
on a circular road. The extension of that work
to a larger number of cars is necessary because
real traffic situations comprise hundreds, or even
thousands of cars. As a first step in the large n
direction, here the case of n = 5 cars is studied

to find more complicated patterns along the ring.
The main tool is numerical bifurcation analysis
with DDE-BIFTOOL and customized routines to
find collisions and stopping.

2. THE MODEL

For the sake of simplicity, drivers have identical
characteristics and they react only to the mo-
tion of the car ahead. The vehicles’ positions are
denoted by xi, their velocities by vi, and their
relative displacements (called headways) by hi.
Further, it is assumed that drivers do not react
instantaneously to their headways but after a
reaction time delay τ , which is also taken to be
the same for all drivers. A simple model for the
acceleration of the i-th vehicle can be given by the
dimensionless equations

v̇i(t) = α [V (hi(t− 1))− vi(t)] , (1)

which, together with the kinematic conditions

ḣi(t) = vi+1(t)− vi(t) , (2)

constitute a system of delay differential equations
(DDEs) for the vehicles’ motions. Here the dot
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Fig. 1. The rescaled Optimal Velocity function
V(h) (a), and its first derivative with respect
to h (b).

denotes derivation with respect to time, τ is
rescaled to 1, α > 0 is known as the sensitivity,
and V(h) is an Optimal Velocity function. The
function V(h) prescribes how the drivers adjust
their velocity as a function of the headway in front
of them.

In this paper, we assume the rescaled OV function

V(h) =





0 0 ≤ h ≤ 1 ,

v0 (h− 1)3

1 + (h− 1)3
h > 1 .

(3)

It is depicted in Fig. 1(a) and its first derivative
with respect to h is shown in Fig. 1(b). The
function (3) clearly has the following features:

• V(h) is continuously differentiable, non-nega-
tive, and monotone increasing.

• V(h) → v0 as h → ∞, where the desired
speed v0 corresponds to the speed limit.

• V(h) ≡ 0 over the interval h ∈ [0, 1], where 1
is the rescaled jam headway.

For more information about the modelling see
(Orosz et al., 2004).

The case of five cars on a circular road is consid-
ered here. The uniform flow equilibrium of the OV
model (1)–(2) is

hi(t) ≡ h∗ = L/5 , vi(t) ≡ V(h∗) , (4)

for i = 1, . . . , 5, where L is the length of the
circular road and h∗ is called the average headway.
The linear stability of this solution is analyzed in
the next section. When it loses its stability then
wave patterns may appear. Note that numerical
continuation can be applied to the OV model (1)–
(2) with OV function (3), because it satisfies the
required smoothness features.
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Fig. 2. Stability charts of the five-car system
where shading denotes the stable region.
Panel (a) shows the sensitivity α as a func-
tion of the slope of the OV function V′(h∗).
Panels (b)–(d) show stability diagrams in the
(h∗, α)-plane, namely panel (b) for v0 = 0.5,
panel (c) for v0 = 0.7, and panel (d) for
v0 = 1.0.

3. LINEAR STABILITY ANALYSIS

The linear stability of the DDE model about the
equilibrium (4) is analyzed now. By computing
the Hopf bifurcation curves it is possible to predict
what kind of patterns can appear in the system.

Analyzing the linear part of (1)–(2) one may
obtain the Hopf curves in the form

V′(h∗) =
ω

2 cos(ω − kπ/5) sin(kπ/5)
,

α = −ω cot(ω − kπ/5) ,
(5)

where k = 1, . . . , 4 is introduced by taking the
fifth root of unity. Furthermore, it can be shown
that the spatial pattern along the ring is described
by the discrete waves

si = cos
(

2πk

5
i

)
, (6)

for i = 1 . . . 5. Therefore k can be considered as
the discrete spatial wavenumber of oscillations.
Note that the cases k = 1 and k = 3 describe
one wave along the ring, whereas the cases k = 2
and k = 4 describe two waves along the ring; see
(Orosz et al., 2004).

One may show that the left most curve in the
(V′(h∗), α)-plane is described by (5) with k = 1.
This is depicted by a solid bold curve in Fig. 2(a).
This curve is qualitatively the same as for the
case n = 3, but now it is parameterized by
ω ∈ (0, π/5) and possesses a vertical asymptote
at V′as1 ' 0.5345.



However, for five cars there is an additional curve
belonging to the wavenumber k = 2 to the right
of the curve for k = 1. It is parameterized by
ω ∈ (0, 2π/5) and has the vertical asymptote
V′as2 ' 0.6607; see the solid thin curve in Fig. 2(a).

Using stability criteria for DDEs (Stépán, 1989),
it can be shown that the uniform flow equilibrium
(4) is asymptotically stable to the left of the k = 1
curve (shaded region in Fig. 2(a)) and linearly
unstable otherwise. This is similar to the case
n = 3. When crossing the curves for k = 1 and
k = 2 from the left to the right, Hopf bifurcations
take place. However, the second Hopf bifurcation
does not change the stability of the steady state,
but rather moves spectra to the right of the
imaginary axis, giving a region with four unstable
eigenvalues.

To convert Fig. 2(a) to diagrams in the (h∗, α)-
plane of average headway and sensitivity one uses
the fact that the derivative V′(h) of the OV
function (3) possesses a single maximum over the
interval h ∈ [1,∞), as shown in Fig. 1(b). The
Hopf curves belonging to wavenumbers k = 1 and
k = 2 may be closed above or may possess vertical
asymptotes in the (h∗, α)-plane, depending on
the relation of their asymptotes V′as1,2 and the
maximum of the derivative V′max ' 0.8399 v0, so
that three qualitatively different diagrams can be
obtained.

• For V′max < V′as1, that is, for v0 < 0.6363,
two single Hopf curves exist, each with a
maximum; see Fig. 2(b).

• For V′as1 < V′max < V′as2, that is, for
0.6363 < v0 < 0.7865, there are two Hopf
curves for k = 1 with vertical asymptotes,
but the curve for k = 2 is still a single curve;
see Fig. 2(c).

• Finally, for V′max > V′as2, that is, for v0 >
0.7865, there are four Hopf curves, all pos-
sessing vertical asymptotes; see Fig. 2(d).

Note that without delay the Hopf curves in the
(V′(h∗), α)-plane are straight lines with the slopes
2 cos2(kπ/5), which always result in closed curves
in the (h∗, α)-plane as in Fig. 2(b); e.g., see
(Sugiyama and Yamada, 1998).

The new feature for the case of five cars considered
here is the second Hopf curve for the wavenumber
k = 2.

By considering the nonlinear terms of (1) up to
order three, the type of the Hopf bifurcation and
the approximate amplitude of the oscillating so-
lution can be determined analytically; see (Orosz
et al., 2004).
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Fig. 3. Two-dimensional bifurcation diagram. The
horizontal dotted lines correspond to the val-
ues of α used in Fig. 4 and the marked points
A–F correspond to the respective time pro-
files in Fig. 5

4. THE BIFURCATION DIAGRAM

The global behavior of the DDE model (1)–(2)
in the (h∗, α)-plane can be investigated with the
Matlab package DDE-BIFTOOL; see (Engelborghs
et al., 2001).

First, the branch of steady states is continued as a
function of the parameter h∗, to obtain a numer-
ical approximation of (4). Hopf bifurcations are
detected on this branch when a complex conjugate
pair of eigenvalues crosses the imaginary axis. The
Hopf curves found in Section 3 can be followed in
the (h∗, α)-plane.

The branch of oscillating solutions arising from
the Hopf point is continued as a function of h∗

and fold bifurcations of oscillating solutions are
detected when a Floquet multiplier cross the unit
circle at +1. Presently, DDE-BIFTOOL is unable
to follow fold bifurcations in the (h∗, α)-plane.
Therefore a script was used that finds the fold
points and also the points where vehicles stop and
collide for the first time. (Since numerically the
velocity never reaches zero, stopping is detected
by setting a small positive threshold, in this case
0.01.)

It is possible to execute this process for several
values of the parameter α which results in bound-
aries in the (h∗, α)-plane. To obtain smooth curves
about 30 points are computed along each bound-
ary. It is very time consuming to obtain these
curves with good resolution for a large number
of cars (even n = 5 is quite large in this respect),
that is, for a DDE consisting of many component
equations; see (Engelborghs et al., 2002) for more
information about the cost and complexity of the
numerical methods.



The two-dimensional bifurcation diagram is dis-
played in Fig. 3 for the case v0 = 1, i.e., as in
Fig. 2(d). The Hopf curves are depicted by solid
and the fold curves by dashed lines. These are
shown as bold and thin curves for k = 1 and k = 2,
respectively.

The regions between the outer Hopf and outer
fold curves are bistability regions, where a stable
steady state coexists with a stable oscillating
solution which belongs to k = 1. This behavior has
been found in the case n = 3 (Orosz et al., 2004),
but now these regions are larger. Additionally,
similar regions exist between the inner Hopf and
inner fold curves, but here the steady state and
the oscillating state (now belonging to k = 2) are
already unstable.

The grey curve represents the first collision; cars
collide below the curve. The dotted curve repre-
sents the first stopping; vehicles stop between this
and the left most fold curve. These domains have
also been found in the three-car case (Orosz et
al., 2004), but in Fig. 3 they are quite a bit larger.

All of the depicted curves have vertical asymp-
totes, except for the collision curve and the left
fold curve for k = 2 which ends at a degenerate
Hopf point (denoted by ×). The Hopf bifurcations
are always subcritical, except along the section
above the degenerate point. This behavior is typ-
ical for a situation of sufficiently large v0, as in
Fig. 2(d) and Fig. 3.

The overall picture is the following. When increas-
ing the number of cars the bistability, collision,
and stopping domains become larger and appear
to converge quickly to a limit as n → ∞. This
remains conjectural at this point, but is supported
by the analytical and numerical results presented
here.

4.1 One-dimensional cross sections

To demonstrate important behaviors such as col-
lision and stopping, we present the continued
branch of oscillating solutions for some particular
values of α, namely along the horizontal cross
sections indicated in Fig. 3 by dotted horizontal
lines.

The results are shown in Fig. 4 for α = 1 and
α = 0.75. The horizontal axis represents the
equilibrium state, while the branches of oscillating
solutions are represented by the amplitude of os-
cillations vamp

i = (vmax
i −vmin

i )/2, (i = 1, . . . , 5) of
the vehicles’ velocities. When the solution is stable
(unstable) the corresponding branch is plotted as
a solid (dashed) curve. Furthermore, the branches
belonging to k = 1 and k = 2 are plotted as bold
and thin curves, respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4
0  

0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4
0  

0.1

0.2

0.3

0.4

0.5

h
∗

v
amp

i

h
∗

v
amp

i

(a)

(b)

α = 1

α = 0.75

A
B C

D
E F

Fig. 4. Amplitude of oscillations of the velocity of
the i-th car vs. average headway h∗. The hor-
izontal axis represents the equilibrium state.
Solid curves denote stable and dashed curves
denote unstable states; the dotted curve rep-
resents the collision region. The bold and thin
curves belong to the cases k = 1 and k = 2,
respectively. The value of α is depicted in
each panel and v0 = 1 for both (a) and (b).

The branch of equilibria is unstable between two
outer Hopf bifurcations (denoted by *). The in-
ner Hopf bifurcations (denoted by *) change the
stability of the equilibrium in accordance with the
results shown in Fig. 2(d).

In Fig. 4(a), for α = 1, two branches of oscillating
solutions are depicted belonging to the wavenum-
bers k = 1 (outer bold curve) and k = 2 (inner
thin curve). The outer curve starts at the outer
Hopf points and then folds back to constitute
a stable oscillating branch (the fold points are
denoted by ×). This leads to bistability regions
where the coexisting stable steady state and stable
oscillating solution are separated by an unstable
oscillating solution.

The inner curve of oscillating solutions behaves
similarly to the outer one. However, it is always
unstable because one of the Floquet multipliers
belonging to this branch is always outside the unit
circle while another multiplier governs the folding
when crossing the unit circle at +1. Therefore, on
the regions situated on both sides of this branch
only unstable solutions coexist.

Three points A–C on the stable oscillating branch
in Fig. 4(a) are marked and are also shown in
Fig. 3. The associated time profiles of velocities
(solid curves) and headways (dashed curves) over
one oscillation period for the first car are displayed
in Fig. 5(a)–(c). (These plots are the same for
all cars, except for a time shift.) The velocity
reaching zero corresponds to stopping of vehicles.
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Fig. 5. Oscillations of the velocity of the first car
over one period, shown as solid curves to the
scale on the left; oscillations of the headway of
the first car over one period, shown as dashed
curves to the scale on the right. Cases A–F
correspond to the marks in Fig. 3 and Fig. 4.

When the headway reaches zero then cars touch
each other, which corresponds to a collision. When
the headway crosses zero then vehicles ‘move
through’ each other; the model becomes invalid
when this occurs.

Comparing the velocity profiles of cases A–C, one
may see that cars nearly reach the desired speed
v0 = 1 in cases B and C, and stop in cases
A and B. Furthermore, the stopping region is
more extended in case A than in case B. For the
headways the profiles are similar, although these
do not reach zero, that is, cars do not collide.
Finally, stopping and accelerating always occurs
later than the drop and increase of the headway.
This is an obvious consequence of the delay.

In Fig. 4(b), for α = 0.75, the bifurcation diagram
is qualitatively the same as in Fig. 4(a), but the
bistability region is wider. Furthermore, the head-
way crosses zero during its oscillation along the
dotted section of the oscillating branch. Decreas-
ing α further, the collision extends all over the

stable part of the branch when the grey collision
curve reaches the outer fold curves in Fig. 3.

Three points D–F are marked on the branch of
stable oscillating solutions in Fig. 4(b) and are
also displayed in Fig. 3. The respective profiles
of velocities and the headways are presented in
Fig. 5(d)–(f). The stopping process is qualitatively
the same as in cases A–C, but now the headway
becomes zero for cases D and E (first collision)
corresponding to the fact that these points are on
the collision curve in Fig. 3. The headway crosses
zero for the parameter values of h∗ between D and
E.

5. CONCLUSION AND FUTURE WORK

The car-following model presented here is valid for
any number of cars, but the numerical bifurcation
analysis becomes very expensive as n is increased.
Here the case of five cars is presented as the
first extension of the bifurcation analysis of the
model with more than one wavenumber. These
results could be extended to the case of larger n
when there are many nested Hopf curves. When
increasing the number of cars, the upper part of
the oscillation branches belonging to k = 2, 3, . . .
extend to the k = 1 branch, so that their unstable
Floquet multipliers are in close neighborhood of
the unit circle. This results in weakly unstable
oscillations with slowly decaying motion in these
wavenumbers. This phenomenon will be discussed
in detail elsewhere.

Finally, we mention that the limit of n → ∞
gives rise to a continuum model in the form of a
partial differential equation with delay. At present
continuum models of car following, such as (Berg
et al., 2000), have only been studied without the
effect of delay due to the drivers’ reaction time.
Indeed, developing and studying continuum mod-
els with delay remains a considerable challenge for
future research.
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