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Abstract

In this paper we build a bridge between feed-forward neural networks and delayed dynamical sys-
tems. As an initial demonstration, we capture the car-following behavior of a connected automated
vehicle that includes time delay by using both simulation data and experimental data. We construct
a delayed feed-forward neural network (DFNN) and introduce a training algorithm in order to learn
the delay. We demonstrate that this algorithm works well on the proposed structures.

Keywords: delayed feed-forward neural network, car-following, connected automated vehicle,
time delay system

1. Introduction

Neural networks are widely used when models are hard to obtain through first principles. However,
little effort has been made to incorporate time delays into such networks. This is in contrast with
the dynamical systems literature, where many models have been augmented with time delays and
it has been shown that even simple systems may exhibit rich dynamics Molnar et al. (2017); Orosz
et al. (2009). This suggests that adding time delays to neural networks of simple structure may
allow us to capture a large variety of behaviors. This may provide a viable alternative to increasing
the complexity of the networks (number of layers and number of neurons). Delays have been in-
corporated in neural network structures to improve the performance of neural convolution models
de Vries and Principe (1990) in applications such as word and speech recognition Tank and Hopfield
(1987); Lang et al. (1990). The delays in those networks are used for concentrating information in
time, while the structures and cost functions become relatively complicated. We consider neural
networks with delays from different perspectives: learning the delay explicitly from data, utilizing
simple network structures, and imposing a physics based model on the neural network.

As a first step we consider a simple delayed dynamical system and reformulate it as a delayed
feed-forward neural network (DFNN). Then, we establish a training algorithm that allows us to learn
the time delay in the network. As an example we consider the dynamics of a connected automated
vehicle (CAV) following a connected human-driven vehicle (CHV) Zhang and Orosz (2016); Ge
et al. (2018). In this case the longitudinal controller of the CAV is known and we have an estimate
of the time delay that arises from the powertrain and from the wireless communication between the
CAV and the CHV. We demonstrate that the DFNN reproduces the system dynamics when the delay
is selected appropriately and that our training algorithm converges. We remark that there has been
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Figure 1: (a) Car-following scenario considered in the paper; (b, ¢, d) Nonlinearities in the control
law of the CAV.

efforts in capturing and controlling car-following dynamics using neural networks Wu et al. (2017);
Panwai and Dia (2007); Wang et al. (2018); Wu and Work (2018) but, to the best of our knowledge,
our work is the first one that explicitly incorporates a trainable time delay in such systems.

The paper is constructed as follows. In Sec. 2 we describe the car-following dynamics and the
corresponding datasets. In Sec. 3 we construct two delayed feed-forward neural networks that are
equivalent to the physical system at the linear and nonlinear levels, respectively. Section 4 is devoted
to the delay searching algorithm while Sec. 5 summarizes the key results.

2. Car-following Dynamics and Data

In this section, we introduce the car-following scenario for which we demonstrate our methods. We
show the experimental data we use for training and describe a first principle model that can be used
to reproduce the data.

The experimental data is described in detail in Avedisov et al. (2018) where a connected au-
tomated vehicle (CAV) interacted with connected human-driven vehicles (CHVs) on a virtual ring.
By controlling the length of the virtual ring, the average spacing h* between vehicles was set, which
was related to traffic density. Here we only focus on the case where the CAV responds to a single
CHYV immediately ahead, see Fig. 1 (a) with the velocities v, vy, and the headway h indicated. We
have ten runs with different average spacing from h* = 5m to A* = 50 m. The time is discretized
as t/ = jAt, with At = 0.1s. The length of the data in the ten runs varies between 99 s and 200s.

The longitudinal dynamics can be modeled by

j Gmin U < Gmin,
h(t) = e t) —v(t), ) .
B(0) = sat(ut — 7)), T i S 1)

Qmax U > Gmax,

where the dot represents the derivative with respect to time ¢. The acceleration was assigned by the
controller:

u(t) = a(V () = v(®)) + B(W (L) — v(t)), @

0 h < hSt7 <
v v Umax,
V(h) = K(h —hgt) hs <h< hgos W (o) = { L L =
Umax UL > Umax;
Umax h > hgo,

where o and (3 are control gains and the nonlinearites are shown in Fig. 1 (b,c,d). We con-
sider the parameters o = 04571 B = 0557 k = 0657, hgg = HmM, Vmax = 30m/s,
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Figure 2: (a) Velocity and (b) headway in three sets of data (h* = 45m).

hgo = hst + Umax/k = 551, Amin = —7 m/s?, amax = 3m/s? which were used by the CAV’s
controller in the experiments, while 7 ~ 0.6 s is the approximate time delay associated with com-
munication and actuation through the powertrain.

Note that all nonlinearities in this model can be represented as the shifted and scaled counterpart
of the saturation function

-1 s< -1,
fls)=qs —1<s<1, (3)
1 s> 1.

When incorporating this as activation function into neural network, we hope to learn the car fol-
lowing behavior of the CAV. In order to understand the role of the nonlinearities in (2) we also
investigate an affine model where nonlinearities are neglected:

u(t) = a(r((t) = ha) = v(®)) + 8w 1) - o(1)). 4)

We use the velocity profile of the CHV and the initial condition of the CAV from real experimental
data to simulate (1, 2) and (1, 4). This way, we create two simulation datasets (each of them
containing 10 runs with different h*). Thus, including the real experimental data itself, we have
three datasets prepared for training, validation and testing, which are depicted for the run h* = 45m
in Fig. 2 (a,b). We test the networks and algorithms on the three datasets separately, using eight runs
for training, one for validation (h* = 25 m) and one for testing (h* = 35 m).

3. Delayed Feed-forward Neural Networks (DFNNs)

In this section, we build delayed feed-forward neural networks to capture the car-following behavior
of the CAV. We use the inputs h, vy, and v for the DFNN to predict the acceleration & of the CAV.

3.1. Data processing

We first normalize the inputs and output to scale them approximately between —1 and 1. In partic-
ular we define:

h=gn(h—h)-1, oL = gv(vL—2v) -1, U= gy(v—2)—1, a=gala—a)—1, (5)

and denote the scaled predicted acceleration as a. The scaling factors are defined as g, = 2/(h—h),
gy = 2/(V—2), ga = 2/(@—a). Weuse h = 150m, h = 0m, v = 30m/s,v = 0m/s,@ = 3m/s>,
a = —7m/s? based on the features of the data and the saturation functions defined above.
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Figure 3: Structures of two DFNNSs used in the paper: (a) no-hidden-layer DFNN; (b) one-hidden-
layer DFNN.

3.2. DFNN structures

We propose two simple neural networks with delay using the saturation function (3) as the activation
function; see Fig. 3. The simplified network with no hidden layer (panel (a)) and the one with one
hidden layer (panel (b)) correspond to (1, 4) and (1, 2), respectively.

Since the data is available in discrete time, we define the sampled quantities as v/ = y(jAt)
and /=7 = y((j — o) At), where the delay is 7 = oAt. The no-hidden-layer DFNN is given by

s/ =Wal™7 + b, al = f(s), (6)

where the weights are collected by W = [wy, wa, ws] and b is a scalar bias. We can rewrite (6) as

a(t) = glaf (wl <gh(h(t—7) —ﬁ) - 1> + ws <QU<UL(t_T) —Q> - 1>
+w3<gv<v(t—7)—v> —1> +b> +gla+a,

which is equivalent to (1, 4) when v = 0, U = vax, @ = Amin, and @ = ayax. Then we can interpret
the weights and bias of the DFNN as

\% v w
a:_(w3+w2)97’ ﬂ:w2977 K‘:_ilgiha
Gga Gga w3 + w2 gy )
1
het = (wl(ghh"i‘ 1) + w2(gvy+ 1) + w3(gvg+ 1) — (9@@ + 1) — b) " .
1

Similarly, the formulas of the one-hidden-layer DFNN are written as

s{ = Wlxjfa + by, 3:% = F(s{), s% = ng% + b, al = f(sjz), 9)

where W1 = diag[wn, w12, wlg], b1 = [blla 0, O]T, WQ = [U}21, w22, w23], b2 = O, and F() means
that f(-) is only applied on the first two neurons. Again by rewriting (9) akin to (1, 2), we obtain

a(t) = glf <w21f<w11 (gh (h(t—7)—h) — 1) + b11> + w22f<w12 (gv (oLt —7) —v) — 1))

a

+ wozwi3 <9v (U(t —T)— Q) - 1)) + e +a, (10)

9a
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and the parameter equivalency is given by

9v W21W11 gn
ﬁ:wgzwlgf, R = — —, (11)
Ga, Ja Wo3W13 + W22W12 Gy
1

ghw21wWi11

Iy

a = —(wezwi3 + wawi2)

hst = (warwi1(gnh+1)+wawiz(gvv+1)+wazwiz(gvv+1) — (14 gaa) —br1war )

3.3. Cost function and training algorithm for fixed delay

We use the mean square error between scaled training acceleration a and scaled predicted accelera-
tion @ as cost function, i.e, 1 N L
— &l &
E*N—U,Z (@ — a’)?, (12)
j=o+1

where NV is the number of data points. To obtain a physically meaningful quantity we define

E= \/E /ga that has the unit m/s?. The scaled error E is used for training and the error E is
used in the plots below. For a fixed delay, gradient descent can be used to train the weights and
biases in the network. Using the learning rate 7, the weights and biases in iteration n + 1 can be
expressed as

OF OF

Wi(n+1) = Wi(n) _nﬁWi (n), bi(n+ 1) = b;(n) —nabi (n). (13)
For the no-hidden-layer DFNN we have
OE i —2(&l — &) Of(s7) B OE XN: —2(& — &) af(s%) 04
ow _j:a+1 N-—-o dsi OW’ ob Pt N-—o s’

while for the one-hidden-layer DFNN we obtain

0 _ i —2(@l — &) f(s}) sh O _ i —2& — @) 0f(s}) ;. OF(s1) s
8W2 . N —o 85'7 81/‘/27 861 N —o 83] 83] 8()1’
j=o+1 2 2 1
OE i —2(aj—éj)af(sg)wzap(s{) 5]
oWy N-—o 85% 85{ oWy’

j=0o+1

15)
j=o+1

where we write 0 in the gradient if the corresponding weight or bias is fixed to 0, and we interpret
row and column vectors such that compatibility is kept with (13).

We stop the training process when the validation error starts to increase and we simulate the
car-following dynamics using the acceleration provided by trained network (using the initial states
and the CHV’s velocity from the testing data). We use the training error, equivalent parameters and
simulation results in acceleration, velocity and headway to evaluate the network performance.

3.4. Training results and error-delay relationship

We train the networks for various fixed delay values. For each delay, we train the network ten times
and plot the training error F at the end of the training process.

The corresponding errors are depicted as a function of the delay in Fig. 4 for the three different
sets of data and n = 0.1. Panel (a) shows the results for the no-hidden-layer DFNN. This network
is able to reproduce the behavior of the affine simulation data given by (1, 4) for 7 = 0.6 s due to
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Figure 4: Error-delay relationships for: (a) no-hidden-layer DFNN; (b) one-hidden-layer DFNN.

Datasets - No-hidden-layer One-hidden-layer
E «o I} K hst E « I} K het
Affine 0 | 028 044 044 0.61 529|030 041 042 0.61 537
Simulation Data | 0.6 | 0.03 0.39 0.50 0.60 498 | 0.04 0.39 0.50 0.60 4.98
Nominal 0 | 041 031 046 0.60 5.12 | 027 042 045 0.61 529
Simulation Data | 0.6 | 0.30 0.24 0.51 0.59 453 ]0.03 039 050 0.60 498
Real 0 | 065 008 026 051 276|047 025 025 0.59 5.12
Experimental Data | 0.8 | 0.50 0.09 034 048 040|029 023 034 057 445

Table 1: Training results of two DFNNs with different delays and data

the equivalency explained above; see blue diamonds. Once it is used for the nominal simulation
data given by (1, 2), the error increases due to the nonlinearities but the minimum is still at the
delay value used for the simulations; see green stars. In case of the real experimental data the trends
are still kept. However, the error further increases and the minimum occurs for higher delay; see
red circles. Panel (b) depicts the results for the one-hidden-layer DFNN. This network is able to
reproduce the affine simulation data as well as the nominal simulation data. However, the algorithm
may be trapped in local minima as shown by the symbols at the top of the panel. With the help
of embedding suitable nonlinearities, the network can also achieve better performance on the real
experimental data but local minima may still show up.

The equivalent parameters are shown in Table 1, comparing the case of the appropriately chosen
delay to the case of no delay. The delay does not affect x much but affects « and S related to the
transient dynamics. Meanwhile, the structure affects o and (3 significantly. The no-hidden-layer
DENN with appropriately chosen delay accurately captures the model parameters in case of the
affine simulation data, while the one-hidden-layer DFNN has higher parameter accuracy for the
nominal simulation data and real experimental data.

4. Delay-searching Algorithm

The algorithm presented in the previous section is clearly not scalable in the case of multiple delays.
This demands an algorithm that allows one to train the delays in the system.

4.1. Gradient descent method for delay-searching

Again we apply gradient decent method for all parameters that now also include the delay o. We
can get the gradient information with respect to ¢ for the no-hidden-layer DFNN as
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OE <N OE 9&F 9st 0zh0 SN —2(ad — &) 9f(s) .
g g v - _gi-o
0o Z 94k Osk Oxk—9  do Z N—o 0sJ W(=2""), (16)
k=o+1 j=o+1
and for the one-hidden-layer BFNN as . '
OE L =2 —al) df(sh)  OF(s)) . i,

where £:/77 = 7=+ — £3=7_ Note that o is a positive integer, and thus, we use

o(n+1) = max (round <o(n) - nggf(n)),0> (18)

at each iteration, where the learning rate 7, is different from the one used for the weights and biases.
Note that the length of the data in each run is much longer than the delay, so we neglect the effect
of the normalizing term N — ¢ in the gradient. The delay-searching algorithm is summarized as
Algorithm 1.

Algorithm 1 Gradient descent with delay searching

Data: Training data and validation data

Result: Learn W;, b; and o from data

normalize data and get derivatives

set maximum iteration number, maxiter

initialize W;(1), b;(1) (uniform distribution over [0, 1]) and o(1) =0
for n = 1,..., maxiter do

shift data, calculate training error Ey,(n) and validation error E., (n)

if n. > 100 and Eyy(n — 100) < Ey,(n) then

| break loop
else

| get gradient information and update parameters W;(n + 1), b;(n 4+ 1) and o(n + 1)
end

end
let m = arg minge1 2. maxiter Eva(n), then W; = W;(m), b; = b;(m), o = o(m)

4.2. Implementation and results

To test the delay-searching algorithm, we train the two DFNNs on the three sets of data. The learning
rates in the training process are set as = 0.1 and 7, = 2000. We show how the training error
decreases and how the delay changes with the number of iterations in Fig. 5 (a) and (b), respectively.
Observe that for each jump in the delay, the training error decreases discontinuously. Note that the
delay-searching algorithm is able to automatically find the delay value associated with the minimum
error in Fig. 4.

Finally, we evaluate the learning performance by simulating the equivalent dynamical system
given by the parameters of the trained network. We define the simulation error similarly to (12)
as Es = \/ Z;V: gp1(@d — al)2/(N — o), where as is the acceleration in the simulation. The sim-
ulation results for the testing data h* = 35m are shown in Fig. 6. The no-hidden-layer DFNN
learns the correct delay for the two sets of simulation data, but it fails to capture the dynamics in

the first few seconds where the nonlinearities are activated in the nominal simulation data. The one-
hidden-layer DFNN learns the delay with minimum training error, and it also learns the behavior in
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Figure 5: Error in one-hidden-layer DFNN trained on real experimental dataset: (a) three errors as
a function of iteration; (b) the training error and the delay as a function of iteration.
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Figure 6: Simulation results for the trained DFNNs

the first few seconds in nominal simulation data due to the saturation functions in the hidden layer.
The one-hidden-layer DFNN achieves a much smaller the error when trained on experimental data,
though the error is larger compared to when it is trained on simulation data. This is likely related to
the unmodeled dynamics of the vehicle in (1).

5. Summary

We have built a connection between feed-forward neural networks and delayed dynamical systems
by developing equivalent delayed feed-forward neural networks (DFNNs). We have explained the
relationship between training error and delay during learning a car-following model. Based on this
relationship, we have proposed a delay-searching algorithm to learn the delay together with the other
parameters. We have presented training and simulation results to show successful implementations
of this algorithm on two different DFNNs using the car-following data of a connected automated
vehicle.

In the future, we will extend the algorithm to cases with multiple delays in larger neural network.
Finally we will explore delay searching in systems integrating physics based models with data driven
based models Cheng et al. (2019); Zhou et al. (2017); Shi et al. (2019). We will also investigate
recurrent neural networks (RNNs), which are suitable for sequential inputs with dynamics.
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