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Abstract: Coupled Hodgkin-Huxley neurons are considered when finite-speed signal prop-
agation introduces time delays into the coupling. Bifurcations of the fully synchronous and
partially synchronized cluster states are studied by varying the coupling delay. Based on these
investigations a controller is constructed that uses delayed inputs to destroy full synchrony and
stabilize clustering. A generalization of such a controller may be useful to drive neural systems
away from pathological synchronous states associated with Parkinson’s disease. Copyright

©IFAC 2009

Keywords: Hodgkin-Huxley model, signal transmission delay, bifurcation, event-based

act-and-wait control

1. INTRODUCTION

Neural systems have been studied mathematically for more
than half a century and they are well characterized at the
component level; see Hodgkin and Huxley (1952). Still,
their emergent rhythmic behavior is not fully understood.
One of the key properties of these systems is that finite
signal transmission times introduce time delays into the
couplings that can lead to very rich behavior; see Campbell
(2007); Scholl et al. (2009); Ermentrout and Ko (2009);
Coombes and Laing (2009).

A robust rhythm that often can be found in neural net-
works is full synchrony, where all neurons fire together.
This can lead to pathological tremors associated with
Parkinson’s disease; see Elble and Koller (1990). To elimi-
nate this behavior one may use nonlinear delayed feedback
and inject current to the brain at multiple sites; see Haupt-
mann et al. (2007). When the injected signals are phase
shifted with respect to each other and the neurons that are
close to an electrode entrain their rhythms to the injected
signal, the overall synchronous behavior is destroyed.

In this paper we consider a different approach. By varying
the time delay in the coupling between neurons, we search
for regimes where certain cluster states are stable but the
fully synchronous state is unstable. Based on this analysis
we are able to construct delayed control algorithms that
can destabilize full synchrony while stabilizing a cluster
state. So instead of imposing an artificially chosen rhythm
on the system we choose one of its natural rhythms
and control the corresponding state using mild model-
engineered inputs. To mimic the effect of delayed coupling
between spiking neurons we propose an ‘act-and-wait’ type
of controller with short ‘act period’ and long ‘wait period’;
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Fig. 1. Sketch of three mutually coupled neurons.

see Insperger (2006). To ensure that the input signal is
phase locked (with the appropriate phase difference) to the
natural rhythm of the neural system, the control algorithm
is made ’event-based’ as in Danzl and Moehlis (2007).

We remark that coupling delays arise in many other
networked dynamical systems due to finite-time informa-
tion propagation. Examples include artificial neural net-
works (Bonnin et al. (2007)), gene regulatory networks
(Novak and Tyson (2008)), car-following models (Orosz
and Stépdn (2006)), and coupled chemical oscillators (Kiss
et al. (2007)).

2. MODELLING

In this paper we consider the simple case of three neurons.
To model the dynamics of individual neuroms, i.e. to
describe the biophysical state of their somas, we use the
Hodgkin-Huxley model described in Hodgkin and Huxley
(1952). We consider that neurons are coupled to each
other by direct electrotonic coupling (gap junctions) and
we assume all-to-all coupling; see the sketch in Fig. 1.
Furthermore, we incorporate axonal delays in the coupling,
that is, the time required to transmit the electric signals
from the soma along the axon to the point where the axon
connects to another neuron. For simplicity all coupling
delays are assumed to be equal.
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Fig. 2. Voltage time series of neurons for stable oscillatory solutions
with different clusterings: full synchrony (for 7 = 0), splay state
and 1:2 cluster state (both for 7 = 6). Observe that spikes are
evenly spaced in the splay state but not in the 1:2 state.

We remark that for synaptic coupling one may also con-
sider synaptic delays that would correspond to the time
required for the release of chemicals at the synapse. More-
over, axons do not connect directly to the soma of the
other neuron but to its dendritic tree. The time until the
signal reaches the soma along the dendrite is a source of
another delay. For more details on synaptic and dendritic
delays see Campbell (2007); Ermentrout and Ko (2009).

The time evolution of the states of three neurons is given
by the following delay differential equations
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for ¢ = 1,2,3. Here the dot represents the derivative with
respect to time ¢ (measured in ms) and V; is the voltage of
the i-th neuron (measured in mV). (From now on we do not
spell out the dimensions of quantities.) The dimensionless
quantities my, h;,n; € [0,1] are called gating variables,
and they characterize the ‘openness’ of the sodium and
potassium ion channels embedded in the cell membrane.

—Vi(t)) + %ui(t), (1)
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The first equation in (1) is based on a simple electric
circuit model of the membrane where gna., gk, g1, are
conductances, and Vya., Vk, VI, are reference voltages
for the sodium and potassium ion channels and for the
so-called ‘leakage current’. The quantity C represents
the capacitance of the membrane while I is a constant
injected current that drives the neurons to tonic spiking.
For numerical values of these parameters see (A.1l) in
Appendix A.

The term proportional to e represents the electrotonic
coupling between neurons. The coefficient ¢ is the coupling
strength and 7 is the transmission delay described above.
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Fig. 3. Bifurcation diagrams for the synchronized state, the splay
state and the 1:2 cluster state. The peak-to-peak voltage
amplitude of the first neuron |Vi| is plotted as the coupling
delay parameter 7 is varied. Stable and unstable oscillations are
shown as solid green and dashed red curves, respectively. Blue
crosses, blue diamonds and blue stars represent fold, period
doubling and Neimark-Sacker bifurcations, respectively.

We will vary this parameter in Section 3 and study
the qualitative changes of the dynamics. The coupling is
assumed to be weak, i.e. ¢ < 1. The term proportional
to 0 represents the control signal. The coefficient § is the
magnitude of the injected current and w;(¢) describes the
time variation of the input such that max; |u;(t)] = 2
for i = 1,2,3. Since we wish to apply mild inputs we
require that the order of magnitude of the input is on
the order of magnitude of the coupling. That is, § =
O(e]V|) where |V| represents the peak-to-peak amplitude
of voltage oscillations. For parameters (A.1) we have |V| ~
100. In this paper and we use the coefficients

=005, §=125. (2)

The last three equations in (1) are based on measurements,
and the nonlinear functions o, (V), an(V), an(V), Bm(V),
Br(V), Bn(V) are given by (A.2) in Appendix A.

3. BIFURCATION STUDIES

In this section we study the dynamics of system (1)
without input (6 = 0) by using numerical continuation
techniques, in particular the package DDE-Biftool; see
Roose and Szalai (2007). These allow us to follow branches
of oscillatory solutions as function of parameters and to
study both stable and unstable solutions. Here we vary the
time delay 7 and investigate the stability and bifurcations
of oscillatory solutions with different clustering properties
to obtain a picture of the qualitative changes of the
emergent dynamics.

To characterize what kind of cluster states may emerge in
the system, we recall some general principles of weakly
coupled oscillatory networks; see Ermentrout and Ko
(2009); Izhikevich (1998). System (1) for ¢ = § = 0 (with
parameters (A.1,A.2)) describes independent neurons that
are spiking periodically (with period T}, ~ 10.43). If the
coupling is sufficiently weak, that is, ¢ < 1 and the delays
are sufficiently small, i.e. e 727/, < 1, oscillations per-
sist in the coupled system and the coupling only changes



the relative timing of the spikes. In this case one can
reduce the system to a phase model where each neuron
is described by a scalar phase variable. Consequently, the
time evolution of the system can be described with three
ordinary differential equations.

Analyzing the phase model as in Ashwin and Swift (1992);
Brown et al. (2003), one may conclude that there may
exist three types of different clustering behavior: full syn-
chrony (when neurons spike together), splay state (when
no neurons spike together), and 1:2 state (when only two
neurons spike together); these are shown in Fig. 2. Since we
consider identical neurons the spikes are evenly spaced in
the splay state. The phase difference between the singleton
and the pair in the 1:2 state is determined by the properties
of the neurons and coupling, and in general does not
lead to evenly spaced spikes. We note that there are two
different splay states distinguished by the order of spikes,
and there are three different 1:2 states distinguished by
which two neurons synchronize.

In this paper we do not carry out phase reduction but
study the above cluster states in the full Hodgkin-Huxley
model with delayed coupling. (In fact, the delays we
consider do not necessarily satisfy e727/T, < 1.) The
different cluster states shown in Fig. 2 are linearly stable.
In the top panel 7 = 0 and the system approaches the
fully synchronous state. In the middle and bottom panels
7 = 6 but different initial conditions are considered. Recall
that the initial conditions for delay differential equations
are functions in the interval ¢ € [—7,0] (that are chosen
to be constant functions here). In the middle panel the
system approaches a splay state, while in the bottom panel
it approaches a 1:2 state.

We use the states approached in Fig. 2 as initial states
for numerical continuation in which we vary the time
delay 7. The corresponding results are shown in Fig. 3
where the peak-to-peak voltage amplitude of the first
neuron |V;| is shown. Branches of stable and unstable
oscillations are shown as solid green and dashed red curves,
respectively. Oscillations are stable if all the (infinitely
many) Floquet multipliers are located inside the unit
circle. The bifurcations shown in Fig. 3 correspond to
parameters where multipliers cross the unit circle.

Blue crosses represent fold bifurcations where a real mul-
tiplier crosses the unit circle at +1. This bifurcation either
makes the branch fold back or results in extra branches
of periodic orbits. For example, the fold bifurcation point
of the synchronized solution coincides with one of the fold
points of the 1:2 solution, i.e. the 1:2 branch arises from
a symmetry breaking bifurcation of the fully synchronous
state. Blue diamonds correspond to period doubling bifur-
cations where the a real multiplier crosses the unit circle at
—1. These bifurcations lead to extra branches of periodic
orbits with doubled period that are not studied here.
Finally, blue stars represent Neimark-Sacker bifurcations
where a pair of complex conjugate multipliers crosses the
unit circle. These bifurcations also result in extra branches
of quasiperiodic oscillations that are not studied in this

paper.
For the synchronized and the 1:2 states, part of the

branches are not shown (they are out of the window).
These parts correspond to low-amplitude oscillatory so-
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Fig. 4. Construction of the controller: a time t, after a neuron spikes
a constant input of duration t, is injected to the other two
neurons; see (3). From top to bottom: the voltage oscillations
of neurons; the recorded spike times; the input signals. Notice
the relation between the act and wait times t, < tw.

lutions where the clusterings still persist but the phase
oscillator approach breaks down.

4. EVENT BASED ACT-AND-WAIT CONTROLLER

In this section we construct a controller based on the
dynamics studied in the previous section. We fix the time
delay to be zero (7 = 0), so the fully synchronous state is
globally stable in the uncontrolled system. We propose a
control algorithm that is able destroy full synchrony and
stabilize cluster states.

As was shown in Section 3, neurons communicate with
spikes and introducing time lags into this communication
can change the emergent behavior of the system. To mimic
the effects of delayed couplings we construct an ‘act-and-
wait’ controller where the ‘act time’ ¢, is much smaller
than the ‘wait time’ ty, i.e. t, < ty; see Insperger (2006).
In this paper we use the act time t, = 0.5 and vary the
wait time ty,.

We measure when a neuron spikes (its voltage reaches the
maximum), wait a time ¢, and then inject an input current
of magnitude ¢ to the other two neurons for a time t,. We
do this to mimic the effect of delayed spikes. Since the
wait time is measured from the spike, this is an example
of ‘event-based’ control; see Danzl and Moehlis (2007).
Considering the initial condition w;(0) = 0 for ¢ = 1,2, 3,
the control rules can be formalized as follows.
If neuron 7 spikes at t = tg then

uf (to + tw) = uj (to +tw) + 1
uf (to + tw +ta) = uj (to+tw +ta) — 1

(3)

for all j # 4.
This is demonstrated in Fig. 4. Indeed, signals may accu-
mulate if two neurons spike together so max; |u;(t)| = 2
fori=1,2,3.

To be able to quantify the emergent state of the system
we define a scalar observable called the order parameter.
Describing the phase of oscillations at an arbitrary mo-
ment of time is a complicated process and can only be
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Fig. 5. Controlling the emergent behavior of neurons: driving the system from full synchrony to a splay state. From top to bottom: the
voltage oscillations of neurons; the recorded spike times; the input signals; the order parameter (4). The time delay is 7 = 0 while the

wait time of the controller is tw = 6.

done when phase reduction is possible. However, we are
only interested in the phase relations of the spikes. Assume
that the last four spikes arrived at tg < t; < ¢ < t3 such
that spikes at ¢ty and t3 were produced by the same neuron
while the other two spikes were produced by the other two
neurons; see the middle panel of Fig. 4. Now we can define
the order parameter

la—to .
tB_tO + e1 2w .

(4)

This quantity needs to be updated when a new spike
arrives at t; using the update rule ty « t1, t1 «— to,
to «— t3, t3 «— t4. Note that for the fully synchronous
state R = 1 and for the splay state (with evenly spaced
spikes) R = 0. For the 1:2 state (with general phase
difference between the singleton and the pair) one obtains
1/3 < R < 1. The minimum R = 1/3 is reached when the
spikes of the singleton and the pair are evenly spaced.

We demonstrate the control algorithm (3) in Fig. 5.
Considering the bifurcation diagrams in Fig. 3 we chose
tyw = 6 (since for 7 = 6 the fully synchronous state
is unstable while the splay state is stable). The initial
conditions are such that the system is very close to full
synchrony. (Recall that this state is globally stable for
7 = 0 without inputs.) The applied inputs destroy full
synchrony and lead the system to a splay state. The order
parameter, shown in the bottom panel of Fig. 5, quantifies
these changes as it goes from R ~ 1 to R ~ 0. Indeed,
setting the initial conditions further away from the fully
synchronous state gives faster convergence.

To test the robustness of the proposed algorithm we
vary the wait time t,, and check the asymptotic behavior
through the asymptotic values of the order parameter
(taken at ¢ = 400). The results are shown in Fig. 6 where
the approached states are identified in each regime. One

may observe the abrupt changes in the dynamics as t, is
varied. The regimes of qualitatively different behaviors are
well pronounced. Comparing this figure to Fig. 3 one may
notice remarkable analogy: the wait time t,, serves as an
effective time delay. That is how the inputs can stabilize
the cluster states.

Observe that for 1:2 state we have R =~ 1/3, that is,
spikes of the singleton and the pair are almost evenly
spaced. Also notice that a new splay-like state (splay™)
appears with unevenly spaced spikes. This state is not
present in the symmetric system without inputs, but the
inputs destroy the symmetry and the non-symmetric splay
state may arise. In this state the order parameter (4)
does not approach a particular value but keeps oscillating,
resulting in the ‘noisy’ appearance of the curve in this
regime. We remark that the splay state may not appear
for certain initial conditions for ¢, =~ 2 (the system
remains synchronous) but the splay state always appears
for ty, ~ 6.

5. CONCLUSION AND DISCUSSIONS

In this paper we constructed an event-based act-and-wait
controller that is able to drive a neural system away from
the fully synchronous state to cluster states. The controller
provides the system with mild model-engineered inputs
while still being robust and tunable. The design was based
on bifurcation studies of the uncontrolled system with
signal transmission delays and on the analogy between
the transmission delay and the tunable control parameter
called the wait time.

We tested our ideas for the uncontrolled system with zero
delay in the coupling. Initial investigations show that the
controller also works for non-zero coupling delay for certain
windows of the waiting time. In the future we would also
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Fig. 6. The asymptotic value of the order parameter R as a function
of the wait time ty (for 7 = 0). The states where the system is
driven by the controller are written in each regime. The splay™
state is a splay-like state where the spikes are not evenly spaced.

like to vary the coupling strength and the input magnitude
to test the robustness of the controller. The controller
gives non-zero input even when the system reaches the
chosen cluster state, while it would be desirable that the
input signal approaches zero in this case. An appropriate
feedback law is required to achieve this, which should also
be tested for stability and robustness.

We would also like to test these control ideas in real
biological systems. To do so it is necessary to study larger
networks with synaptic couplings and different network
topologies. We remark that the time resolution required
in the wait time is about 0.5 ms, corresponding to a
sampling frequency of 2 kHz, which is satisfied by most
digital controllers. However, biological systems are usually
noisy and may require the use of the state-of-art Kalman
filtering; see Ullah and Schiff (2009).
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Appendix A. PARAMETERS FOR THE
HODGKIN-HUXLEY MODEL

Here we define the parameters

gNa = 120[mS/cm?]  Vxa = 50 [mV]
gk = 36 [mS/cm?| Vk = =77 [mV] (A1)
gr, = 0.3[mS/cm?] VL = —54.4 mV] '
I =20[pA/cm?] C = 1[uF /cm?]
and the functions
0.1(V +40 _ V465
anL(V) = %7 ﬂm(V) =4e TSSS ’
—e 10
5 1
an(V) =007e™ 55 (V) = ——
0.01(V +55 tre v,
an(V) = S ) = 0azs e
l—e 10
(A.2)

used in the Hodgkin-Huxley model (1).



