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Optimal Control of Connected Vehicle Systems
With Communication Delay and

Driver Reaction Time
Jin I. Ge and Gábor Orosz

Abstract— In this paper, linear quadratic regulation is used
to obtain an optimal design of connected cruise control (CCC).
We consider vehicle strings where a CCC vehicle receives
position and velocity signals through wireless vehicle-to-vehicle
communication from multiple vehicles ahead. Communication
delay, driver reaction time, and heterogeneity of vehicles are
considered. The optimal feedback law is obtained by minimizing
a cost function defined by headway and velocity errors and the
acceleration of the CCC vehicle on an infinite horizon. We show
that, by decomposing the optimization problem, the feedback
gains can be obtained recursively as signals from vehicles farther
ahead become available, and that the gains decay exponentially
with the number of cars between the source of the signal and
the CCC vehicle. Such properties allow graceful degradation of
CCC performance under imperfect communication. The effects
of the cost function on the head-to-tail string stability are also
investigated and the robustness against variations in human
parameters is tested. The analytical results are verified by
numerical simulations at the nonlinear level. The results allow
us to significantly reduce the complexity of CCC design.

Index Terms— Connected vehicles, delay systems, optimal
control.

I. INTRODUCTION

S INCE the invention of the automobile over a century ago,
automotive engineers have been trying to improve safety

and passenger comfort and provide higher level of mobility
for customers. However, during the past decades the level of
traffic congestion has become a bottleneck for mobility, while
stop-and-go traffic significantly impacts the fuel economy of
vehicles [1]. Therefore, for sustainable road transportation, it is
not adequate to simply improve the performance of individual
cars, but their impact on traffic flow also needs to be evaluated.
Although improving the infrastructure may alleviate traffic
congestion, we may design better controllers for individual
vehicles, and use these agents to ’steer’ the traffic flow as a
multi-agent system towards more desired states. In this paper
we focus on the latter strategy.
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One primary factor under consideration is the longitudinal
control of vehicle motion. Since human drivers have relatively
large reaction time and limited perception abilities, they often
perform poorly as controllers for the vehicle. Using adap-
tive cruise control (ACC), one may improve the longitudinal
control due to faster and more accurate sensing abilities and
more sophisticated control strategies [2], [3]. However, the
range sensors (radar, lidar) used for ACC are quite expensive
and the penetration rate of ACC systems has not increased
significantly over the last couple of years. Moreover, ACC
cannot overcome the limitation that only motion information
of the vehicle immediately ahead can be monitored by range
sensors. This restricts the performance of the cruise controller
and limits our ability to improve the traffic flow.

Therefore, researchers proposed to utilize motion infor-
mation about the traffic environment around the vehicle
using wireless vehicle-to-infrastructure (V2I) and vehicle-to-
vehicle (V2V) communication [4], [5]. In this case, vehicles
may be controlled while taking into account traffic flow
conditions over a longer spatial horizon. Previous strategies
included cooperative adaptive cruise control (CACC) where a
fixed communication structure is assigned to a group of ACC
vehicles, so that a platoon could run with relatively small head-
way, while velocity fluctuations are attenuated as propagating
backwards along the vehicle chain [6]–[9]. Various application
scenarios have been discussed for CACC, with the focus on
designated-lane highway driving [10]–[12]. Some researchers
are trying to loosen the rigid requirement on communication
topology for CACC, so that it may deal with more realistic
multi-vehicle formations [13]–[15]. However, such cooperative
systems often rely on existing ACC systems, and thus may be
limited in real-traffic implementation.

In [16] and [17] connected cruise control (CCC) was
proposed to maintain smooth traffic flow in mixed systems
of conventional, ACC, and communication-assisted vehicles.
The CCC controller receives information about the motion of
multiple vehicles ahead, and actuates the vehicle or assists
the driver based on these signals. The controller may include
any signals available and thus allow various connectivity
topologies to form among CCC and non-CCC vehicles. The
influence of connectivity structures, signal types, packet drops,
and communication delays on the longitudinal dynamics of
vehicular chains has been investigated in [17]–[21]. By tuning
the corresponding control gains one may ensure desired
performance, such as plant stability (the ability to maintain
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Fig. 1. Functional scheme of the optimal connected cruise control design

chosen speed without external perturbations) and string stabil-
ity (the suppression of velocity fluctuations along the vehicular
chain). These may have a positive impact on the performance
of the whole transportation system as emphasized by the
diagram in Fig. 1.

However, optimality of control gains in terms of mini-
mizing velocity fluctuations has not yet been discussed for
large connected vehicle systems. Optimal CACC designs
often use algorithms with relatively high computational cost,
such as rolling horizon optimal control [14], which is only
feasible when considering a small group of vehicles with
specific communication structures. Thus, it is necessary to
find optimization algorithms with low computational cost
for more general connectivity topologies. While [22] pre-
sented some initial ideas about low-cost optimal design, driver
reaction time and communication delay were not consid-
ered. Here we present an algorithm that is compatible with
human car-following behaviors while still allowing us to fully
exploit the connectivity without increasing the complexity of
gain-tuning.

In this paper we optimize the gains of a CCC vehicle
that receives position and velocity information from multiple
human-driven vehicles ahead using linear quadratic regula-
tion (LQR). The controller design is based on the minimiza-
tion of velocity and headway fluctuations and the control
cost (acceleration/deceleration) for the CCC vehicle. We use
optimization as a tool to observe different levels of reliance
on various signals and apply the findings in CCC design.
While the optimization is performed over a high-dimensional
network, we show that the problem can be decomposed since
the information flow is uni-directional in a connected vehicle
system when vehicles only utilize motion information of
vehicles ahead. Such decomposition allows us to obtain an
analytical solution to the optimization problem recursively, and
it allows graceful degradation of CCC performance when V2V
communication deteriorates. We also show that the weights
in the cost function can be chosen such that the velocity
fluctuations of the CCC vehicle are attenuated compared with
vehicles ahead (i.e., string stability can be achieved). While the
optimization is done at the linear level, we demonstrate that the
controller performs well at the nonlinear level, and is robust
against parameter variations and heterogeneities appearing in
multi-vehicle systems.

The layout of this paper is as follows. In Section II we
present models for human driving and build up the models
for CCC design. In Section III we introduce the setup of

Fig. 2. (a): Single-lane car-following of human-driven vehicles showing the
headway and the velocities. (b): The range policy (3,4) used in the literature,
where vmax is the maximum velocity allowed for the vehicle, hst is the
smallest headway before the vehicle intends to stop, and hgo is the largest
headway after which the vehicle intends to maintain vmax. (c): The range
policy (3,5) used in this paper. (d): The range policy (8) implicitly contained
in the IDM.

the optimization problem and show that the solution of an
infinite-dimensional Riccati equation can be used to design
the CCC controller. The details for solving the optimization
problem with time delay and the robustness of the proposed
controller are provided in the Appendix for interested readers.
In Section IV we present the stability analysis and summarize
the impact of design parameters and robustness against varia-
tions in human parameters using stability charts. In Section V
the application of the CCC controller is demonstrated at
the nonlinear level using numerical simulations. Finally, we
conclude and lay out some future research directions in
Section VI.

II. MODELING THE CAR-FOLLOWING BEHAVIOR

In this section we model the car-following behavior of
both human drivers and the CCC controller in non-emergency
situations. Since we are concerned with longitudinal motion
control of vehicles, we consider single-lane car-following
models of human-driven vehicles; see Fig. 2(a).

Many models exist in the literature, as summarized
in [23] and [24]. These include continuous-time ones like
the intelligent driver model (IDM) [25], the optimal velocity
model (OVM) [26], the GM model [27], [28], the Pipes
model [29], and discrete-time ones like the Krauss model [30]
and the Wiedemann model [31]. Over the past decades many
variations of these models have been developed in the efforts
to reproduce a wide range of traffic phenomena by computer
simulation [32], [33]. While models using a large number
of parameters may be considered to be of higher fidelity,
difficulties in parameter estimation through data fitting may
negatively affect their accuracy [34], [35].

Thus we consider a class of continuous-time car-following
models with a few parameters that include driver reaction time
delay. These models (e.g., OVM, IDM, and GM model) can
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be written in the form

ḣi (t) = vi+1(t)− vi (t) ,

v̇i (t) = F
(
hi (t − τ ), ḣi (t − τ ), vi (t − τ )

)
, (1)

to describe the car-following behavior of vehicle i . Here
the dot stands for differentiation with respect to time t , τ
is the human reaction time delay, hi denotes the headway,
i.e., the bumper-to-bumper distance between vehicle i and
its predecessor, and vi denotes the velocity of vehicle i ; see
Fig. 2(a). Here we provide some details about the OVM
and the IDM that are used very frequently in the literature.
However, we remark that the controller design applied in this
paper is applicable to any model of the form (1).

In case of the OVM [18], the vehicle acceleration is
determined by the difference between the headway-dependent
desired velocity and the actual velocity and by the velocity
difference between the vehicle and its predecessor, that is

F(h, ḣ, v) = α
(
V (h)− v

) + βḣ , (2)

where the gains α and β are used by the human drivers to
correct velocity errors. The desired velocity is determined by
the headway using the continuous range policy

V (h) =

⎧
⎪⎨

⎪⎩

0 if h ≤ hst ,

fv(h) if hst < h < hgo ,

vmax if h ≥ hgo ,

(3)

i.e., the desired velocity is zero for small headways (h ≤ hst)
and equal to the maximum speed vmax for large headways
(h ≥ hgo). Between these, the desired velocity is given by
fv(h) which increases with the headway monotonically. There
are many choices for the specific function of fv(h), but the
qualitative dynamics remain similar if the above characteristics
are kept [18], [19]. In [12] the function

fv(h) = vmax
h − hst

hgo − hst
(4)

was used, which corresponds to the constant time headway
th = (hgo − hst)/vmax, as shown in Fig. 2(b). However, the
range policy (3,4) is non-smooth at h = hst and h = hgo and
may generate a "jerky ride". Thus, here we use

fv(h) = vmax

2

(
1 − cos

(
π

h − hst

hgo − hst

))
(5)

as shown in Fig. 2(c). The range policy (3,5) is smooth but
has a changing time headway given by th = 1/ f ′

v(h).
We assume that human-driven vehicles try to maintain the

uniform traffic flow equilibrium

hi (t) ≡ h∗ , vi (t) ≡ v∗ , (6)

given by F(h∗, 0, v∗) = 0, cf. (1). Using (2) we find the
equilibrium speed-headway relation of OVM given by its range
policy function (3), i.e., v∗ = V (h∗).

On the other hand, the IDM [25] can be written in the form

F(h, ḣ, v)

= a

(
1 −

( v

vmax

)4−
(hst + Tgapv − ḣv/

√
4ab

h

)2
)
, (7)

where a is the maximum desired acceleration, Tgap is the
desired time gap, and b is the comfortable acceleration. While
(7) does not contain a range policy function explicitly, the
equilibrium speed-headway relation

h∗ = V −1(v∗) = hst + Tgapv
∗

√
1 − (v∗/vmax)4

, (8)

shown in Fig. 2(d), describes qualitatively the same driving
behavior as in Fig. 2(b,c). Notice that for h∗ < hst, we have
v∗ < 0 in the IDM, which can be eliminated by requiring
vehicle velocities to be non-negative.

Observe that both the OVM (1,2) and the IDM (1,7) can be
linearized into the same form [18]. Here we use the particular
form (2) when performing the linearization (as the parameters
α and β have clear physical meaning), but all results can
be generalized for an arbitrary F(h, ḣ, v). By assuming the
system in the vicinity of the equilibrium (6) and defining the
headway and velocity perturbations

h̃i (t) = hi (t)− h∗, ṽi (t) = vi (t)− v∗ , (9)

we linearize (1,2) to obtain the linear delay differential equa-
tion (DDE)

˙̃hi (t)= ṽi+1(t)− ṽi (t) ,
˙̃vi (t)= α

(
N∗h̃i (t−τ )−ṽi(t−τ )

)+β(
ṽi+1(t−τ )−ṽi (t−τ )

)
.

(10)

Here N∗ = V ′(h∗) is the derivative of the range policy (3) at
the equilibrium, and for hst ≤ h∗ ≤ hgo this gives the time
headway th = 1/ f ′

v(h
∗) = 1/N∗.

Controllers with a small time headway produce more
aggressive car-following behaviors, which makes it more dif-
ficult to maintain uniform traffic flow [36]. Based on highway
traffic data [18], we set vmax = 30 [m/s], hst = 5 [m],
hgo = 35 [m]. We find at v∗ = 15 [m/s], h∗ = 20 [m] the
range policy (3,5) has the largest derivative N∗ = π/2 [1/s]
and correspondingly the smallest time headway th ≈ 0.64 [s].
We consider this least-string-stable operating point in the
remainder of this paper.

We now consider the single-lane configuration shown in
Fig. 3 where the CCC vehicle at the tail receives position and
velocity signals of the n non-CCC vehicles ahead through V2V
communication (see dashed arrows from preceding vehicles to
vehicle 1). Initially, we assume that all preceding vehicles are
identical human-driven vehicles, but the effects of heteroge-
neous dynamics among preceding vehicles will be investigated
in Appendix D.

The car-following dynamics of the CCC vehicle is given by

ḣ1(t) = v2(t)− v1(t) ,

v̇1(t) = u(t) , (11)

where u(t) is the acceleration that will be designed using the
velocity and headway information obtained via V2V commu-
nication. Communication delay is not included explicitly in the
optimization, but will be added when analyzing the stability
of CCC in Section IV.
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Fig. 3. A string of n + 1 vehicles in a single-lane scenario. The CCC
vehicle at the tail receives signals from human-driven vehicles ahead via
V2V communication. Dashed arrows indicate the flow of information in this
connected vehicle system.

We assume the CCC vehicle tries to maintain the same
equilibrium as human-driven vehicles i = 2, . . . , n, cf. (6).
Using definition (9) we linearize (11) about the equilibrium:

˙̃h1(t)= ṽ2(t)− ṽ1(t) ,
˙̃v1(t)= u(t) . (12)

With the car-following dynamics of human-driven and CCC
vehicles set up, we discuss how to use optimization to design
u(t) in Section III.

III. CONNECTED CRUISE CONTROL DESIGN USING

LINEAR QUADRATIC REGULATION

In this section, we present a systematic method for con-
nected cruise control design while utilizing the linearized
human car-following model (10). In Section III-A we present
the linear quadratic optimization setup for CCC design that
exploits V2V information broadcasted by human-driven vehi-
cles ahead. In Section III-B we present the general solution
of the optimization problem, while in Section III-C we show
that the problem can be decomposed and solved analytically
by exploiting the unidirectional information flow in the system.
If the reader is not interested in these technical details,
Sections III-B and III-C may be skipped. In Section III-D
we obtain the CCC controller with full-state feedback and
demonstrate that the gains decay exponentially as the number
of vehicles between the source and the CCC vehicle increases.
We also show that adding more vehicles downstream does not
influence the existing design for the system. A brief discussion
is provided in Appendix D on the robustness of the controller
against heterogeneities arising in the vehicle string.

A. Optimization Problem Setup

Here we formulate the CCC design as a linear
quadratic (LQ) optimization problem with delay. Since the
CCC vehicle would like to maintain constant velocity and
headway without using large acceleration/deceleration, we
minimize a cost function containing its headway and velocity
fluctuations and its acceleration. The solution will give the
gains for the CCC vehicle with respect to the current and
delayed headways and velocities of the vehicles ahead.

Let us define

xi =
[

N∗h̃i − ṽi

ṽi+1 − ṽi

]
, φn =

[
0

˙̃vn+1

]
. (13)

Then we construct the vectors

X =
⎡

⎢
⎣

x1
...

xn

⎤

⎥
⎦ , φ =

⎡

⎢
⎢⎢
⎣

0
...
0
φn

⎤

⎥
⎥⎥
⎦
, (14)

and rewrite (10,12) as

Ẋ(t) = AX (t)+ BX (t − τ )+ Du(t)+ φ(t) . (15)

The coefficient matrices are given by

A = In ⊗ A1, B =

⎡

⎢
⎢
⎢
⎢⎢
⎣

0 B2
B1 B2

. . .
. . .

B1 B2
B1

⎤

⎥
⎥
⎥
⎥⎥
⎦
, D =

⎡

⎢
⎢
⎢
⎢⎢
⎣

D1
0
...
0
0

⎤

⎥
⎥
⎥
⎥⎥
⎦
, (16)

where ⊗ denotes the Kronecker product and the blocks are
defined by

A1 =
[

0 N∗
0 0

]
, B1 = −

[
α β
α β

]
, B2 =

[
0 0
α β

]
, D1 =

[−1
−1

]
.

(17)

Note that B is upper block-triangular because vehicles only
react to the motion of vehicles ahead. This topological struc-
ture of connectivity will allow us to greatly simplify the
solution of the LQR problem.

We assume that the non-CCC vehicles are plant stable, i.e.,
they are able to maintain the uniform flow (6) when the vehi-
cles ahead travel with constant speed v∗. Then the connected
vehicle system (15,16) is stabilizable, that is, uncontrollable
part of the system is stable.

We define the multi-objective cost function based on the
CCC vehicle’s acceleration and deviations from the uniform
flow as

Jtf (u, X) =
∫ tf

0

( ˙̃v2
1 + γ1

(
N∗h̃1 − ṽ1

)2+γ2
(
ṽ2 − ṽ1

)2
)

dt

=
∫ tf

0

(
u2 + XT�X

)
dt , (18)

where γ1 > 0, γ2 > 0 and

� = diag[γ1, γ2, 0, . . . , 0] ∈ R
2n×2n . (19)

In (18) the first term is related with the fuel economy of the
CCC vehicle, and the latter two terms account for the active
safety and traffic efficiency. While more complicated cost
functions can be used to consider more accurate powertrain
dynamics [14], [37], the quadratic form of (18) will provide
us with valuable insight about the upper-level control of
connected vehicle systems.

B. General Solution of the LQ Problem

In this section we lay out the general solution to the LQ
problem in a time-delayed system with disturbance (15,18).
We will show that the disturbance has limited influence on the
structure of the optimal controller. Thus, we design the optimal
controller under zero disturbance. This setting allows us to
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exploit the uni-directional information flow to alleviate the
high computational cost for optimal connected vehicle design.
Readers not interested in the technical details may proceed to
Section III-D.

We define the augmented state Y (t) = [XT(t) 1]T to place
the disturbance term φ(t) in (15) into a time-variant coefficient
matrix. This yields

Ẏ (t) = Ã(t)Y (t)+ B̃Y (t − τ )+ D̃u(t) , (20)

where

Ã(t) =
[

A φ(t)
0 0

]
, B̃ =

[
B 0
0 0

]
, D̃ =

[
D
0

]
. (21)

The cost function (18) can be rewritten accordingly

Jtf (u,Y ) =
∫ tf

0

(
u2 + Y T�̃Y

)
dt , (22)

where �̃ =
[
� 0
0 0

]
.

The optimal control for (20,22) is given by

u(t) = −D̃T
(

P(t)Y (t)+
∫ 0

−τ
Q(t, θ)Y (t + θ)dθ

)
, (23)

see [38]. The matrices P(t) and Q(t, θ) are obtained by solving
the Riccati-type partial differential equation (PDE)

−Ṗ(t) = ÃTP(t)+ P(t)Ã − P(t)D̃D̃TP(t)

+ Q(t, 0)+ QT(t, 0)+ �̃ ,

(∂θ − ∂t )Q(t, θ) = (
ÃT − PD̃D̃T)

Q(t, θ)+ R(t, 0, θ) ,

(∂ξ + ∂θ − ∂t )R(t, ξ, θ) = −QT(t, ξ)D̃D̃TQ(t, θ) , (24)

with boundary conditions

P(tf) = 0 ,

Q(tf, θ) = 0 , Q(t,−τ ) = PTB̃ ,

R(tf , ξ, θ) = 0 , R(t,−τ, θ) = B̃TQ(t, θ) , (25)

where P(t) is symmetric and RT(t, ξ, θ) = R(t, θ, ξ). Given
the structure of coefficient matrices (21), the matrices P(t),
Q(t, θ) and R(t, ξ, θ) can be constructed as

P =
[

P1 P2
P3 P4

]
, Q =

[
Q1 Q2
Q3 Q4

]
, R =

[
R1 R2
R3 R4

]
, (26)

where P1,Q1,R1 ∈ R
2n×2n , P2,Q2,R2 ∈ R

2n×1,
P3,Q3,R3 ∈ R

1×2n , and P4,Q4,R4 are scalars. since P(t) is
symmetric we have P1(t) = PT

1 (t) and P2(t) = PT
3 (t). More-

over, R(t, ξ, θ) = RT(t, θ, ξ) yields R1(t, ξ, θ) = RT
1 (t, θ, ξ)

and R2(t, ξ, θ) = RT
3 (t, θ, ξ). Thus, the optimal controller

(23) becomes

u(t) = −DT
(

P1(t)X (t)+
∫ 0

−τ
Q1(t, θ)X (t + θ)dθ

+ P2(t)+
∫ 0

−τ
Q2(t, θ)dθ

)
. (27)

By substituting (26) into (24,25) we find that state-feedback-
control gain matrices P1,Q1 in the optimal controller (27)
are not influenced by the disturbance φ(t); see (65,67,69,71)
in Appendix A. On the other hand, when including the

disturbance in the optimization, (27) cannot be implemented
in real time since φ(t) is not known a priori; cf. Ã(t) in
(21,24,26). Therefore we first ignore the disturbance φ(t), but
later in Section IV we ensure that this zero-disturbance design
can reject disturbances satisfyingly. Thus, we consider

P2(t) ≡ 0 , Q2(t, θ) ≡ 0 , (28)

which allows us to design the CCC controller analytically
without impairing the stability of the multi-vehicle system.

Since P1(t),Q1(t, θ),R1(t, ξ, θ) are given by (65), which
is an initial value problem in backward time, we consider the
steady-state solution

P1(t) ≡ P1, Q1(t, θ) ≡ Q1(θ), R1(t, ξ, θ) ≡ R1(ξ, θ),

(29)

which is equivalent to setting time horizon tf → ∞ in the cost
function (18); see [39].

Substituting (28,29) into (27) leads to the simplified con-
troller

u(t) = −DT
(

P1 X (t)+
∫ 0

−τ
Q1(θ)X (t + θ)dθ

)
, (30)

where the matrices P1, Q1(θ) are given by

ATP1 + P1A − P1DDTP1 + Q1(0)+ QT
1 (0)+ � = 0 ,

∂θQ1(θ) = (
AT − P1DDT)

Q1(θ)+ R1(0, θ) ,

(∂ξ + ∂θ )R1(ξ, θ) = −QT
1 (ξ)DDTQ1(θ) , (31)

with boundary conditions

Q1(−τ ) = P1B , R1(−τ, θ) = BTQ1(θ) , (32)

which can be attained by setting tf → ∞ in (65,66).

C. Decomposition of the Solution

In this section, we exploit the uni-directional information
flow and obtain the analytical solution to the delayed LQ
problem (15,18) with zero disturbance (φ(t) ≡ 0) and infinite
time horizon (tf = ∞), i.e., we solve the PDE (31,32)
analytically to obtain the controller (30).

While a numerical scheme for (31,32) is given in [39] to
obtain P1, Q1(θ) in (30), no closed-form solution exists with
general A,B,D matrices. However, here only the first two
rows of P1,Q1(θ) are used by the controller (30), since D is
zero except its first two elements, cf. (16,17). Thus we only
need to obtain an analytical solution for the relevant parts in
P1, Q1(θ), which is made possible by taking advantage of the
upper-triangular block structure of A and B.

We introduce the notation

P1 =
⎡

⎢
⎣

P11· · ·P1n
...
. . .

...
Pn1· · ·Pnn

⎤

⎥
⎦ , Q1(θ) =

⎡

⎢
⎣

Q11(θ)· · · Q1n(θ)
...

. . .
...

Qn1(θ)· · · Qnn(θ)

⎤

⎥
⎦ , (33)

where Pi j ,Qi j (θ) ∈ R
2×2 for i, j = 1, . . . , n, and rewrite (30)

as

u(t) = −DT
1

n∑

i=1

(
P1i xi (t)+

∫ 0

−τ
Q1i(θ)xi (t + θ)dθ

)
, (34)
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where xi (t) is given in (13). This shows that we only need to
derive P1i ,Q1i (θ) for i = 1, . . . , n to construct the controller.
Substituting (33) into (31,32), we obtain equations for each
block Pi j ,Qi j (θ),Ri j (ξ, θ), i, j = 1, . . . , n, which can be
solved recursively. Specifically, P11 and Q11(θ) are given by

Â1P11 + P11A1 + Q11(0)+ QT
11(0)+ diag[γ1, γ2] = 0 ,

∂θQ11(θ) = Â1Q11(θ)+ R11(0, θ) ,

(∂ξ + ∂θ )R11(ξ, θ) = −QT
11(ξ)DDTQ11(θ) , (35)

with boundary conditions

Q11(−τ ) = 0 , R11(−τ, θ) = 0 , (36)

where

Â1 = AT
1 − P11D1DT

1 . (37)

The solution of (35,36) is given by

P11 =
[

p11 p12
p12 p22

]
, Q11(θ) ≡ 0, R11(ξ, θ) ≡ 0 , (38)

where

p11 = −γ1 + √
γ1

√
γ1 + γ2 + 2N∗√γ1

N∗ ,

p12 = √
γ1 − p11 ,

p22 = −2
√
γ1 +

√
γ1 + γ2 + 2N∗√γ1 + p11 , (39)

which is the only solution satisfying the condition P11 > 0.
Notice that the matrix P11 only depends on the weights γ1, γ2
and the CCC vehicle’s range policy N∗ (cf. (3)).

Then, to obtain P1i ,Q1i (θ),Qi1(θ) for i = 2, . . . , n, we
need to solve

Â1P1i + P1i A1 + Q1i(0)+ QT
i1(0) = 0 ,

∂θQ1i (θ) = Â1Q1i (θ)+ R1i (0, θ) ,

∂θQi1(θ) = AT
1 Qi1(θ)− PT

1iD1DT
1 Q11(θ)+ RT

1i (θ, 0) ,

(∂ξ + ∂θ )R1i (ξ, θ) = −QT
11(ξ)D1DT

1 Q1i (θ) , (40)

with boundary conditions

Q1i(−τ ) = P1i B1 + P1(i−1)B2 ,

Qi1(−τ ) = 0 ,

R1i (θ,−τ ) = QT
i1(θ)B1 + QT

(i−1)1(θ)B2 ,

R1i (−τ, θ) = 0 . (41)

Now (40,41) give the solution

Qi1(θ) ≡ 0, R1i(ξ, θ) ≡ 0 , (42)

while the equations for Q1i (θ) simplify to

∂θQ1i (θ) = Â1Q1i (θ),

Q1i (−τ ) = P1iB1 + P1(i−1)B2 , (43)

yielding the solution

Q1i (θ) = eÂ1(θ+τ )(P1i B1 + P1(i−1)B2) , (44)

for i = 2, . . . , n. Thus, the equation for P1i becomes

Â1P1i + P1i A1 + eτ Â1(P1iB1 + P1(i−1)B2) = 0 , (45)

yielding the solution

vec(P1i ) = Mi−1vec(P11) , (46)

for i = 2, . . . , n. Here vec(·) gives a column vector by
stacking the columns of the matrix on the top of each other,
and M ∈ R

4×4 is given by

M = −(
I ⊗ Â1 + AT

1 ⊗ I + BT
1 ⊗ eτ Â1

)−1(BT
2 ⊗ eτ Â1

)
.

(47)

Consequently, P1i and Q1i (θ) are obtained recursively using
(38,44,46,47). The recursive rules (44,46) indicate that the
feedback gains for signals coming from the j th vehicle only
depend on the dynamics of vehicles 2 to j and do not depend
on the dynamics of vehicles in front of the j th vehicle. On the
other hand, since Â1 only depends on P11 (cf. (37,38,39)),
the exponential term eÂ1(θ+τ ) shared by every Q1i(θ) is
independent from the dynamics of preceding vehicles but
changes with the CCC vehicle’s range policy N∗ and the
optimization weights γ1, γ2.

D. Constructing the CCC Controller

In (34) we move D1 (cf. (16)) into the integral and define
[
α1i β1i

] = [
1 1

]
P1i ,[

fi (θ) gi (θ)
] = [

1 1
]

Q1i (θ) . (48)

Based on definitions (13,48), the optimal controller (34) for
the CCC vehicle is given by

u(t) =
n∑

i=1

(
α1i

(
N∗h̃i (t)−ṽi (t)

) + β1i
(
ṽi+1(t)−ṽi (t)

))

+
n∑

i=1

∫ 0

−τ
fi (θ)

(
N∗h̃i (t + θ)− ṽi (t + θ)

)
dθ

+
n∑

i=1

∫ 0

−τ
gi (θ)

(
ṽi+1(t + θ)− ṽi (t + θ)

)
dθ , (49)

where the distribution kernels take the form

fi (θ) = (
ai0 + ai1(θ + τ )

)
eλ1(θ+τ ) + ai2eλ2(θ+τ ) ,

gi (θ) = (
bi0 + bi1(θ + τ )

)
eλ1(θ+τ ) + bi2eλ2(θ+τ ) , (50)

for i = 1, . . . , n, θ ∈ [−τ, 0], where λ1, λ2 are the eigen-
values of Â1, and the expressions for λ1, λ2, ai0, ai1, ai2, and
bi0, bi1, bi2 are given in Appendix B.

From (38,39,48) we obtain that

α11 = √
γ1, β11 = −√

γ1 +
√
γ1 + γ2 + 2N∗√γ1 , (51)

i.e., the gains on CCC vehicle’s own headway and velocity do
not depend on the dynamics of human-driven vehicles. Since
Q11(θ) ≡ 0, (48) yields

f1(θ) ≡ 0, g1(θ) ≡ 0 , (52)

i.e., the CCC vehicle does not have delayed feedback terms on
its own headway and velocity. The rest of the gains α1i , β1i

and the distribution kernels fi (θ), gi (θ) for i = 2, . . . , n
in (48) can be obtained using (44,46,47).
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Fig. 4. The optimized feedback gains α1i , β1i , i = 1, . . . , n of the CCC
vehicle in a string of (n + 1) vehicles for n = 5 (red circles) and for n = 10
(blue crosses). The human parameters are α = 0.6 [1/s], β = 0.9 [1/s],
τ = 0.4 [s]. The design parameters are γ1 = 0.04 [1/s2], γ2 = 0.30 [1/s2].

In Appendix C we show that the eigenvalues of M (cf. (47))
are inside the unit circle for realistic values of weights γ1, γ2,
human gains α, β, and driver reaction time τ . Thus (46) is
a contracting map. Since α1i , β1i are given in (48) as linear
combinations of the components of P1i , they converge to zero
as i increases.

Fig. 4 shows the corresponding exponential decay of α1i

and β1i in a (5 + 1) vehicle chain (red circles) and a (10 + 1)
vehicle chain (blue crosses) using the parameter values
γ1 = 0.04 [1/s2], γ2 = 0.30 [1/s], α = 0.6 [1/s],
β = 0.9 [1/s] and τ = 0.4 [s]. In this case, M has two zero
eigenvalues and two non-zero eigenvalues 0.69 ± 0.15i . The
exact match between the red circles and the blue crosses for
vehicles 2 to 5 demonstrates that the existing optimized gains
do not change when adding feedback terms on vehicles farther
away. This corresponds to the fact that the gains α11, β11 are
not influenced by the connectivity structure (cf. (38,39,48)),
and that α1i , β1i are calculated recursively using (46).
For the parameters considered above, we have the gains
α11 ≈ 0.20 [1/s], β11 ≈ 0.78 [1/s].

In Fig. 5 we plot the distribution kernels fi (θ), gi(θ) for
i = 2, . . . , n using the same parameters as in Fig. 4. The
dashed red curves correspond to n = 5 and the blue solid
curves correspond to n = 10. In both cases, the magnitude
of fi (θ) and gi (θ) decreases with i . Indeed, for vehicles
i = 2, . . . , 5, the distribution kernels fi (θ) and gi (θ) are the
same in both the (5 + 1)-car and the (10 + 1)-car systems.

Considering the similar feedback structure of the CCC
controller (49) as in the conventional driving model (2), and
the decay of feedback gains and distribution kernels shown
in Fig. 4 and Fig. 5, we conclude that the proposed CCC
controller will degrade gracefully under imperfect commu-
nication. More specifically, a CCC vehicle may experience
severe packet drops from vehicles ahead, depending on the
involved V2V communication devices, the physical distance
between vehicles and the road environment [40]. When the
communication channel with vehicle i +1 significantly deteri-
orates, we may set the feedback gains and distribution kernels
corresponding to vehicle i + 1 and vehicles farther ahead as
zero, and only use motion signals up to vehicles i . Since
motion signals from farther downstream vehicles are assigned
with smaller gains, the switch to fewer signals will not induce
a significant jump in control commands. Most importantly,
since the gains for signals coming from vehicles 1–i do not

Fig. 5. The optimized distribution kernels fi (θ), gi (θ) for i = 2, . . . , n
of the CCC vehicle for a (n + 1)-car system with the same parameter as in
Fig. 4. The red dashed curves correspond to n = 5, and the blue solid curves
correspond to n = 10. The black arrows show the direction of increasing
vehicle index i .

depend on those from vehicles i + 1 and beyond, the reduced
CCC controller still remains optimal.

We note that the proposed CCC controller generates 2n
feedback gains and distribution kernels with only 2 design
parameters, while being robust against heterogeneity and
connectivity structure changes among preceding vehicles, as
discussed in detail in Appendix D. While our design relies on
car-following models in the form of (1) for the human-driven
vehicles ahead, one may use other driver models (see [23]) to
design similar controllers.

IV. STABILITY ANALYSIS OF OPTIMIZED CONNECTED

VEHICLE SYSTEMS

In this section, we analyze the linear stability of uniform
traffic flow using the optimized controller for the CCC vehicle
at the tail, to make sure that the arising connected vehicle
system is able to maintain uniform traffic flow. Here we take
into account the communication delay due to intermittency
and packet loss in wireless communication. We analyze the
plant stability and head-to-tail string stability and visualize
the corresponding stability areas using stability charts.

The intermittency in V2V communication with digital con-
trollers results in an average communication delay of 0.15 [s];
see [16]. However, packet losses may lead to significant
increase of the delay. While the delay changes stochasti-
cally [20], here we approximate it with its average and study
the dynamics while viewing the delay as a parameter. Then
the linear dynamics (10,12) becomes

˙̃h1(t) = ṽ2(t)− ṽ1(t) ,
˙̃v1(t) = u(t − σ) ,
˙̃hi (t) = ṽi+1(t)− ṽi (t) ,
˙̃vi (t) = α

(
N∗h̃i (t−τ )−ṽi(t−τ )

)

+ β(
ṽi+1(t−τ )−ṽi(t−τ )

)
, (53)

for i = 2, . . . , n, where u(t) is given by (49) and σ denotes
the communication delay.

The plant stability of a CCC vehicle is given as follows:
suppose that the vehicles whose signals are used by the
CCC vehicle are driven at the same constant velocity, that
is, vi (t) ≡ v∗, i = 2, . . . , n + 1, then the velocity of the CCC
vehicle approaches this constant velocity, i.e., lim

t→∞ v1(t) = v∗.
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The plant stability of non-CCC vehicles is defined similarly:
when the preceding vehicle is driven at constant velocity,
the non-CCC vehicle should converge to the same veloc-
ity. In this paper we only consider plant stable non-CCC
vehicles.

String stability characterizes the attenuation of velocity
fluctuations as they propagate upstream [36]. For non-CCC
vehicles it is required that the vehicle attenuates the velocity
fluctuations arising from the preceding vehicle. For a CCC
vehicle, one may compare its velocity fluctuations with any
preceding vehicle whose signals is used by the CCC vehicle.
The influence of a CCC vehicle on the traffic flow is evaluated
the best by comparing its velocity fluctuations to that of the
furthest vehicle ahead whose signal is received by the CCC
vehicle (called the head vehicle). Thus, we define the head-
to-tail string stability, which requires velocity fluctuations to
be suppressed from the head vehicle to the tail. Since no
control is placed upon the non-CCC vehicles, it is reasonable
to allow amplification of velocity fluctuations among non-CCC
vehicles. Still, the CCC vehicles may ensure head-to-tail string
stability as demonstrated below.

While in the previous section the controller was designed for
the zero disturbance case, here we consider the velocity per-
turbation ṽn+1 of the head vehicle as the input and the velocity
perturbation ṽ1 of the tail vehicle as the output in (53). Since
perturbations of velocity can be represented using Fourier
components and superposition holds for linear systems, the
head-to-tail string stability can be ensured by attenuating sinu-
soidal signals for all excitation frequencies. Thus, we consider
the periodic excitation ṽn+1(t) = v

amp
n+1 sin(ωt) with frequency

ω and amplitude vamp
n+1. Then the steady state response of (53)

with control (49) is ṽ1,ss(t) = v
amp
1 sin(ωt + ψ). In order to

ensure head-to-tail string stability, we need the amplitude ratio
v

amp
1 /v

amp
n+1 < 1 for all excitation frequencies ω > 0, which can

be obtained through transfer functions.
In particular, taking the Laplace transform of (53) with zero

initial conditions and eliminating the velocities and headways
of vehicles i = 2, . . . , n, we obtain the head-to-tail transfer
function

H (s) = Ṽ1(s)

Ṽn+1(s)

=

n∑

i=2

(
Fi−1(s)− Gi (s)

) · (
H0(s)

)n−i+1 + Fn(s)

s2eσ s + G1(s)
.

(54)

Here Ṽ1(s) and Ṽn+1(s) denote the Laplace transform of ṽ1(t)
and ṽn+1(t), respectively, and

H0(s) = F0(s)

G0(s)
= βs + αN∗

s2eτ s + (α + β)s + αN∗ ,

Fi (s) = α1i N∗ + β1i s + (ai1 N∗ + bi1s)h1(s)

+ (ai0 N∗ + bi0s)h0(s)+ (ai2 N∗ + bi2s)h2(s) ,

Gi (s) = Fi (s)+ α1i s + s
(
ai0h0(s)+ ai1h1(s)+ ai2h2(s)

)
,

(55)

where ai0, ai1, ai2, bi0, bi1, bi2 are given in Appendix B for
i = 1, . . . , n and

h0(s) = eτλ1 − e−τ s

s + λ1
,

h1(s) = τe−τ s

s + λ1
− eτλ1 − e−τ s

(s + λ1)2
,

h2(s) = eτλ2 − e−τ s

s + λ2
. (56)

Here H0(s) represents the transfer function between a non-
CCC vehicle and its predecessor. Indeed, the amplitude ratio
for frequency ω is given by vamp

1 /v
amp
n+1 = |H (iω)|, that is, the

head-to-tail string stability is ensured when |H (iω)| < 1 for
all ω > 0.

A. Plant Stability

The plant stability for the linearized connected vehicle
system (49,53) requires that all its characteristic roots have
negative real parts, i.e., the solutions of the characteristic
equation

Gn−1
0 (s)

(
s2eσ s + G1(s)

) = 0 . (57)

stay in the left half complex plane.
Since G0(s) = 0 (see H0(s) in (55)) is the characteristic

equation for linearized human car-following model (10), it is
necessary that the human-driven vehicles are plant stable. This
is a reasonable requirement as they should be able to maintain
a desired speed with no disturbance from the traffic. By setting
s = i�, � ≥ 0 in G0(s) = 0 we obtain the plant stability
boundary for human-driven vehicles as

α = �2 cos(τ�)

N∗ ,

β = � sin(τ�)− �2 cos(τ�)

N∗ . (58)

And in the remainder of this paper we only consider human
parameters α, β inside the plant stability region enclosed by
(58) and α = 0 (given by G(0) = 0); see the shading in Fig. 9.

For the remaining part of (57), we plug (73) in (55,56) and
obtain

s2eσ s + (α11 + β11)s + α11 N∗ = 0 , (59)

the characteristic equation for the CCC driving model. Due
to the similarity between (59) and G0(s) = 0, the plant
stability boundary is the same as (58) but with α11 instead
of α, β11 instead of β, and σ instead of τ . However, it is
more desirable to present it in the (γ1, γ2)-plane. Thus, we
plug (51) into (59), consider s = i�, � ≥ 0, and obtain the
plant stability boundary for the CCC vehicle as

γ1 = �4 cos2(σ�)

(N∗)2
,

γ2 = �2 sin2(σ�)− �4 cos2(σ�)

(N∗)2
− 2�2 cos(σ�) . (60)

Since the cost function (18) requires γ1 > 0, γ2 > 0, we only
consider the first quadrant of the (γ1, γ2)-plane. In Fig. 6,



2064 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 8, AUGUST 2017

Fig. 6. Plant stability charts in the (γ1, γ2)-plane with communication delay
σ as indicated. The plant stability boundaries are denoted by dashed black
curves. The plant stable domains are shaded light gray.

the dashed curves represent plant stability boundaries, and
the plant stability area is shaded as light gray for different
values of communication delay as indicated. By comparing
the two panels one may notice that as the communication
delay increases the plant stable area shrinks, though it still
covers a relatively large portion of the (γ1, γ2)-plane. Since the
communication delay σ is seldom larger than human reaction
time τ , panel (b) shows a quite conservative case.

B. Head-to-Tail String Stability

At the linear level the necessary and sufficient condition of
head-to-tail string stability is given by

L(ω) = |H (iω)|2 − 1 < 0 , ∀ω > 0 , (61)

where H (iω) is defined by (54,55,56). String stability is
violated when the maximum of L(ω) is larger than 0, and
thus, the string stability boundary is given by the equations

L(ωcr) = 0 ,
∂L(ωcr)

∂ω
= 0 , (62)

subject to
∂2 L(ωcr)

∂ω2 ≤ 0, where ωcr indicates the location

of the maximum of L(ω). When ωcr = 0, we always have

L(0) = 0,
∂L(0)

∂ω
= 0, and the boundary is given by

∂2 L(0)

∂ω2 = 0 . (63)

As demonstrated in the previous section, feedback gains for
vehicles i, i > 6 are negligibly small. Therefore we consider a
connected vehicle system with n = 5. To obtain string stability
charts, we solve (62) numerically and plot the string stability
boundaries in the (γ1, γ2)-plane and in the (β, α)-plane for
different values of communication delay and human reaction
time.

The charts in Fig. 7 allow us to choose the design para-
meters γ1, γ2 so that head-to-tail string stability is ensured,
as indicated by the dark gray region bounded by solid colored
curves. The human gains are chosen as α = 0.6 [1/s], β = 0.9
[1/s] and stability charts are shown for different values of
human reaction time τ and communication delay σ . In the
light gray region, only plant stability is satisfied. For the σ
values considered here, all γ1, γ2 values in the windows shown
ensure plant stability.

Fig. 7. Stability charts of a (5 + 1)-car platoon in the (γ1, γ2)-plane for
human parameters α = 0.6 [1/s], β = 0.9 [1/s]. The colored solid curves are
the string stable boundaries. The coloring corresponds to the critical frequency
at which string stability loss happens, as indicated by the colorbar on the right.
Shading indicates plant stability while the string stable regions are shaded dark
gray.

By comparing the size of the string stable region on the
panels, we conclude that increasing the human reaction time
and the communication delay both reduce string stability area,
however, human reaction time affects the string stability more
prominently. Notice that in order to achieve head-to-tail string
stability, the weights γ1, γ2 have to be large enough. However,
when either of these weights is exceedingly large, head-to-tail
string stability will also be lost. The fact that both γ1, γ2 shall
be below 1 to ensure string stability implies that penalties on
velocity differences should be smaller than the penalty on the
control effort (acceleration).

We remark that the human reaction time considered in Fig. 7
are larger than the critical reaction time τcr ≈ 0.325 [s]
and thus no string stability exists for any α, β combinations
without V2V connectivity [17], but the system can be made
head-to-tail string stable by using the connectivity in an
appropriate way.

The coloring along the string stability boundaries shows
the critical frequency where string stability loss happens, as
indicated by the colorbar on the right. Red corresponds to
higher frequency and blue corresponds to lower frequency.
Leaving the string stable region through the dark blue curves,
zero-frequency stability loss happens, while leaving it through
the colored curve at the top, the stability loss happens at
non-zero frequency, indicating the consequence of improper
connectivity design.

To demonstrate string instabilities at different frequencies,
we mark three points A, B, and C in Fig. 7(b) and plot
the corresponding Bode plots in Fig. 8. Case A is string
stable, with amplitude of transfer function smaller than 1 for
all positive frequencies, cf. (61). The corresponding feedback
gains and distribution kernels are given in Figs. 4 and 5.
Case B has string instability in higher frequency range, due
to the non-zero-frequency string stability loss at the bound-
ary between points A and B. Such phenomenon has also
been observed when using acceleration feedback in CCC
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Fig. 8. Magnitude of transfer function as a function of the excitation
frequency. Panels (a–c) correspond to points marked A–C in Fig. 7(a).

Fig. 9. Stability charts of a (5+1)-car platoon in the (β, α)-plane for design
parameters γ1 = 0.01 [1/s2] , γ2 = 0.10 [1/s2]. The notation is the same as
in Figs. 6 and 7.

design [19]. Case C is string unstable due to low-frequency
instability, corresponding to the zero-frequency stability loss
when crossing the boundary between points A and C.

The charts in Fig. 9 allows us to test the robustness of
the CCC design for given design parameters with respect to
different human parameters of the non-CCC vehicles. The
same notations are used as in Figs. 6 and 7. The light gray
areas bounded by black dashed curves given by (58) show
the plant stable areas that shrink as human reaction time τ
increases. The dark gray regions bounded by colored solid
curves are string stable regions, with the color indicating the
frequency at which the stability loss happens. The colors along
the string stability boundaries show that both zero-frequency
and non-zero-frequency string stability loss exists for all cases.
Note that although there may be string stability regions outside
the plant stability region, the lack of plant stability prevents
the connected vehicle system from maintaining uniform traffic
flow, so those regions are not shown in Fig. 9. Comparing the
different panels in Fig. 9, we find that larger human reaction
time significantly decreases the string stable area, while the
communication delay only slightly deteriorates string stability.

V. NONLINEAR SIMULATIONS

While the CCC controller is obtained with little computa-
tional cost using a linearized model for non-CCC vehicles,
the algorithm should be able to accommodate nonlinearities
arising in the dynamics of non-CCC vehicles, especially the

nonlinearity in the range policy (3). Here we show that this
nonlinearity can be added to the CCC design (49,53) by
using the optimized feedback gains and distribution kernels.
In particular, we can construct

ḣ1(t)= v2(t)− v1(t) ,

v̇1(t)=
n∑

i=1

α1i
(
V (hi (t − σ))− vi (t − σ)

)

+
n∑

i=1

β1i
(
vi+1(t − σ)− vi (t − σ)

)

+
n∑

i=1

∫ 0

−τ
fi (θ)

(
V (hi (t + θ − σ))−vi (t+θ − σ)

)
dθ

+
n∑

i=1

∫ 0

−τ
gi(θ)

(
vi+1(t + θ − σ)− vi (t + θ − σ)

)
dθ,

ḣi (t)= vi+1(t)− vi (t) ,

v̇i (t)= α
(
V (hi (t−τ ))−vi (t−τ )

)+β(
vi+1(t−τ )−vi(t−τ )

)
,

(64)

for i = 2, . . . , n, cf. (1,2), whose linearization about the
uniform flow equilibrium (6) is indeed (49,53).

To evaluate the performance at the nonlinear level, we
consider a (5 + 1)-car system with human delay time
τ = 0.4 [s], communication delay σ = 0.4 [s] and simulate the
propagation of headway and velocity perturbations along the
connected vehicle system (64). The simulation is performed
with Adam-Bashforth fourth-order method.

Fig. 10 compares the simulation results for the parameters
corresponding to points A and B in Fig. 7(b) with the case
where the CCC vehicle loses connectivity and has the same
controller as the human-driven vehicles. The velocity profile of
the head vehicle is vn+1(t) = v∗+vamp

n+1 sin(ωt) with amplitude
v

amp
n+1 = 5 [m/s], frequency ω = 1 [rad/s] and v∗ = 15 [m/s].

Without connectivity, attenuation of velocity perturbation
is not possible as the human reaction time τ > τcr. This
is demonstrated by the black solid curve in Fig. 10(a). For
the string unstable optimal design (point B in Fig. 7(b)), the
velocity perturbation is attenuated as shown by the red solid
curve in Fig. 10(a). However, the magnitude is still larger than
that of the head vehicle (black dashed curve). On the other
hand, for the string stable design corresponding to point A
in Fig. 7(b), the CCC vehicle’s velocity fluctuation (green
solid curve) has smaller amplitude than the velocity input
(black dashed curve), as depicted in Fig. 10(a). These results
demonstrate that the linearized design can be used to predict
the nonlinear behavior.

In Fig. 10(b), the headway fluctuations of the CCC vehicle
(red and green solid curves) have smaller amplitude compared
to the case without connectivity (black solid curve). This
shows that although the CCC design is based on string
stability in terms of velocity, the connectivity can also suppress
headway errors. Notice that the headway fluctuation of the
CCC vehicle in the string unstable case B (red solid curve) is
slightly smaller than in the string stable case A (green solid
curve), indicating a trade-off between attenuation of velocity
and headway disturbances.
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Fig. 10. Velocity, headway, and acceleration responses of a (5 + 1)-car vehicle string with human parameters α = 0.6[1/s], β = 0.9 [1/s], τ = 0.4 [s]
and communication delay σ = 0.4 [s]. The black solid curves represent the case with no connectivity when the tail vehicle is also human-driven. The green
solid curves correspond to the string stable design of the CCC vehicle (γ1 = 0.04 [1/s2], γ2 = 0.30 [1/s2], see point A in Fig. 7(b)). The red solid curves
correspond to the string unstable design of the CCC vehicle (γ1 = 0.04 [1/s2], γ2 = 0.60 [1/s2], see point B in Fig. 7(b)). The thin grey curves are for
non-CCC vehicles, and the black dashed curve is the velocity perturbation of the head vehicle.

Fig. 11. Velocity, headway, and acceleration responses of a (5 + 1)-car vehicle string in a real-traffic scenario. Notations and parameters are the same as in
Fig. 10.

In Fig. 10(c) the accelerations of the CCC vehicle (red and
green solid curves) are significantly smaller compared with
the case with no connectivity (black solid curve), where the
acceleration gets excessively large. As the road surface and
the vehicle powertrain are often not able to provide such large
acceleration/deceleration, the vehicle in general may not be
able to remain safe.

To test the proposed CCC controller in a more realistic traf-
fic setting, we consider a velocity profile of the leading vehicle
that contains deviations from the uniform flow with constant
acceleration and a change of equilibrium points; see the black
dashed curve in Fig. 11(a). Here we use the same parameters as
in Fig. 10. Indeed, the velocity perturbation of the CCC vehicle
is larger when a string unstable design is adopted (compare the
red and green solid curves). However, even with string unstable
design, the performance of CCC vehicles is still significantly
better than if there was no connectivity (compare the red
and the black solid curves). Especially that the acceleration
response of the tail vehicle without connectivity (black solid
curve) may exceed the limit of friction the road could provide,
as it has to engage emergency maneuver for active safety.
By exploiting the information of multiple vehicles ahead, CCC
can be used to avoid such safety-critical situation.

VI. CONCLUSION

In this paper, we proposed a connected cruise control
design based on linear quadratic regulation and analyzed the
performance of the arising connected vehicle system where

both automated and human-driven vehicles were allowed.
By decomposing the optimization problem we showed that
CCC can be designed sequentially as we incorporate signals
from more and more vehicles ahead. Moreover, we showed
that the gains decrease with the number of cars between the
CCC vehicle and the signaling vehicle even when hetero-
geneity of human drivers is taken into account. This implies
that a connected vehicle system using the proposed controller
can gracefully degrade into smaller systems while maintaining
certain optimality. Our analytical method significantly reduces
the complexity of CCC design and is scalable for large
connected vehicle systems.

We evaluated the head-to-tail string stability and summa-
rized the results using stability charts. We showed that the
optimized CCC is able to stabilize otherwise string unstable
systems when the weights on the headway and velocity errors
are chosen appropriately. Our design was also shown to
be robust against variations of human parameters and was
extended to the nonlinear level. The performance of our
CCC strategy has been validated using numerical simulations.
However, in order to be able to implement the results in
real traffic scenarios experimental validation will be necessary
which is left for future research.

APPENDIX

A. The Solution of LQR Problem With Delay

Here we present a detailed solution to the LQR problem
with time delay. Since (20,21) is constructed to include
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disturbance φ(t) in the LQR format, and the optimal con-
troller (27) is given using partitioned matrices (26), we write
(24,25) into four groups, where P1(t), Q1(t, θ), R1(t, ξ, θ)
are independent from the disturbance and can be solved using
only the coefficient matrices A,B,D and the weighting factor
�. That is, for the first group we obtain the PDE

−Ṗ1(t) = ATP1(t)+ P1(t)A − P1(t)DDTP1(t)

+ Q1(t, 0)+ QT
1 (t, 0)+ � ,

(∂θ − ∂t )Q1(t, θ) = (
AT−P1(t)DDT)

Q1(t, θ)+R1(t, 0, θ),

(∂ξ + ∂θ − ∂t )R1(t, ξ, θ) = −QT
1 (t, ξ)DDTQ1(t, θ) , (65)

with boundary conditions

P1(tf) = 0 ,

Q1(tf , θ) = 0 , Q1(t,−τ ) = P1(t)B ,

R1(tf , ξ, θ) = 0 , R1(t,−τ, θ) = BTQ1(t, θ) . (66)

Using P1(t) and Q1(t, θ) obtained from (65,66), we can
calculate Q2(t, θ) and R2(t, ξ, θ) by solving

(∂θ − ∂t )Q2(t, θ) = (
AT−P1(t)DDT)

Q2(t, θ)+R2(t, 0, θ),

(∂t − ∂ξ − ∂θ )R2(t, ξ, θ) = QT
1 (t, ξ)DDTQ2(t, θ) , (67)

with boundary conditions

Q2(tf , θ) = 0 , Q2(t,−τ ) = 0 ,

R2(tf , ξ, θ) = 0 , R2(t,−τ, θ) = BTQ2(t, θ) . (68)

Note that the disturbance φ(t) does not appear in (67) either.
As a matter of fact, (67,68) result in Q2(t, θ) ≡ 0 and
R2(t, ξ, θ) ≡ 0.

The dynamics of P2(t) and Q3(t, θ) are driven by the
disturbance φ(t):

−Ṗ2(t) = (
AT − P1(t)DDT)

P2(t)+ P1(t)φ(t)

+ Q2(t, 0)+ QT
3 (t, 0) ,

(∂θ−∂t)Q3(t, θ)=
(
φT(t)−PT

2 (t)DDT)
Q1(t, θ)+RT

2 (t, θ, 0),

(69)

with boundary conditions

P2(tf) = 0 ,

Q3(tf , θ) = 0 , Q3(t,−τ ) = PT
2 (t)B . (70)

Although P4(t), Q4(t, θ), R4(t, ξ, θ) do not appear in the
optimal control (27), they appear in the minimal cost function,
and are given by the PDE

−Ṗ4(t) = φT(t)P2(t)+ P3(t)φ(t) − P3(t)DDTP2(t)

+ Q4(t, 0)+ QT
4 (t, 0) ,

(∂θ − ∂t )Q4(t, θ) = (
φT(t)−P3(t)DDT)

Q2(t, θ)

+ R4(t, 0, θ),

(∂ξ + ∂θ − ∂t )R4(t, ξ, θ) = −QT
2 (t, ξ)DDTQ2(t, θ) , (71)

with boundary conditions

P4(tf) = 0 ,

Q4(tf , θ) = 0 , Q4(t,−τ ) = 0 ,

R4(tf , ξ, θ) = 0 , R4(t,−τ, θ) = 0 . (72)

B. The Distribution Kernels

Here we provide the constants that appear in the expression
of fi (θ), gi(θ), i = 1, . . . , n in (50) using (44,48,52). For
i = 1 (52) corresponds to

a10 = a11 = a12 = 0, b10 = b11 = b12 = 0 . (73)

For i = 2, . . . , n we write in (44) that

eÂ1(θ+τ ) = KeĴ1(θ+τ )K−1 , (74)

where the Jordan form Ĵ1 contains the eigenvalues of Â1:

λ1,2 = 1

2

(
−

√
γ1+γ2+2N∗√γ1 ±

√
γ1+γ2−2N∗√γ1

)
,

(75)

and the real part of λ1, λ2 are smaller than zero (which is
ensured by the closed-loop plant stability of LQ design). In
most cases Â1 is diagonalizable, that is, Ĵ1 = diag([λ1, λ2]).
In the special case γ2 = 2N∗√γ1 − γ1, we have λ1 = λ2 and
Â1 may not be diagonalizable, yielding the nontrivial Jordan

form Ĵ1 =
[
λ1 1
0 λ1

]
.

Denote K =
[

k11 k12
k21 k22

]
, K−1 =

[
i11 i12
i21 i22

]
, then from (44,48)

we obtain
[

fi (θ) gi (θ)
] = [

fc(θ) gc(θ)
](

P1i B1 + P1(i−1)B2
)
, (76)

where

fc(θ) = (
tca + tcc(θ + τ )

)
eλ1(θ+τ ) + tcbeλ2(θ+τ ) ,

gc(θ) = (
sca + scc(θ + τ )

)
eλ1(θ+τ ) + scbeλ2(θ+τ ) , (77)

such that we have

tca = (k11 + k21)i11 , tcb = (k12 + k22)i21 ,

sca = (k11 + k21)i12 , scb = (k12 + k22)i22 ,

tcc =
{

0 , if Â1 is diagonalizable ,

(k11 + k21)i21 , if Â1 is not diagonalizable ,

scc =
{

0 , if Â1 is diagonalizable ,

(k11 + k21)i22 , if Â1 is not diagonalizable .

(78)

Substituting (17,77) into (76), we obtain (50) with the coeffi-
cients

ai0 = α(tcali1 + scali2) , bi0 = β(tcali1 + scali2) ,

ai1 = α(tccli1 + sccli2) , bi1 = β(tccli1 + sccli2) ,

ai2 = α(tcbli1 + scbli2) , bi2 = β(tcbli1 + scbli2) , (79)

where

li1 = −P1i [1, 1] − P1i [1, 2] + P1(i−1)[1, 2] ,
li2 = −P1i [2, 1] − P1i [2, 2] + P1(i−1)[2, 2] , (80)

for i = 2, . . . , n, and C[i, j ] stands for the element of C at
the i th row and j th column.
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C. The Contracting Map

To show that the feedback gains and distribution functions
decay exponentially with the car number, all eigenvalues of
M must be smaller than 1 in magnitude, cf. (46,47).

We assume diagonalizable Â1 and plug (74) into (47) to
obtain

M = (I ⊗ K)M̃(I ⊗ K−1) , (81)

where

M̃ =−
[

Ĵ1 − αeτ Ĵ1 −αeτ Ĵ1

N∗I − βeτ Ĵ1 Ĵ1 − βeτ Ĵ1

]−1[
0 αeτ Ĵ1

0 βeτ Ĵ1

]

. (82)

Indeed, the eigenvalues of M are the same as the eigenvalues
of M̃. It is evident that M̃ has two zero eigenvalues, while the
other two non-zero eigenvalues are

μ1,2 = − αN∗ − βλ1,2

λ2
1,2e−τλ1,2 − (α + β)λ1,2 + αN∗ , (83)

where λ1,2 are given in (75). That is, the recursive map (46,47)
is contracting if

|μ1| < 1, |μ2| < 1 . (84)

Consider plant stable human-driven vehicles where N∗ and
α, β are positive. We found that (84) holds in the string
stable region in the parameter space. Note that (83) bears an
interesting resemblance to H0(s) in (55), and still holds when
Â1 is not diagonalizable.

D. Robustness of CCC Against Other CCC Vehicles

Here we consider the scenario where vehicles 2 − n in
Fig. 2 are no longer homogeneous, that is, some of them
may have different human parameters or even become CCC
vehicles. To demonstrate the general influence of heterogeneity
among preceding vehicles on the CCC design, we assume the
dynamics of vehicle i is

ḣi (t) = vi+1(t)− vi (t) ,

v̇i (t) =
n∑

j=i

(
αi j

(
Vj (h j (t−τ ))−v j (t−τ )

) + βi j ḣ j (t−τ )
)
,

(85)

for i = 2, . . . , n, where αi j , βi j are vehicle i ’s feedback gains
on motion signals from vehicle j , cf. (2,64).

Thus, the dynamics of the connected vehicle system is still
described by (15), with a new coefficient matrix

B =

⎡

⎢⎢
⎢
⎢
⎢
⎣

0 B12 B13 · · · B1n

B22 B23 · · · B2n
. . .

...
B(n−1)(n−1) B(n−1)n

Bnn

⎤

⎥⎥
⎥
⎥
⎥
⎦
, (86)

where

B1i =
[

0 0
α2i β2i

]
, Bii = −

[
αii βii

αii βii

]
, i = 2, · · · , n,

Bi j =
[ −αi j −βi j

α(i+1) j − αi j β(i+1) j − βi j

]
, j = i + 1, · · · , n ,

(87)

cf. (16,17).

Fig. 12. The optimized headway and velocity gains α1i , β1i , i = 1, . . . , n
of the CCC vehicle in a (10 + 1)-car system for homogeneous (blue crosses)
and heterogeneous (green diamonds) human gains as indicated. The other
parameters are the same as in Fig. 4.

Since the matrix B is still upper-triangular, the optimal
control design (31,32,34) can be decomposed as before. Now
instead of (44,46,47), we have

Q1i(θ) =
i∑

k=1

eÂ1(θ+τ )P1kBki , (88)

and

vec(P1i ) =
i−1∑

k=1

Mikvec(P1k), (89)

for i = 2, . . . , n, where

Mik = −(I ⊗ Â1 + AT
1 ⊗ I + BT

ii ⊗ eτ Â1)−1(BT
ki ⊗ eτ Â1).

(90)

This means that the maps between vec(P1i ), i = 2, . . . , n, and
vec(P11) are determined by Bki , k = 2, . . . , i − 1, i.e., by the
connectivity structure between vehicle 1 and vehicle i . Thus,
the connectivity structure among vehicles farther downstream
still does not influence feedback gains on existing feedback
terms of the CCC controller.

We first demonstrate only the influence of heterogeneous
human parameters. In this case, the coefficient matrix B still
has the same structure is in (16), i.e., Bi j �= 0 only for j =
i + 1. Thus, there is only one term Mi(i−1) left in the right-
hand side of (89), and it still defines a recursively contracting
map given plant stable human parameters in (90).

As an example, we take a (10 + 1)-car connected system,
keep the design parameters γ1 = 0.04 [1/s2], γ2 = 0.30 [1/s2]
and human reaction time τ = 0.4 [s] as in Fig. 4, but
increase/decrease the human gains for vehicles 2, 3, 4, 5 as
indicated in Fig. 12. The blue crosses correspond to the
homogeneous system (cf. Fig. 4), while the green diamonds
correspond to the heterogeneous system. The gains α11, β11
are the same for both cases, because they do not depend
on parameters of preceding vehicles. Although α1i , β1i ,
i = 2, . . . , n differ between the homogeneous and hetero-
geneous cases, the difference is only noticeable for i = 2, 3,
even though α44, β44, α55, β55 differ significantly. This is
because the contracting map (89,90) forces the gains to
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Fig. 13. The optimized headway and velocity gains α1i , β1i , i = 2, . . . , n of
the CCC vehicle in a (10+1)-car connected vehicle system. The blue crosses
denote gains obtained with homogeneous human-driven vehicles, while the
green squares denote the case when vehicle 3 uses additional feedback from
vehicle 5, with gains α35 = 0.9 [1/s] and β35 = 0.9 [1/s]. The other
parameters are the same as in Fig. 4.

decrease for signals coming from farther downstream, and
then heterogeneity of vehicles further away has less significant
impact on the CCC vehicle.

We then consider the robustness of the CCC design against
extra connectivity links among preceding vehicles. In Fig. 13,
the blue crosses still show the gains in a (10 + 1)-car system
with homogeneous human-driven vehicles (cf. Fig. 4), while
the green squares depict the case when vehicle 3 is also using
motion information of vehicle 5, with feedback gains
α35 = 0.6 [1/s] and β35 = 0.9 [1/s]. Notice that the gains
α1i , β1i of the CCC controller do not change for i = 1, . . . , 4.
While α15 and β15 change considerably, as i increases further
the changes in α1i , β1i decay exponentially. These case studies
demonstrate that our proposed algorithm is robust against
heterogeneity among preceding vehicles.
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control of SARTRE automated platoon vehicles,” in Proc. 19th ITS
World Congr., 2012, pp. 22–26.

[8] B. van Arem, C. J. G. van Driel, and R. Visser, “The impact of
cooperative adaptive cruise control on traffic-flow characteristics,” IEEE
Trans. Intell. Transp. Syst., vol. 7, no. 4, pp. 429–436, Dec. 2006.

[9] M. di Bernardo, A. Salvi, and S. Santini, “Distributed consensus strategy
for platooning of vehicles in the presence of time-varying heterogeneous
communication delays,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1,
pp. 102–112, Feb. 2015.

[10] V. Milanes, J. Alonso, L. Bouraoui, and J. Ploeg, “Cooperative maneu-
vering in close environments among cybercars and dual-mode cars,”
IEEE Trans. Intell. Transp. Syst., vol. 12, no. 1, pp. 15–24, Mar. 2011.

[11] J. Ploeg, N. van de Wouw, and H. Nijmeijer, “Lp string stability
of cascaded systems: Application to vehicle platooning,” IEEE Trans.
Control Syst. Technol., vol. 22, no. 2, pp. 786–793, Mar. 2014.

[12] J. Ploeg, E. Semsar-Kazerooni, G. Lijster, N. van de Wouw, and
H. Nijmeijer, “Graceful degradation of cooperative adaptive cruise
control,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1, pp. 488–497,
Feb. 2015.

[13] J. Ploeg, D. P. Shukla, N. van de Wouw, and H. Nijmeijer, “Controller
synthesis for string stability of vehicle platoons,” IEEE Trans. Intell.
Transp. Syst., vol. 15, no. 2, pp. 845–865, Apr. 2014.

[14] M. Wang, W. Daamen, S. P. Hoogendoorn, and B. van Arem, “Rolling
horizon control framework for driver assistance systems. Part II: Coop-
erative sensing and cooperative control,” Transp. Res. C, vol. 40,
pp. 290–311, Mar. 2014.

[15] Y. Zheng, S. E. Li, J. Wang, D. Cao, and K. Li, “Stability and scalability
of homogeneous vehicular platoon: Study on the influence of informa-
tion flow topologies,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 1,
pp. 14–26, Jan. 2016.

[16] G. Orosz, “Connected cruise control: Modelling, delay effects, and
nonlinear behaviour,” Vehicle Syst. Dyn., vol. 54, no. 8, pp. 1147–1176,
2016.

[17] L. Zhang and G. Orosz, “Motif-based design for connected vehicle
systems in presence of heterogeneous connectivity structures and time
delays,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 6, pp. 1638–1651,
Jun. 2016.

[18] G. Orosz, R. E. Wilson, and G. Stépán, “Traffic jams: Dynamics and
control,” Philos. Trans. Roy. Soc. A, vol. 368, no. 1928, pp. 4455–4479,
2010.

[19] J. I. Ge and G. Orosz, “Dynamics of connected vehicle systems with
delayed acceleration feedback,” Transp. Res. C, Emerg. Technol., vol. 46,
pp. 46–64, Sep. 2014.

[20] W. B. Qin, M. M. Gomez, and G. Orosz, “Stability and frequency
response under stochastic communication delays with applications to
connected cruise control design,” IEEE Trans. Intell. Transp. Syst.,
vol. PP, no. 99, pp. 1–16. [Online]. Available: http://dx.doi.org/10.1109/
TITS.2016.2574246

[21] S. S. Avedisov and G. Orosz, “Nonlinear network modes in cyclic
systems with applications to connected vehicles,” J. Nonlinear Sci.,
vol. 25, no. 4, pp. 1015–1049, Aug. 2015.

[22] J. I. Ge and G. Orosz, “Optimal control of connected vehicle systems,”
in Proc. 53rd IEEE Conf. Decision Control, Dec. 2014, pp. 4107–4112.

[23] D. Helbing, “Traffic and related self-driven many-particle systems,” Rev.
Mod. Phys., vol. 73, no. 4, pp. 1067–1141, 2001.

[24] K. Nagel, P. Wagner, and R. Woesler, “Still flowing: Approaches to
traffic flow and traffic jam modeling,” Oper. Res., vol. 51, no. 5,
pp. 681–710, 2003.

[25] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states
in empirical observations and microscopic simulations,” Phys. Rev. E,
vol. 62, no. 2, pp. 1805–1824, 2000.

[26] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama,
“Dynamical model of traffic congestion and numerical simulation,” Phys.
Rev. E, vol. 51, pp. 1035–1042, Feb. 1995.

[27] R. Herman, E. W. Montroll, R. B. Potts, and R. W. Rothery, “Traffic
dynamics: Analysis of stability in car following,” Oper. Res., vol. 7,
no. 1, pp. 86–106, 1959.

[28] D. C. Gazis, R. Herman, and R. W. Rothery, “Nonlinear follow-the-
leader models of traffic flow,” Oper. Res., vol. 9, no. 4, p. 545–567,
1961.

[29] P. A. Ioannou and M. Stefanovic, “Evaluation of ACC vehicles in mixed
traffic: Lane change effects and sensitivity analysis,” IEEE Trans. Intell.
Transp. Syst., vol. 6, no. 1, pp. 79–89, Mar. 2005.

[30] S. Krauss, P. Wagner, and C. Gawron, “Metastable states in a micro-
scopic model of traffic flow,” Phys. Rev. E, vol. 55, no. 5, pp. 5597–5602,
1997.

[31] R. Wiedemann, Simulation des Strassenverkehrsflusses (Institut Fur
Verkehrswesen Der). Karlsruhe, Germany: Univ. Karlsruhe, 1973.

[32] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of SUMO—Simulation of urban mobility,”
Int. J. Adv. Syst. Meas., vol. 5, nos. 3–4, pp. 128–138, 2012.

[33] Q. Yang and H. N. Koutsopoulos, “A microscopic traffic simulator for
evaluation of dynamic traffic management systems,” Transp. Res. C,
Emerg. Technol., vol. 4, no. 3, pp. 113–129, Jun. 1996.

[34] S. Hoogendoorn and R. Hoogendoorn, “Calibration of microscopic
traffic-flow models using multiple data sources,” Philos. Trans. Roy. Soc.
London A, Math. Phys. Sci., vol. 368, no. 1928, pp. 4497–4517, 2010.

[35] P. Wagner, “Fluid-dynamical and microscopic description of traffic flow:
A data-driven comparison,” Philos. Trans. Roy. Soc. London A, Math.
Phys. Sci., vol. 368, no. 1928, pp. 4481–4495, 2010.



2070 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 8, AUGUST 2017

[36] P. Seiler, A. Pant, and K. Hedrick, “Disturbance propagation in vehicle
strings,” IEEE Trans. Autom. Control, vol. 49, no. 10, pp. 1835–1842,
Oct. 2004.

[37] C. R. He, H. Maurer, and G. Orosz, “Fuel consumption optimization
of heavy-duty vehicles with grade, wind, and traffic information,”
J. Comput. Nonlinear Dyn., vol. 11, no. 6, p. 061011-1–061011-12,
2016.

[38] V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differ-
ential Equations. Norwell, MA, USA: Kluwer, 1992.

[39] D. W. Ross and I. Flügge-Lotz, “An optimal control problem for systems
with differential-difference equation dynamics,” J. Control, vol. 7, no. 4,
pp. 609–623, 1969.

[40] F. Bai and H. Krishnan, “Reliability analysis of DSRC wireless commu-
nication for vehicle safety applications,” in Proc. IEEE Intell. Transp.
Syst. Conf., Sep. 2006, pp. 355–362.

Jin I. Ge received the bachelor’s degree in trans-
portation engineering and the master’s degree in
automotive engineering from Beijing University of
Aeronautics and Astronautics, China, in 2010 and
2012, respectively. She is currently working toward
the Ph.D. degree in mechanical engineering with
University of Michigan, Ann Arbor. Her research
focuses on dynamics and control of connected vehi-
cles, optimal control, and time delay systems.

Gábor Orosz received the M.Sc. degree in engi-
neering physics from Budapest University of Tech-
nology and Economics, Hungary, in 2002 and the
Ph.D. degree in engineering mathematics from Uni-
versity of Bristol in 2006. He held postdoctoral
positions with University of Exeter and University of
California, Santa Barbara. He has been an Assistant
Professor in mechanical engineering with University
of Michigan, Ann Arbor, since 2010. His research
focuses on nonlinear dynamics and control, time
delay systems, networks and complex systems with

applications on connected and automated vehicles, and biological networks.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


