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Abstract In this paper we propose a novel technique
to decompose networked systems and use this tech-
nique to investigate the dynamics of connected vehi-
cle networks with wireless vehicle-to-vehicle (V2V)
communication. We apply modal perturbation analy-
sis to approximate the modes of the perturbed network
about the modes of the corresponding cyclically sym-
metric network. By exploiting the cyclic symmetry, we
approximate the dynamics of a given mode by solv-
ing a small number of linear algebraic equations. We
apply this approach to decompose connected vehicle
networks into travelingwaveswhich allows us to assess
the impacts of long-range V2V communication on the
stability of traffic flow.

Keywords Connected vehicles · Cyclic systems ·
Perturbation analysis · Modal analysis

1 Introduction

The emergence of wireless vehicle-to-vehicle (V2V)
communication has opened up new frontiers in improv-
ing traffic flow of ground vehicles. Specifically, it was
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demonstrated that vehicles using wireless communica-
tion may significantly increase highway lane capacity
[28]. One of the benefits of V2V communication is the
ability of receiving information from multiple vehi-
cles, including those beyond the line of sight [5,15].
Multiple communication strategies may be realized to
achieve the desired system level behavior. A commonly
studied V2V communication strategy is when each
vehicle uses information from the vehicle immediately
ahead [13,19,24,25]. In this case wireless communi-
cation may be used to control the longitudinal motion
of the vehicle, to augment the information obtained
by the human operator, or by radar/lidar based sen-
sors. In [2,4,14,31,32] the benefits of developing more
generic communication strategies that exploit long-
range communications were emphasized. A common
V2V-based control strategy is called cooperative adap-
tive cruise control (CACC) [1,10,16,17,23,27] where
each vehicle uses the V2V information sent by a desig-
nated vehicles downstream while also monitoring the
motion of the vehicle immediately ahead. The CACC
strategy was experimentally verified for small platoons
of vehicles [10]. However, CACC requires a desig-
nated leader and all vehicles must be equipped with
sensors and wireless communication. That is, it may
be difficult to implement in mixed traffic scenarios
where only a few vehicles are equipped with V2V
communication.

To improve the smoothness of traffic flow using
V2Vcommunication, amodular communication-based
control strategy called connected cruise control (CCC)
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was put forward in [3,7,9,21,32] that exploits V2V
information from multiple vehicles ahead without a
pre-defined communication structure. The arising con-
nected vehicle network (CVN) may include CCC vehi-
cles as well as human driven vehicles, which may
or may not transmit information. The design of the
CVN with CCC vehicles allows one to improve mobil-
ity while accounting for the diversity of traffic. On
the other hand, allowing such diversity and flexibil-
ity requires techniques for continuously gauging the
performance of CVN.

To evaluate the performance of CVN we place
the vehicles on a circular road. This results in an
autonomous system, where onemay track traffic waves
and perform bifurcation analysis to quantify nonlinear
effects [3,6]. Furthermore, when the number of vehi-
cles on the ring road is sufficiently large, the behav-
ior of CVN was shown to be equivalent to that of a
chain of vehicles on a straight road [6,8]. To evaluate
the effect of CCC vehicles at a system level demands
methods that account for the heterogeneity of vehicles
and communication strategies of mixed traffic. Such
methods shall allow for reduction of the dynamics of
large vehicle systems without being computationally
demanding.

To simplify the analysis of a network of connected
nodes, we first consider a system with simple connec-
tivity structure and then use perturbation theory to ana-
lyze networks with more complex connectivity struc-
tures. In the literature, perturbation theory was used to
analyze the modes of near-cyclic systems dealing with
vibrations and localized modes of bladed disk assem-
blies [11,12,22,30]. In particular, closed-form analyt-
ical approximations for the eigenvalues and modes
of mistuned bladed disk assemblies were obtained
by expanding the equations around the corresponding
cyclically symmetric assembly. Suchperturbation anal-
ysis was more computationally effective compared to a
global eigenvalue analysis and also gave insight about
the effects of mistuning on the frequencies and mode
shapes for simple one-degree-of-freedom mechanical
systems with nearest neighbor interactions. Recently,
modal perturbation analysis was used in [29] to eval-
uate the performance of a CVN where each vehicle is
modeled by a delay differential equation. The technique
allowed the authors to characterize the modal stability
boundaries of a network of three connected vehicles
on the ring road. However, the analysis did not exploit
the cyclic structure of the network and such analysis

would become cumbersome (or impossible) for a larger
number of vehicles with more complex dynamics and
interaction laws.

In this paper we develop a network-based modal
analysis technique for perturbed cyclic systems with
an arbitrary number of nodes, multiple equations per
node and formultiple acyclic perturbations. By exploit-
ing the cyclic structure of the unperturbed system, we
use a series of steps to decompose the perturbed cyclic
system into decoupled modal equations. Such a modal
decomposition can be performed for systemswith arbi-
trary numbers of nodes and an arbitrary number of
perturbations without significant increase in complex-
ity. The linear stability conditions can then be eval-
uated independently for each mode, and the effects
of the perturbations on modal stability can be quan-
tified. In addition to being convenient for systems with
large numbers of nodes and acyclic perturbations, this
technique allows one to determine analytical relation-
ships between system parameters and modal behav-
ior, which would be extremely difficult and cumber-
some with traditional analytical and numerical sta-
bility analysis. We use the developed technique to
examine the linear stability of a CVN consisting of
both conventional vehicles and CCC vehicles and ana-
lyze how the gain parameter used for the long-range
connections shall be selected to stabilize the traffic
flow.

The layout of the paper is as follows. Themathemat-
ical model for the CVN is given in Sect. 2. A general
perturbation method to estimate the modal dynamics
of a cyclic system with a general class of acyclic per-
turbations is presented in Sect. 3. In Sect. 4 we utilize
this method to estimate the modal dynamics of CVN,
examine the stability of several specific connected vehi-
cle configurations and validate the developed modal
perturbation technique using numerical continuation.
Finally, we discuss the implications of the results and
lay out future research directions in Sect. 5.

2 Modeling connected vehicle networks

In this section we develop a model for connected vehi-
cle networks where vehicles may exploit information
frommultiple vehicles ahead, see Fig. 1a.Wefirst setup
a conventional vehicle network in which each vehi-
cle responds to the vehicle immediately ahead. Then
we select a set of vehicles that can broadcast their
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Fig. 1 a Side view of
connected vehicle network
including a transmitting
vehicle (right) a
conventional vehicle
(center) and a CCC vehicle
(left). b–d Four steps of
setting up an 11-car
connected vehicle network
on a ring road. b Vehicles
represented by black circles
are placed on a single lane
ring road. The black arrow
represents the clockwise
direction of the traffic flow.
The blue arrows represent
the flow of information in
the network. c Transmitting
vehicles (are highlighted as
green). d Some of the
transmitting vehicles
become CCC vehicles
(indicated by black crosses).
e V2V links are setup
between transmitting
vehicles and CCC vehicles
by assuming that each CCC
vehicle can receive
information from up to four
connected vehicles ahead of
it. (Color figure online)
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motion information viaV2Vcommunication (transmit-
ting vehicles) and we select a subset of these vehicles
that can receive V2V information and may act on that
using aCCCalgorithm. Finally, we setup theV2V links
based on proximity that represent the information flow
between connected vehicles.

Here, we adopt the car-following model described
in [3,8] to serve as a basis for developing a connected
vehicle network with V2V communication. We con-
sider identical vehicles traveling on a single lane so
that the i-th vehicle follows the i + 1-st vehicle; see
Fig. 1a. The position of the i-th vehicle is denoted by
si , its velocity is vi , and � represents the vehicle length.

We place N cars on a circular road such that first vehi-
cle follows the N -th vehicle, i.e., we have the periodic
boundary conditions sN+1 = s1, vN+1 = v1. The total
length of the road is L + N �, where L is called the
effective road length.

A diagram of a conventional vehicle network is
shown in Fig. 1b for N = 11 vehicles denoted by
the black dots. The vehicles move along the ring in
the counterclockwise direction where the blue arrows
indicate the flowof information between vehicles. Con-
sider that vehicle i uses the headway hi = si+1−si −�

and the relative velocity vi+1 − vi to control its longi-
tudinal motion using the car-following rule
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ṡi = vi ,

v̇i = α
(
V (si+1 − si − �) − vi

) + β1 (vi+1 − vi ),

(1)

where the gains α > 0 and β1 ≤ 0 are associated
with the headway and relative velocity, respectively.

The headway feedback term involves the nonlinear
function V (h) called the range policy or optimal veloc-
ity function. This satisfies the following properties:

1. V (h) is continuous and monotonically increasing
(themore sparse the traffic is, the faster the vehicles
want to travel).

2. V (h) ≡ 0 for h ≤ hst (in dense traffic vehicles
intend to stop).

3. V (h) ≡ vmax for h ≥ hgo (in sparse traffic vehi-
cles intend to travel with the maximum speed, also
called free-flow speed).

These properties are satisfied by the function

V (h)

=

⎧
⎪⎪⎨

⎪⎪⎩

0, if h≤hst ,
vmax

2

[
1−cos

(
π h−hst

hgo−hst
)]

, if hst < h<hgo ,

vmax, if h≥hgo,

(2)

that we will use in the rest of the paper. We remark that
the analytical calculations presented in this paper do not
require a specific range policy. Any function satisfying
the properties 1–3 would result in similar qualitative
results.

Nowwe select a fewvehicles that are able to transmit
information about their state using wireless V2V com-
munication. For example, in Fig. 1c we select vehicles
i = 1, 3, 6, 7, 9, 11 to be transmitting vehicles. Some
of the transmitting vehicles in the network possess a
CCCcontroller that can actuate the vehicle based on the
information received from other vehicles. For example,
in Fig. 1d we select vehicles i = 1, 7 to be CCC vehi-
cles. Finally, to form a connected vehicle network, the
CCC vehicles use information from transmitting vehi-
cles downstream to control their longitudinal motion.
If the i-th vehicle is a CCC vehicle then its control law
becomes

ṡi = vi ,

v̇i = α
(
V (si+1 − si − �) − vi

) + β1 (vi+1 − vi )

+
σmax∑

σ=2

βiσ (vi+σ − vi ) , (3)

where the last term represents a relative velocity feed-
back from vehicles, i +σ , where σ = 2, . . . , σmax that
are beyond the line of sight. The corresponding gains
are denoted by βiσ ≥ 0. When i + σ > N we use
si+σ = si+σ−N and vi+σ = vi+σ−N . In Fig. 1e we
see two links with link length σ = 2 and one link with
link length σ = 4. In connected vehicle networks links
up to σ ≈ 4 were shown to have a significant benefit
[9], so in the examples shown in this paper we consider
σmax = 4, but the developed framework can be used
for links of arbitrary length.

One can show that (3) admits a pseudo-equilibrium

s∗
i = v∗

i t + s0i , i = 1, . . . , N , (4)

where all cars are equidistant and travel with the same
velocity, that is,

s0i+1 − s0i − � = L

N
= h∗, i = 1, . . . , N − 1,

s01 − s0N − � = L

N
= h∗,

v∗
i = v∗ = V (h∗), i = 1, . . . , N .

(5)

We define the perturbations

s̃i = si − s∗
i , ṽi = vi − v∗, (6)

and approximate the network about the pseudo-equil-
ibrium (4, 5) using first-order Taylor expansion:

˙̃si = ṽi ,

˙̃vi = p (̃si+1 − s̃i ) + β1 (̃vi+1 − ṽi ) − α ṽi

+
σmax∑

σ=2

βiσ (̃vi+σ − ṽi ),

(7)

where

p = α V ′(h∗) , (8)

and the prime denotes the derivative with respect to the
headway h.
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System (1) consists of 2N equations, and the same
holds for system (7). When βiσ = 0 for all i =
1, . . . , N and σ = 2, . . . , σmax we can simplify the
stability analysis of the system by exploiting the cyclic
symmetry of the system using modal analysis. In the
next section we will establish our modal analysis for a
general mistuned symmetric system.

3 Network-based analysis of cyclic systems with
acyclic perturbations

In this section we develop methods for the linear modal
analysis of systems with an underlying cyclic structure
that is perturbed by long-range connections (that make
the system acyclic). We write the Jacobian of the over-
all system as a sum of a block-circulant matrix (rep-
resenting the unperturbed cyclic system) and pertur-
bation (matrices representing the long-range connec-
tions). First we obtain themodes using a linear transfor-
mation for the unperturbed cyclic system.This is awell-
known problem and was extensively discussed in [18].
We then develop a perturbation method to approxi-
mate themodes for the perturbed acyclic system around
the cyclically symmetric configuration. We exploit the
cyclic structure of the unperturbed system to reduce the
complexity of calculations when solving for the modes
of the perturbed acyclic system. As mentioned above,
such a modal decomposition can be performed for sys-
tems with arbitrary numbers of nodes and an arbitrary
number of perturbations without significant increase
in complexity. Our network-based modal analysis also
reveals how different parameters influence modal and
system stability.

Assuming the state of the i-th node is described by
the vector xi = [x (1)

i , . . . , x (M)
i ]T, its dynamics can be

written as

ẋi = g(xi , xi+1, · · · , xi+N−1)

+
σmax∑

σ=0

hiσ (xi , xi+σ )εiσ , (9)

where xN+i ≡ xi and g = [g(1), . . . , g(M)]T is a
vector valued function that represents the cyclic cou-
pling of the nodes. The vector valued functions hiσ =
[h(1)

iσ , . . . , h(M)
iσ ]T represent the acyclic perturbations to

the cyclic structure, while εiσ represents the magnitude
of the perturbations. We assume that the system pos-
sesses a equilibrium where all the nodes are synchro-
nized

xi ≡ x∗ , (10)

for i = 1, . . . , N satisfying g(x∗, . . . , x∗) = 0 and
hiσ (x∗, x∗) = 0.

By defining the perturbation

yi = xi − x∗ , (11)

where yi = [y(1)
i . . . y(N )

i ]T, we linearize (9) around
the synchronous equilibrium (10) and obtain

ẏi =
N∑

j=1

C jyi+ j−1 +
σmax∑

σ=0

(∂1hiσ yi + ∂2hiσ yi+σ )εiσ ,

(12)

where the M×M matrices C j , ∂1hiσ , ∂2hiσ are given
by

[C j ]b d = ∂g(b)

∂x (d)
i+ j−1

∣∣∣
∣
∗
, [∂1hiσ ]b d = ∂h(b)

iσ

∂x (d)
i

∣∣∣
∣
∗
,

[∂2hiσ ]b d = ∂h(b)
iσ

∂x (d)
i+σ

∣∣
∣∣
∗
, (13)

where the asterisk denotes that the derivatives are eval-
uated at the synchronous equilibrium. Notice that C j

does not depend on i because the nodes are cyclically
coupled. By defining the state vector ŷ = [yT1 . . . yTN ]T
we can rewrite (12) into the compact form

˙̂y = Ĵ ŷ, (14)

where the Jacobian

Ĵ = Ĵ0 +
N∑

i1=1

σmax∑

σ1=0

P̂(i1, σ1)εi1σ1 , (15)

is divided into parts corresponding to the cyclic sys-
tem and the perturbations. Indeed, the cyclic coupling
between the nodes is represented by

Ĵ0 = circ(C1, . . . , CN )

=

⎡

⎢⎢⎢
⎣

C1 C2 · · · CN

CN C1 · · · CN−1
...

...
. . .

...

C2 C3 · · · C1

⎤

⎥⎥⎥
⎦

, (16)

that is a block-circulant matrix of type (M, N ); see
[18]. The terms
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P̂(i1, σ1) = �i1i1 ⊗ ∂1hi1σ1 + �i1i1+σ1 ⊗ ∂2hi1σ1 ,

(17)

represent the perturbations to the cyclic structurewhere
�i j ∈ R

N×N contains a “1” in the i-th row and the
j-th column, and zeros everywhere else. The symbol
⊗ denotes the Kronecker product. Indeed, the matrix
P̂(i1, σ1) corresponds to a particular link of length σ1
starting at node i1+σ1 and ending at node i1, cf. Fig. 1e.
In P̂(i1, σ1) we use brackets instead of subscripts in
order to improve the readability.

3.1 Modal analysis of cyclic systems

Before obtaining approximations of the modes for the
system with acyclic perturbations we obtain the modes
of the cyclic system; see [18]. In particular, we use a
linear modal transformation that exploits the circulant
structure of the Jacobian Ĵ0 given in (15). When con-
sidering (14,15)with εi1σ1 = 0, (16) can be represented
as a linear combination of its generating elements using
the Kronecker product

Ĵ0 =
N∑

j=1

(AN )( j−1) ⊗ C j , (18)

where the N -dimensional forward shift matrix AN =
[ ai j ] contains elements defined as

ai j =
{
1 if j = i + 1 ,

0 otherwise .
(19)

We define the linear coordinate transformation

ŷ = T̂0 ẑ , (20)

with modal coordinates zk = [z(1)k . . . z(M)
k ]T, ẑ =

[zT1 . . . zTN ]T, and matrix

T̂0 = TN ⊗ IM . (21)

Here TN = [
e1 · · · eN

]
and ek is the k-th eigenvec-

tor of the forward shift matrix AN corresponding to

the k-th modal eigenvalue ei
2π (k−1)

N , where i2 = −1,
k = 1, . . . , N , and IM is the M-dimensional iden-
tity matrix. This transformation is also known as the
discrete Fourier transformation; see [18].

Notice that the mode number k = 1 corresponds
to a translational symmetry of the system, the mode
numbers k = 2, . . . , 
 N

2 + 1� correspond to having
k − 1 waves along the ring, while the mode numbers
k = � N

2 + 1
, . . . , N correspond to having N − k + 2
waves along the ring; see [8,18]. Applying the modal
transformation (20) the equation ˙̂y = Ĵ0ŷ (cf. (14,15))
without perturbations can be rewritten as

˙̂z = D̂0 ẑ , (22)

where the block-diagonal matrix D̂0 ∈ C
NM×NM is

given by

D̂0 = T̂−1
0 Ĵ0T̂0 = diag([D̂0]kk) . (23)

In particular, the block

[D̂0]kk =
N∑

j=1

C je
i 2πN (k−1)( j−1) (24)

gives the dynamics of the k-th mode of the cyclic sys-
tem.We note that themode/block-eigenvector relation-
ships for mode k can be formulated as

(Ĵ0 − IN ⊗ [D̂0]kk)[T̂0]k = 0 , (25)

and

[T̂−1
0 ]k(Ĵ0 − IN ⊗ [D̂0]kk) = 0 , (26)

where [T̂0]k is the so-called k-th “block eigenvector,”
that is the k-th set of M columns of T̂0 and [T̂−1

0 ]k is
the so-called k-th “left block eigenvector,” that is the
k-th set of M rows of T̂−1

0 . Formulae (25) and (26) will
be used extensively to obtain approximations of modes
and block eigenvectors for the perturbed system in the
next subsection.

Note that the linear coordinate transformation sim-
plifies the linear analysis of the system: the linear part is
decoupled into N sets of complex differential equations
representing the oscillationmodes. Thus, the linear sta-
bility can be analyzed separately for each mode and the
stability of the synchronous state (10) is ensured when
all modes are stable.
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3.2 Modal analysis of cyclic systems with acyclic
perturbations

In this section we build upon the analysis of the cyclic
system to obtain an approximation for the modes of
the mistuned cyclic system (14,15) when εi1σ1 > 0 are
small for all i1 = 1, . . . , N , σ1 = 0, . . . , σmax.

We assume that Ĵ can be transformed to a block-
diagonal matrix D̂ using the transformation

ẑ = T̂ ŷ, (27)

yielding

ż = D̂ z , (28)

with

D̂ = T̂−1 Ĵ T̂ = diag([D̂]kk). (29)

Indeed [D̂]kk (k-thmodal block) and
[
T̂

]
k (the k-th block

eigenvector) satisfy the equation

(Ĵ − IN ⊗ [D̂]kk)
[
T̂

]
k = 0 , (30)

cf. (25).
We construct D̂ as an expansion about D̂0 up to third-

order in εi σ :

D̂ = D̂0 +
N∑

i1=1

σmax∑

σ1=0

D̂(1) εi1σ1

+ 1

2

N∑

i1,i2=1

σmax∑

σ1,σ2=0

D̂(1,2) εi1σ1εi2σ2

+ 1

6

N∑

i1,i2,i3=1

σmax∑

σ1,σ2,σ3=0

D̂(1,2,3) εi1σ1εi2σ2εi3σ3

+ · · · , (31)

where we introduced the compact notation

M(1) = M1(i1, σ1),

M(1,2) = M2(i1, σ1, i2, σ2),

M(1,2,3) = M3(i1, σ1, i2, σ2, i3, σ3).

(32)

D̂0 T̂0

D̂1(i1, σ1) T̂1(i1, σ1)

D̂2(i1, σ1, i2, σ2) T̂2(i1, σ1, i2, σ2)

D̂3(i1, σ1, i2, σ2, i3, σ3) · · ·

Fig. 2 Diagram showing the sequential method of obtaining the
approximations for the modal blocks and block eigenvectors of
the perturbed system by solving (30) and (29)

In order to be able to derive the coefficient matrices in
(31) we expand T̂ up to second-order

T̂ = T̂0 +
N∑

i1=1

σmax∑

σ1=0

T̂(1) εi1σ1

+1

2

N∑

i1,i2=1

σmax∑

σ1,σ2=0

T̂(1,2) εi1σ1εi2σ2 + · · · . (33)

Since we already know D̂0 and T̂0 from (23,24) and
(21), respectively, we use (30) and (29) sequentially to
obtain the higher-order terms of D̂ and T̂ as depicted
in Fig. 2.

In particular, to determine the higher-order terms in
[D̂]kk we differentiate (30) with respect to εi σ , while to

obtain the higher-order terms of [T̂]k we compare the
left and right hand sides of (29). To obtain the first-
order perturbation of the dynamics of the k-th mode
[D̂(1)]kk for an arbitrary i1, σ1 we take the derivative of
(30) with respect to εi1σ1 pair (denoted by ∂ε1 ) to obtain
(
∂ε1 Ĵ − IN ⊗ ∂ε1 [D̂]kk

)
[T̂]k

+
(

Ĵ − IN ⊗ [D̂]kk
)
∂ε1 [T̂]k = 0. (34)

We then evaluate this at εi1σ1 = 0, yielding
(
P̂(1) − IN ⊗ [D̂(1)]kk

)[T̂0]k
+ (

Ĵ0 − IN ⊗ [D̂0]kk
)[T̂(1)]k = 0, (35)

where we use the compact notation M(1) = M(i1, σ1);
cf. (32) and see (15,16,17). Multiplying (35) with
[T̂−1

0 ]k from the left and using (26) we can eliminate
the second term, that is,

[T̂−1
0 ]k(P̂(1) − IN ⊗ [D̂(1)]kk

)[T̂0]k = 0, (36)
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which can be simplified and solved for

[D̂(1)]kk = [T̂−1
0 ]k P̂(1)[T̂0]k, (37)

We can substitute the definition (17) of P̂(1) to obtain
a general expression for the first-order perturbation of
the k mode due to a link between nodes i1 and i1 + σ1:

[D̂(1)]kk = [D̂1(i1, σ1)]kk
= 1

N

(
∂1hi1σ1 + ei

2π
N σ1(k−1)∂2hi1σ1

)
. (38)

To expand themodal dynamics up to second-order in
terms of mistunings we must first obtain the expansion
of matrix T̂ and its block eigenvectors up to first-order.
Notice that the expansion for T̂−1 can be written as

T̂−1 ≈ T̂−1
0 −

N∑

i1=1

σmax∑

σ1=0

T̂−1
0 T̂(1)T̂−1

0 εi1σ1

+
N∑

i1,i2=1

σmax∑

σ1,σ2=0

(
T̂−1
0 T̂(1)T̂−1

0 T̂(2)T̂−1
0

− 1

2
T̂−1
0 T̂(1,2)T̂−1

0

)
εi1σ1εi2σ2 + · · · , (39)

where we exploited the Neumann series, given by

(I + M)−1 ≈ I − M + M2 + · · · , (40)

where M is a square matrix whose eigenvalues are less
than 1 and I is an identitymatrix. Substituting (31), (33)
and (39) into (29) and matching the first-order terms in
εi1σ1 yields

N∑

i1=1

σmax∑

σ1=0

D̂(1)εi1σ1 =
N∑

i1=1

σmax∑

σ1=0

(
− T̂−1

0 T̂(1)T̂−1
0 Ĵ0T̂0

+ T̂−1
0 P̂(1)T̂0 + T̂−1

0 Ĵ0T̂(1)
)
εi1σ1 . (41)

We equate the terms corresponding to a perturbation
corresponding to an arbitrary i1, σ1 pair and use (23)
to simplify the formula to obtain a Sylvester equation

D̂0Û(1) − Û(1)D̂0 = D̂(1) − T̂−1
0 P̂(1)T̂0, (42)

for the matrix Û(1) = T̂−1
0 T̂(1) of (MN )2 unknowns.

The complexity of (42) can be reduced significantly
by exploiting the cyclic structure of the unperturbed
system. In (42), Û(1) is multiplied by block-diagonal
matrices from the left and right. Thus, the coefficients

contained by [Û(1)]k� remain in the k-th block rowand �-
th block column after the multiplications, which yields

[D̂0]kk[Û(1)]k� − [Û(1)]k�[D̂0]��
= [D̂(1)]k� − [T̂−1

0 ]k P̂(1)[T̂0]�. (43)

Using (17) and (38), this can be written as

[D̂0]kk[Û(1)]k� − [Û(1)]k�[D̂0]��
= 1

N
ei

2π
N (i1−1)(�−k)

(
∂1hi1σ1 + ei

2π
N σ1(�−1)∂2hi1σ1

)

(δk� − 1), (44)

where δk� denotes the Kronecker delta. This Sylvester
equation can be rewritten into the standard form of a
linear algebraic equation

A(1)
k �b(1)

k � = c(1)
k �, (45)

where

A(1)
k � = IM ⊗ [D̂0]kk − [D̂T

0 ]�� ⊗ IM , (46)

and

b(1)
k � = vec([Û(1)]k�). (47)

Here vec(·) is the vectorization operator that stacks the
columns of a matrix into a column vector. Similarly,
c(1)
k � is the vectorization of the right hand side of (44).
Thus, by exploiting the cyclic structure of the unper-
turbed system (18) we need to solve N 2 decoupled lin-
ear equations each with M2 unknowns. In contrast (42)
would require us to solve (MN )2 coupled equations.
For the diagonal M × M blocks of Û(1), equation (45)
hasmultiple possible solutions due to a nonzero nullity.
Here we set

[Û(1)]kk = 0. (48)

Once all the M × M blocks of Û(1) are solved for, we
can calculate T̂(1) = T̂0Û(1).

To obtain the second-order perturbation of the
dynamics of the k-th mode [D̂(1,2)]kk for an arbitrary
i1, σ1, i2, σ2 quadruple we take the derivative of (34)
with respect to εi2σ2 (denoted by ∂ε2 ) yielding
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(
∂ε1∂ε2 Ĵ − IN ⊗ ∂ε1∂ε2 [D̂]kk

)
[T̂]k

+
(
∂ε1 Ĵ − IN ⊗ ∂ε1 [D̂]kk

)
∂ε2 [T̂]k

+
(
∂ε2 Ĵ − IN ⊗ ∂ε2 [D̂]kk

)
∂ε1 [T̂]k

+
(

Ĵ − IN ⊗ [D̂]kk
)
∂ε1∂ε2 [T̂]k = 0,

(49)

and evaluate this at εi1σ1 = 0, εi2σ2 = 0 to get

1

2
IN ⊗ ([D̂(1,2)]kk + [D̂(2,1)]kk)[T̂0]k
= (

P̂(1) − IN ⊗ [D̂(1)]kk
)[T̂(2)]k

+ (
P̂(2) − IN ⊗ [D̂(2)]kk

)[T̂(1)]k
+ 1

2

(
Ĵ0 − IN ⊗ [D̂0]kk

)([T̂(1,2)]k + [T̂(2,1)]k
)
,

(50)

where we used the compact notation M(1,2) =
M2(i1, σ1, i2, σ2), cf. (32) and see (15,16,17).We elim-
inate the last term in the expression above by multiply-
ing by [T̂−1

0 ]k from the left and use (26) to obtain

[D̂(1,2)]kk + [D̂(2,1)]kk
= 2[T̂−1

0 ]k(P̂(1) − IN ⊗ [D̂(1)]kk
)[T̂(2)]k

+ 2[T̂−1
0 ]k(P̂(2) − IN ⊗ [D̂(2)]kk

)[T̂(1)]k .
(51)

Since the above expression contains two unknowns
([D̂(1,2)]kk and [D̂(2,1)]kk) for each i1, σ1, i2, σ2 quadru-
ple, we have the freedom to set

[D̂(1,2)]kk = 2[T̂−1
0 ]k(P̂(1) −IN ⊗[D̂(1)]kk

)[T̂(2)]k . (52)

Since [T̂−1
0 ]k(IN ⊗ [D̂(1)]kk)[T̂(2)]k = 0 we obtain the

simplified form

[D̂(1,2)]kk = 2[T̂−1
0 ]k P̂(1)[T̂(2)]k . (53)

Using (17) this can be written as

[D̂(1,2)]kk = [D̂2(i1, σ1, i2, σ2)]kk
=

N∑

j=1

2

N
ei

2π
N (i1−1)( j−k)(∂1hi1σ1

+ ei
2π
N σ1( j−1)∂2hi1σ1

)[Û(2)] jk , (54)

where the components of Û(2) = Û1(i2, σ2) =
T̂−1
0 T̂1(i2, σ2) are given by the solution of (45).

To expand the modal dynamics up to third-order
we must first obtain the expansion of matrix T̂ up to
second-order. The process is similar to the process of
expanding T̂ up to first-order; cf. (41–48). Substituting
(31), (33) and (39) into (29) and collecting the second-
order terms yields

1

2

N∑

i1,i2=1

σmax∑

σ1,σ2=0

D̂(1,2)εi1σ1εi2σ2

=
N∑

i1,i2=1

σmax∑

σ1,σ2=0

(
− 1

2
T̂−1
0 T̂(1,2)T̂−1

0 Ĵ0T̂0

+ T̂−1
0 T̂(1)T̂−1

0 T̂(2)T̂−1
0 Ĵ0T̂0 − T̂−1

0 T̂(1)T̂−1
0 P̂(2)T̂0

− T̂−1
0 T̂(1)T̂−1

0 Ĵ0T̂(2) + T̂−1
0 P̂(1)T̂(2)

+ 1

2
T̂−1
0 Ĵ0T̂(1,2)

)
εi1σ1εi2σ2 . (55)

Equating the terms corresponding to εi1σ1εi2σ2 , and
using (23) and (42) and some algebraic manipulation
we obtain the Sylvester equation

D̂0Û(1,2) − Û(1,2)D̂0 = D̂(1,2)

+ 2Û(1)D̂(2) − 2T̂−1
0 P̂(1)T̂0Û(2), (56)

for the matrix Û(1,2) = T̂−1
0 T̂(1,2).

We again compare individual blocks on the two sides
of (56) and reduce it to a low-order Sylvester equation

[D̂0]kk[Û(1,2)]k� − [Û(1,2)]k�[D̂0]��
= [D̂(1,2)]k� + 2[Û(1)]k�[D̂(2)]��

−2[T̂−1
0 ]k P̂(1)T̂0[Û(2)]�. (57)

Using (38) this becomes

[D̂0]kk[Û(1,2)]k� − [Û(1,2)]k�[D̂0]��
= 2

N
[Û(1)]k�(∂1hi2σ2 + ei

2π
N σ2(�−1)∂2hi2σ2)

−
N∑

j=1

2

N
ei

2π
N (i1−1)( j−k)

(
∂1hi1σ1

+ ei
2π
N σ1( j−1)∂2hi1σ1

)
[Û(2)] j�(1 − δk�).

(58)

that can be written into the form of a linear algebraic
equation

A(1,2)
k � b(1,2)

k � = c(1,2)
k � , (59)
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where

A(1,2)
k � = IM ⊗ [D̂0]kk − [D̂T

0 ]�� ⊗ IM , (60)

and

b(1,2)
k � = vec([Û(1,2)]k�), (61)

and c(1,2)
k� is the vectorization of the right hand side

of (58); cf. (45, 46, 47). Here again we need to solve
N 2 decoupled equations equations withM2 unknowns.
In contrast in (57) would require us to solve (NM)2

coupled equations.
The third-order perturbation for the dynamics of the

k-th mode can then be obtained similarly to the way
the first- and second-order perturbationswere obtained.
The detailed derivation is given in “Appendix 1.” The
result can be simplified to

[D̂(1,2,3)]kk = [D̂3(i1, σ1, i2, σ2, i3, σ3)]kk
= 3

N

N∑

j=1

ei
2π
N (i1−1)( j−k)(∂1hi1σ1

+ ei
2π
N σ1( j−1)∂2hi1σ1)[Û(2,3)] jk , (62)

where the compact notation M(1,2,3) = M(i1, σ1, i2,
σ2, i3, σ3)wasused [cf. (32)].Using (18), (38), (54) and
(62) the dynamics of the k-th mode can be expressed
by

żk = [D̂]kkzk, (63)

where

ˆ[D]kk =
N∑

j=1

C je
i 2πN (k−1)( j−1) + 1

N

N∑

i1=1

σmax∑

σ1=0

(
∂1hi1σ1

+ ei
2π
N σ1(k−1)∂2hi1σ1

)
εi1σ1

+ 1

N

N∑

i1,i2=1

σmax∑

σ1,σ2=0

N∑

j=1

ei
2π
N (i1−1)( j−k)(∂1hi1σ1

+ ei
2π
N σ1( j−1)∂2hi1σ1

)[Û(2)] jkεi1σ1εi2σ2

+ 1

2N

N∑

i1,i2,i3=1

σmax∑

σ1,σ2,σ3=0

N∑

j=1

ei
2π
N (i1−1)( j−k)

(∂1hi1σ1 + ei
2π
N σ1( j−1)∂2hi1σ1)[Û(2,3)] jk

εi1σ1εi2σ2εi3σ3 ,

(64)

and [Û(2)] and [Û(2,3)] are the solutions of (42) and
(56), respectively.

That is we obtained N decoupled systems of M lin-
ear complex ordinary differential equations. Each sys-
tem can then be separately analyzed to estimate the
stability of the corresponding mode (assuming that the
perturbations are small). To evaluate the linear stability
of the synchronous state (10) we calculate the charac-
teristic polynomial for mode k, given by

det(λIM − [D̂]kk) = 0, (65)

and solve for its M eigenvalues λ ∈ C. Indeed, the syn-
chronous solution is stable when all modes are stable.

4 Modal approximation for heterogeneous
connected vehicle network

In this section we analyze the connected vehicle net-
work (1) using the framework developed above. First,
we decompose the underlying cyclic system with near-
est neighbor coupling and analyze the linear stability of
the corresponding modes. Then, we use the developed
perturbation analysis to approximate the modes in the
presence of long-range links. Decoupling the modes
of the connected vehicle network allows us to analyze
the linear stability of the modes individually and char-
acterize the oscillations that arise when these modes
lose their stability. This allows us to study the effects
of long-range V2V links on the stability of connected
vehicle networks

Using the vector notation yi = col [̃si ṽi ], we can
rewrite the dynamics of the i-th car (7) around the uni-
form flow as

ẏi = C0yi +C1yi+1+
σmax∑

σ=2

(∂1hiσ yi +∂2hiσ yi+σ )βiσ ,

(66)

(cf. 12). Here

C0 =
[

0 1
−p −α − β1

]
, C1 =

[
0 0
p β1

]
, (67)

represent the nearest neighbor coupling,

∂1hiσ =
[
0 0
0 −1

]
, ∂2hiσ =

[
0 0
0 1

]
, (68)
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correspond to the long-range connections, cf. (13) and
βiσ stands for εiσ . Then we write (66) into the form
(14,15) where

Ĵ0 = circ(C0, C1, 0, . . . , 0) = (IN ⊗C0 +AN ⊗C1),

(69)

[cf. (16,18)] and P̂(i1, σ1) is defined in (17).

4.1 Modal analysis of connected vehicle network with
nearest neighbor coupling

Prior to performing the linear modal analysis on the
heterogeneous connected vehicle network, we first find
the modes for the homogenous network, i.e., (66) with
βi σ = 0. This analysis was performed in detail in [3]
and here we summarize the main findings. Perform-
ing the coordinate transformation (20) we obtain the
dynamics of the k-th mode to be

[D̂0]kk =
[

0 1
p ηk1 β1ηk1 − α

]
, (70)

[cf. (24)] where

ηk � = ei
2π
N (k−1) − ei

2π
N (�−1) , (71)

for k, � = 1, . . . , N . Note that the dynamics of modes
k and N − k + 2 are complex conjugates of each other.
Mode k = 1 corresponds to a translational symmetry
of the system, see [20]. This mode does not become
unstable for α > 0. We also remark that for even N ,
there is another special mode k = N/2 + 1 which
does not have a complex conjugate mode. This mode
remains stable for α + 2β1 > 0.

Modes k and N − k + 2 lose stability at a critical
value of p = α V ′(h∗) given by

pk = 1
2 (2β1+α)

(
(2β1+α) tan2

(
(k−1) π

N

)
+α

)
, (72)

and the stability of these modes is lost to oscillations
of frequencies

ωk = (2β1 + α) tan
(

(k−1) π
N

)
, (73)

for k = 2, . . . , N . Since (72) ismonotonically increas-
ingwith k when 2 ≤ k ≤ 
 N

2 +1�, themodes lose sta-

bility in the increasing order of mode number k. Thus,
the uniform flow loses stability when modes 2 (and
N ) lose stability for the cyclically symmetric system
with nearest neighbor coupling. At the linear level, the
oscillations can be characterized by the modal coor-
dinates zk and zN+2−k . In order to perform a similar
analysis for a connected vehicle network that includes
long-range V2V links, we perform perturbation analy-
sis to decouple the modes.

4.2 Stability analysis of connected vehicle network
with long-range V2V connections

Now we consider the case that βi1σ1 are small for all
i1 = 1, . . . , N and σ1 = 2, . . . , σmax. Considering
(66) and using (30) with the approximations defined
in (31), (33) and (39) we can obtain the perturbations
to the modal dynamics and the modal transformation.
We use (38) to obtain the first-order perturbation for
the dynamics of the k-th mode associated with a link
of length σ1 terminated at vehicle i1. This reads

[D̂1(i1, σ1)]kk =
[
0 0

0 1
N

(
ei

2π
N σ1(k−1) − 1

)

]

. (74)

We see that to first-order the contributions of the long-
range links are independent from one another. In other
words, to first-order, the contribution of all the links to
the dynamics of mode k is the sum of the contributions
of the individual links. To obtain the modal coordinate
transformation (27) up to first-order we solve (45) with
the matrices

A(1)
k� =

⎡

⎢⎢
⎣

0 1 −pη�1 0
pηk1 β1ηk1 − α 0 −pη�1

−1 0 −β1η�1 + α 1
0 −1 pηk1 β1ηk�

⎤

⎥⎥
⎦ ,

(75)

and

c(1)
k�

=

⎡

⎢⎢
⎣

0
0
0

1
N e

i 2πN (i1−1)(�−k)(ei
2π
N σ1(�−1) − 1)(δk� − 1)

⎤

⎥⎥
⎦ ,

(76)

to obtain
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b(1)
k� =

⎡

⎢⎢⎢
⎣

u(1)
k�,11

u(1)
k�,21

u(1)
k�,12

u(1)
k�,22

⎤

⎥⎥⎥
⎦

= (1 − δk�)(ei
2π
N σ1(�−1) − 1)ei

2π
N (i1−1)(�−k)

Nηk�(p − αβ1)

⎡

⎢⎢
⎣

β1η�1

−pη�1

−1
α

⎤

⎥⎥
⎦ .

(77)

Using the first-order perturbations upon T̂ we can
obtain the second-order perturbation on the dynamics
of mode k with respect to any two long-range links
described by the indices i1, σ1, i2, σ2. In particular, (54)
yields

[D̂(1,2)]kk = [D̂2(i1, σ1, i2, σ2)]kk
=

[
0 0

−2K0(i1, σ1, i2, σ2) −2K1(i1, σ1, i2, σ2)

]
,

(78)

where

K0(i1, σ1, i2, σ2) = pηk1
N 2(p − αβ1)

N∑

j=1, j �=k

(ei
2π
N σ1( j−1) − 1)(ei

2π
N σ2(k−1) − 1)ei

2π
N (i1−i2)( j−k)

η jk
,

K1(i1, σ1, i2, σ2) = −α

N 2(p − αβ1)

N∑

j=1, j �=k

(ei
2π
N σ1( j−1) − 1)(ei

2π
N σ2(k−1) − 1)ei

2π
N (i1−i2)( j−k)

η jk
.

(79)

Note that the second-order terms for two different links
will depend on the parameters α, β1, p, the indices
of receiving cars (i1, i2), and the link lengths (σ1, σ2).

Thus, a second-order approximation accounts for the
interactions between the long-range links.

To get the second-order terms for the modal coordi-
nate transformation (27) we solve (59) with matrices

A(1,2)
k� =

⎡

⎢
⎢
⎣

0 1 −pη�1 0
pηk1 β1ηk1 − α 0 −pη�1
−1 0 −β1η�1 + α 1
0 −1 pηk1 β1ηk�

⎤

⎥
⎥
⎦ ,

(80)

and

c(1,2)
k� = 2

N

⎡

⎢⎢⎢
⎢
⎣

0

−∑N
j=1 e

i 2πN (i1−1)( j−k)(ei
2π
N σ1( j−1) − 1)u(2)

j�,21

u(1)
k�,12(e

i 2πN σ2(�−1) − 1)

u(1)
k�,22(e

i 2πN σ2(�−1) − 1) − ∑N
j=1 e

i 2πN (i1−1)( j−k)(ei
2π
N σ1( j−1) − 1)u(2)

j�,22

⎤

⎥⎥⎥
⎥
⎦

, (81)

where u(1)
k�,·· represent the elements of the 2 × 2 block

[Û(1)]k� are given by (77). The solution for the b(1,2)
k� is

given in “Appendix 2.”
Using the elements of b(1,2)

k� [cf. (94)] we can
obtain the third-order perturbations of the dynamics
due to any three long-range links defined by the indices
i1, σ1, i2, σ2, i3, σ3 as

[D̂(1,2,3)]kk = [D̂3(i1, σ1, i2, σ2, i3, σ3)]kk
=

[
0 0

−6L0(i1, σ1, i2, σ2, i3, σ3) −6L1(i1, σ1, i2, σ2, i3, σ3)

]
,

(82)

where L0(i1, σ1, i2, σ2, i3, σ3) and L1(i1, σ1, i2,
σ2, i3, σ3) are given in “Appendix 3” [see (97)]. Thus,
based on (64) the dynamics for mode k approximated
up to third-order in βiσ become

żk =
( [

0 1
pηk1 β1ηk1 − α

]

+ 1

N

N∑

i1=1

σmax∑

σ1=2

[
0 0

0
(
ei

2π
N σ1(k−1) − 1

)
]

βi1σ1

+
N∑

i1,i2=1

σmax∑

σ1,σ2=2

[
0 0

−K0(i1, σ1, i2, σ2) −K1(i1, σ1, i2, σ2)

]

βi1σ1βi2σ2

+
N∑

i1,i2,i3=1

σmax∑

σ1,σ2,σ3=2
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[
0 0

−L0(i1, σ1, i2, σ2, i3, σ3) −L1(i1, σ1, i2, σ2, i3, σ3)

]

βi1σ1βi2σ2βi3σ3

)
zk , (83)

where the coefficients for the second- and third-order
terms are given in (79) and (97), respectively.

To analyze the stability the modes we use the trial
solution zk(t) = zk 0eλ t with zk 0 ∈ C

2 and λ ∈ C for
mode k. Thus, (83) yield the characteristic equation for

λ2 +
(

− β1ηk1 + α + 1

N

N∑

i1=1

σmax∑

σ1=2

(1 − ei
2π
N σ1(k−1))βi1σ1

+
N∑

i1,i2=1

σmax∑

σ1,σ2=2

K1(i1, σ1, i2, σ2)βi1σ1βi2σ2

+
N∑

i1,i2,i3=1

σmax∑

σ1,σ2,σ3=2

L1(i1, σ1, i2, σ2, i3, σ3)βi1σ1βi2σ2βi3σ3

)
λ

+
(

− pηk1 +
N∑

i1,i2=1

σmax∑

σ1,σ2=2

K0(i1, σ1, i2, σ2)βi1σ1βi2σ2

+
N∑

i1,i2,i3=1

σmax∑

σ1,σ2,σ3=2

L0(i1, σ1, i2, σ2, i3, σ3)βi1σ1βi2σ2βi3σ3

)
= 0. (84)

We examine the stability of the connected vehicle net-
work and its modes with respect to the equilibrium
headway h∗. By considering the critical case λ = iω
we calculate the critical value of pk using (84) which
results in the corresponding headway h∗

k using (2,5) and
determine the corresponding frequency ωk . As both pk
and ωk depend on the gains βiσ and we write these as
expansions in βiσ up to third-order as

pk = pk0 +
N∑

i1=1

σmax∑

σ1=2

pk1(i1, σ1)βi1σ1

+ 1

2

N∑

i1,i2=1

σmax∑

σ1,σ2=2

pk2(i1, σ1, i2, σ2)βi1σ1βi2σ2

+ 1

6

N∑

i1,i2,i3=1

σmax∑

σ1,σ2,σ3=2

pk3(i1, σ1, i2, σ2, i3, σ3)βi1σ1βi2σ2βi3σ3 + · · · ,

(85)

and

ωk = ωk0 +
N∑

i1=1

σmax∑

σ1=2

ωk1(i1, σ1)βi1σ1

+ 1

2

N∑

i1,i2=1

σmax∑

σ1,σ2=2

ωk2(i1, σ1, i2, σ2)βi1σ1βi2σ2

+ 1

6

N∑

i1,i2,i3=1

σmax∑

σ1,σ2,σ3=2

ωk3(i1, σ1, i2, σ2, i3, σ3)βi1σ1βi2σ2βi3σ3 + · · · .

(86)

To obtain the coefficients in (85) and (86), we substitute
them into (84), differentiate the result with respect to
theβiσ , evaluate the results atβiσ = 0 and solve the two
resulting algebraic equations for the terms of pk andωk .
The corresponding details are given in “Appendix 4.”

The approximation to the stability boundary above
can be used to directly determine the values of h∗

k at
which stability is lost for mode k. Alternatively, given
an equilibrium headway h∗ one can find the set of gains
to guarantee the linear stability of all modes.

4.3 Stability diagrams

In this subsection we visualize the results presented
in the previous subsection using stability charts for
connected vehicle networks with different connectiv-
ity structures. We plot the analytical approximations of
the modal stability boundaries derived above and val-
idate these results using numerical continuation. We
consider long-range V2V links of length 2, 3 and 4.
For simplicity, we assume that links of the same length
use the same gain, i.e.,

βi2 = β2, βi3 = β3, βi4 = β4. (87)

We use the range policy (2) with hst = 5 [m], hgo =
35 [m], and vmax = 30 [ms ].

We first examine the effect of a single long-range
link on the stability of connected vehicle networks.
When vehicle i = 1 is receiving information through
a link of length σ , as depicted in Fig. 3a1–c1, the lin-
earized dynamics is described by (14) with matrix

Ĵ = Ĵ0 + P̂(1, σ )βσ , (88)
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1664 S. S. Avedisov, G. Orosz

Fig. 3 Top row Diagrams of the vehicle configurations with a
long-rangeV2V link for different link lengths for 11 cars.Bottom
row Corresponding stability charts in the (h∗, βσ ) plane when
considering β1 = 0.3 [ 1s ] and α = 1 [ 1s ]. The red dashed curves
denote the stability boundaries for the modes 2 and 3 obtained

through the derived analytical approximation up to third-order
in βσ , while the black solid curves denote the linear stability
boundaries obtained by numerical continuation. The gray shaded
region corresponds to stable uniform flow. (Color figure online)

cf. (15)where ε1σ = βσ is the gain for the link of length
σ terminated at vehicle 1.

We first analyze the effect of link of length σ = 2 on
the modal stability boundaries in the (h∗, β2) plane for
various values of α and β1. The results are summarized
in Fig. 4. The dashed red curves represent the analyt-
ical approximations of the modal stability boundaries
up to third-order in β2, while the solid black curves
denote the boundaries obtained through numerical con-
tinuation [26]. Gray shading denotes stable uniform
flow. The corresponding mode numbers k are shown
next to each boundary. Only modes corresponding to
k = 2 . . . 
 N

2 + 1� are shown, since modes k and
N + 2 − k are complex conjugates and therefore cor-
respond to the same set of stability boundaries. The
instability region for each mode is confined between
the modal boundaries of that mode. Although the exact
boundaries may cross each other (see Fig. 4a), the sta-
bility for the connected vehicle network is always given
by mode 2 for the cases examined here.

Figure 4a contains four stability boundaries k =
2, . . . , 6.When increasing β2, the instability region for
each mode shrinks and the uniform flow becomes sta-
ble for a wider range of h∗. As β2 increases further
some modal stability boundaries (k = 3 and 5) fold
back, increasing the corresponding regions of instabil-
ity. However, the k = 2 stability boundary (that gives
the primary instability) is nearly vertical, so changing
β2 does not change the stability region significantly. As
we increase the values of α and β1 (going down and
to the right in Fig. 4), stability boundaries for higher
mode numbers disappear, and the range of h∗ for which
the system is stable increases. In fact, in Fig. 4f, h, k
the connected vehicle network can be completely stabi-
lized for a large enough gain β2. Notice that the analyt-
ical approximations for the modal boundaries become
more accurate for larger values of α and β1 due to
stronger cyclically symmetrical coupling.

Next we consider the effect of varying the length of
the long-range link. In Fig. 3 we compare the linear sta-
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Fig. 4 Stability charts in the (h∗, β2) plane when a V2V link of
length 2 is added to an 11-car network. The β1 and α values are
indicated at each panel. The red dashed curves denote the sta-
bility boundaries for the modes k = 2, . . . , 6 obtained through

analytical approximation up to third-order in βσ . The black solid
curves denote the linear stability boundaries for modes obtained
by numerical continuation. The gray shaded region corresponds
to stable uniform flow. (Color figure online)

bility charts when a long-range link of length σ = 2,
σ = 3, σ = 4 is added to an 11-car network. The
configurations are depicted in Fig. 3a1, b1, c1, respec-
tively, where the corresponding stability boundaries are
shown in Fig. 3a2, b2, c2. In the case of σ = 3, increas-
ing the gain βσ corresponding to V2V link improves
the stability (still determined by mode 2) more than in

the case of σ = 2. In fact, a sufficiently large gain β3

can be used to stabilize the uniform flow for all values
of h∗. However, increasing β3 has a smaller effect on
the stability of mode 3 than increasing β2, and it takes
a larger value of β3 to stabilize mode 3 for all values
of h∗. In the case of σ = 4 increasing β4 benefits the
stability of the network for low values of β4 where the
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Fig. 5 Top row Connected vehicle networks with 11 cars and links of length 2 and 3 arranged in different configurations. Bottom row
Stability charts in the (β2, β3) plane for h∗ = 20 [m], β1 = 0.6 [ 1s ], and α = 1 [ 1s ]. The same notation is used as in Fig. 3

stability boundary is given by mode 2. However, for
β4 � 1.23 [1/s] the stability of the network is gov-
erned by mode 3, and increasing β4 further has limited
impact on the stability of the network.

After examining the effects of individual V2V links
on stability of connected vehicle networks, we analyze
the effects of combinations of these links. We first con-
sider the scenario when the connected vehicle network
contains two V2V links of different lengths (σ = 2
and σ = 3) and examine the stability for different con-
figurations. A detailed description of different config-
urations can be found in [32], while examples of such
combinations for an 11-car network are given at the
top of Fig. 5. In the union configuration shown in Fig.
5a1 a single CCC vehicle (i = 1) utilizes information
from multiple vehicles ahead (i = 3 and i = 4). In
the embedment configuration depicted in Fig. 5b1 two
distinct CCC vehicles (i = 1 and i = 2) utilize infor-
mation froma single transmitting vehicle (i = 4). In the
cascade configuration shown in Fig. 5c1, aCCCvehicle
(i = 1) utilizes information from a connected vehicle
ahead (i = 4), which also utilizes information from a

vehicle further ahead (i = 6). The bottom row of Fig.
5 shows the stability charts for the three configurations
in the (β2, β3) plane. The regions of stability for the
three different configurations are similar, but the sta-
bility boundaries for the embedment and cascade cases
are more concave. This indicates that the cascade and
embedment configurations may have a greater benefit
on the stability of the network than the “sum” of the
individual links in these configurations.

After analyzing the typical configurations appearing
in connected vehicle networks, we use the methodol-
ogy outlined in Fig. 1 to construct a connected vehicle
network for a ring with 33 cars. We setup the network
as explained in Fig. 1b–e by first randomly selecting the
transmitting vehicles with a probability of 0.5 and then
randomly selecting the CCC vehicles with a probabil-
ity of 0.5 out of the transmitting vehicles. Two of such
connected vehicle networks are shown in Fig. 6a1, b1,
labeled by “Trial 1” and “Trial 2”. In both cases com-
binations of unions, embedment and cascades appear.
Figure 6a2–b2 shows stability charts for the two trials
in the (β2, β3) plane for different values of β4. In Fig.
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Fig. 6 a1, b1 Two connected vehicle networks with 33 vehi-
cles. a2–a4, b2–b4Corresponding stability charts in the (β2, β3)

plane corresponding to for h∗ = 20 [m], α = 1 [1/s], β1 =

0.6 [1/s], and various values of β4 as indicated. The same nota-
tion is used as in Fig. 3
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6a2, b2, we have β4 = 0, and stability boundaries for
modes 2 through 6 appear. Note that the origin denotes
the case of no V2V communication where modes 2
through 5 are unstable. Observe that the uniform flow
can be stabilized by selecting sufficiently large gains β2

and β3. As β4 is increased, the modal stability bound-
aries move down, and the network can be stabilized
using smaller values of β2 and β3. In Fig. 6b4 only
stability boundaries for modes 2 through 4 are present.
Furthermore, Fig. 6b4 demonstrates that uniform flow
can be stabilized only by using links of length 4, since
the origin is located in the region of stable uniformflow.

5 Conclusion

In this paper we analyzed the dynamics of heteroge-
neous connected vehicle networks consisting of con-
ventional vehicles that respond to the vehicle imme-
diately ahead and vehicles equipped with connected
cruise control (CCC) that use wireless vehicle-to-
vehicle communication to respond to multiple vehicles
ahead.

The nontrivial connectivity structure of such con-
nected vehicle networks (CVNs) motivated us to
develop a perturbation technique to approximate the
modal dynamics of networks with heterogeneous con-
nectivity by perturbing the modes of a corresponding
cyclically symmetric network. First, the modal dynam-
ics of the underlying cyclically symmetric network
were determined through a discrete Fourier transfor-
mation. Subsequently the approximations to the modes
of the heterogeneous network were obtained about
the symmetric state. These expansions were obtained
using linear algebraic equations that were decoupled
by exploiting the symmetry of the underlying cycli-
cally symmetric network. Specifically for a system
with N nodes and M equations per node this reduction
allows one to solve N 2 decoupled linear systems of
M2 unknowns instead of solving a single linear system
with (NM)2 unknowns. Furthermore, the resulting N 2

decoupled linear systems hare similar structure, which
allows one to algorithmize the solution for increased
efficiency.

This modal approximation technique was applied
to heterogeneous connected vehicle systems including
CCC vehicles which can also react to the velocity of
up to four vehicles ahead. We first obtained the modal
dynamics of the cyclically symmetric system contain-

ing no CCC vehicles. To obtain approximations of the
modal equations when the connected vehicle network
contains CCCvehicles, we calculated themodal expan-
sions around the symmetric modes up to third-order in
the V2V link gains. Using the obtained approximations
wewere able to analytically determine themodal stabil-
ity boundaries for the heterogeneous connected vehicle
networks. We validated the results by comparing these
analytical boundaries to those obtained by numerical
continuation.

We conclude that adding CCC vehicles to a vehicle
networkof humandrivenvehiclesmay stabilize the uni-
form flow.We observed that longer V2V links are more
effective at stabilizing modes of low wave numbers,
and less effective at stabilizing modes of high wave
numbers. When adding multiple V2V links to a vehi-
cle network, specific combinations of V2V links may
enhance the impacts of the individual links on the sta-
bility of uniform flow. Finally, we demonstrated that in
a large CVN having a few appropriately designed V2V
links may be adequate to stabilize the uniform flow.

We found the network-based modal approximation
technique to be effective in analyzing the linear stabil-
ity of large connected vehicle networks with hetero-
geneous connectivity. In the future we will use this
technique to evaluate the effects of increasing con-
nected vehicle penetration on the stability of uniform
flow. Furthermore, we will use numerical simulations
in order to evaluate the behavior of CVNs at the nonlin-
ear level. In the long termwewill seek to implement the
developed techniques as a part of a larger algorithm that
would enable one to analyze more complex and more
realistic connected vehicle networks.

Acknowledgements Funding was provided by the National
Science Foundation (Award No. 1351456).

Appendix 1: Third-order approximation of modal
dynamics

To obtain the third-order perturbation of the dynam-
ics of the k-th mode [D̂(1,2,3)]kk for an arbitrary
i1, σ1, i2, σ2, i3, σ3 sextuple we take the derivative of
(49) with respect to εi3σ3 (denoted by ε3) which yields

∂ε1∂ε2∂ε3

(
Ĵ − IN ⊗ [D̂]kk

)
[T̂]k

+ ∂ε1∂ε2

(
Ĵ − IN ⊗ [D̂]kk

)
∂ε3 [T̂]k
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+ ∂ε1∂ε3

(
Ĵ − IN ⊗ [D̂]kk

)
∂ε2 [T̂]k

+ ∂ε2∂ε3

(
Ĵ − IN ⊗ [D̂]kk

)
∂ε1 [T̂]k

+ ∂ε1

(
Ĵ − IN ⊗ [D̂]kk

)
∂ε2∂ε3 [T̂]k

+ ∂ε2

(
Ĵ − IN ⊗ [D̂]kk

)
∂ε1∂ε3 [T̂]k

+ ∂ε3

(
Ĵ − IN ⊗ [D̂]kk

)
∂ε1∂ε2 [T̂]k

+
(

Ĵ − IN ⊗ [D̂]kk
)
∂ε1∂ε2∂ε3 [T̂]k = 0. (89)

At εi1σ1 = εi2σ2 = εi3σ3 = 0 we obtain

1

6
IN ⊗

(
[D̂(1,2,3)]kk + [D̂(1,3,2)]kk + [D̂(2,1,3)]kk

+[D̂(2,3,1)]kk + [D̂(3,1,2)]kk + [D̂(3,2,1)]kk
)

= −1

2
IN ⊗

(
[D̂(1,2)]kk + [D̂(2,1)]kk

)
[T̂(3)]k

−1

2
IN ⊗

(
[D̂(1,3)]kk + [D̂(3,1)]kk

)
[T̂(2)]k

−1

2
IN ⊗

(
[D̂(2,3)]kk + [D̂(3,2)]kk

)
[T̂(1)]k

+1

2
(P̂(1) − IN ⊗ [D̂(1)]kk)([T̂(2,3)]k + [T̂(3,2)]k)

+1

2
(P̂(2) − IN ⊗ [D̂(2)]kk)([T̂(1,3)]k + [T̂(3,1)]k)

+1

2
(P̂(3) − IN ⊗ [D̂(3)]kk)([T̂(1,2)]k + [T̂(2,1)]k)

+1

6
(Ĵ0 − IN ⊗ [D̂0]kk)

(
[T̂(1,2,3)]k + [T̂(1,3,2)]k

+[T̂(2,1,3)]k + [T̂(2,3,1)]k + [T̂(3,1,2)]k
+[T̂(3,2,1)]k

)
. (90)

We can eliminate the last term in the expres-
sion above by multiplying by [T̂−1

0 ]k from the left
and using (26). Also because the above expres-

sion has six unknowns
(
the [D̂(·,·,·)]kk’s

)
for each

i1, σ1, i2, σ2, i3, σ3 sextuple we have the freedom to
set

ˆ[D(1,2,3)]kk = [D̂3(i1, σ1, i2, σ2, i3, σ3)]kk
= − 3[T̂−1

0 ]k(IN ⊗ [D̂(1,2)]kk)T̂0[Û(3)]k
+ 3[T̂−1

0 ]k(P̂(1) − IN ⊗ [D̂(1)]kk)T̂0[Û(2,3)]k ,
(91)

while the equations for the other third-order terms
can be obtained by permuting on the indices corre-
sponding to i1, σ1, i2, σ2, i3, σ3 on the left and right
hand side of (91). By algebraic manipulation one can
show [T̂−1

0 ]k(IN ⊗[D̂(1,2)]kk)T̂0[Û(3)]k = [T̂−1
0 ]k(IN ⊗

[D̂(1)]kk)T̂0[Û(2,3)]k = 0. This means we can simplify
(91) to

[D̂(1,2,3)]kk = 3[T̂−1
0 ]k P̂(1)T̂0[Û(2,3)]k, (92)

and by using (17) we can obtain (62).

Appendix 2: Second-order approximation of the
modal block eigenvector

Solving (59) for the connected vehicle network , we
obtain the (k, �)-th block of Û(1,2) whose elements are
contained in

b(1,2)
k� =

⎡

⎢⎢
⎢
⎣

u(1,2)
k�,11

u(1,2)
k�,21

u(1,2)
k�,12

u(1,2)
k�,22

⎤

⎥⎥
⎥
⎦

. (93)

For k �= � using (80,81) we obtain

b(1,2)
k� = 1

p(p − αβ1)ηk �

×

⎡

⎢⎢
⎣

(p + β1(β1η�1 − α))R(i1, σ1, i2, σ2)k� + pη�1(p + β1(β1ηk1 − α))Q(i1, σ1, i2, σ2)k� − pβ1η�1S(i1, σ1, i2, σ2)k�
pη�1(−β1R(i1, σ1, i2, σ2)k� − pβ1ηk1Q(i1, σ1, i2, σ2)k� + pS(i1, σ1, i2, σ2)k�)

(−pβ1ηk1Q(i1, σ1, i2, σ2)k� − β1R(i1, σ1, i2, σ2)k� + pS(i1, σ1, i2, σ2)k�)
p(R(i1, σ1, i2, σ2)k� + pηk1Q(i1, σ1, i2, σ2)k� − α S(i1, σ1, i2, σ2)k �)

⎤

⎥⎥
⎦ ,

(94)
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where

Q(i1, σ1, i2, σ2)k � = 2

N
u(1)
k�,12

(
ei

2π
N σ2(�−1) − 1

)
,

R(i1, σ1, i2, σ2)k � = 2

N

(
−

N∑

j=1

ei
2π
N (i1−1)( j−k)

×
(
ei

2π
N σ1( j−1) − 1

)
u(2)
j�,21

)
,

S(i1, σ1, i2, σ2)k � = 2

N

(
u(1)
k�,22

(
ei

2π
N σ2(�−1) − 1

)

−
N∑

j=1

ei
2π
N (i1−1)( j−k)

×
(
ei

2π
N σ1( j−1) − 1

)
u(2)
j�,22

)
.

(95)

and u(1)
k�,12, u

(2)
j�,21, u

(1)
k�,22, u

(2)
j�,22 are given in (77). For

the case k = � (59) has multiple possible solutions due
to a nonzero nullity. In this case, we set

b(1,2)
k� =

⎡

⎢⎢
⎣

0
0
0
0

⎤

⎥⎥
⎦ . (96)

Appendix 3: Cubic terms of the modal approxima-
tion

The coefficients in (82) and (83) are given by

L0(i1, σ1, i2, σ2, i3, σ3) = 1

N 3

pηk1
(p − αβ1)2

N∑

u=1,u �=k

(ei
2π
N σ1(u−1) − 1)ei

2π
N (i1−1)(u−k)

ηuk

×
(

− (ei
2π
N σ2(k−1) − 1)(ei

2π
N σ3(k−1) − 1)ei

2π
N (i2−1)(k−u)

ηuk

(β1ηu1 + α) +
N∑

j=1, j �=k

(ei
2π
N σ2( j−1) − 1)(ei

2π
N σ3(k−1) − 1)ei

2π
N (i2−1)( j−u)ei

2π
N (i3−1)(k− j)

η jk

(β1ηk1 + α)

)
,

and

L1(i1, σ1, i2, σ2, i3, σ3) = 1

N 3

1

(p − αβ1)2

N∑

u=1,u �=k

(ei
2π
N σ1(u−1) − 1)ei

2π
N (i1−1)(u−k)

ηuk

×
(

(ei
2π
N σ2(k−1) − 1)(ei

2π
N σ3(k−1) − 1)ei

2π
N (i2−1)(k−u)

ηuk

(pηu1 + α2) −
N∑

j=1, j �=k

(ei
2π
N σ2( j−1) − 1)(ei

2π
N σ3(k−1) − 1)ei

2π
N (i2−1)( j−u)ei

2π
N (i3−1)(k− j)

η jk

(pηk1 + α2)

)
. (97)

Appendix 4: Coefficients for modal stability bound-
aries and modal frequencies

The coefficients for pk and ωk in (85) and (86) are
obtained by plugging in (85) and (86) into (84) with
p = pk and λ = iωk . The zeroth-order terms in (85)
and (86) are then determined by setting all βiσ = 0,
taking the real and imaginary parts of (84), and solving
the resulting two equations for pk0 and ωk0 we obtain

pk0 = 1
2 (2β1 + α)

(
(2β1 + α) tan2

(
θk
2

)
+ α

)
,

ωk0 = (2β1 + α) tan
(

θk
2

)
,

(98)

where θk = 2π
N (k − 1). These expressions indeed cor-

respond to (72) and (73).
To obtain the first-order terms for indices i1, σ1, we

take the partial derivative of (84) with respect to βi1σ1
and evaluate the expression at βi1σ1 = 0. Then tak-
ing the real and imaginary parts, and performing some
algebraic manipulation we get

pk1(i1, σ1) = 1

2N

(
ωk0

(
sin(σ1θk) + 2

(
1 + sin

( θk
2

))

sin(θk)

× (
1 − cos(σ1θk)

)
)

+ α

(
sin(σ1θk)

tan
( θk
2

) + (
1 − cos(σ1θk)

)
))

ωk1(i1, σ1) = 1

N

(
sin(σ1θk) + tan( θk

2 )
(
1 − cos(σ1θk)

))
.

(99)

Similarly, the second-order terms for the indices
i1, σ1, i2, σ2 can be obtained by taking the second par-
tial derivative of (84) with respect to βi1σ1 and βi2σ2 and
evaluating the results at βi1σ1 = βi2σ2 = 0. Splitting
the real and imaginary parts we obtain
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pk2(i1, σ1, i2, σ2) = 2

N
ωk1(i1, σ1)k

1 − cos(σ2θk)

sin(θk)

+
(
2ωk0

1 + sin2
(

θk
2

)

sin(θk)
+ α

)(
Re K1(i1, σ1, i2, σ2)|c

+ 1

ωk0
Im K0(i1, σ1, i2, σ2)|c

)

+
(

ωk0 + α
2 cos2

(
θk
2

)

sin(θk)

)(
− ImK1 (i1, σ1, i2, σ2)|c

+ 1

ωk0
Re K0(i1, σ1, i2, σ2)|c

)

ωk2(i1, σ1, i2, σ2) = 2

(
Re K1(i1, σ1, i2, σ2)|c tan

(
θk
2

)

− Im K1(i1, σ1, i2, σ2)|c
)

+ 2

ωk0

(
Re K0(i1, σ1, i2, σ2)|c

+ Im K0(i1, σ1, i2, σ2)|c tan
(

θk
2

) )
, (100)

where “|c” indicates that the quantity is evaluated with
all βiσ = 0.

Finally, to obtain the third-order terms for the indices
i1, σ1, i2, σ2, i3, σ3 we take the third partial derivative
of (84) with respect to βi1σ1 , βi2σ2 , and βi3σ3 and evalu-
ate the result at βi1σ1 = βi2σ2 = βi3σ3 = 0. Taking the
real and imaginary parts yields

pk3(i1, σ1, i2, σ2, i3, σ3) = 3ωk1(i1, σ1)ωk2(i1, σ1, i2, σ2)

+ 3

N

1 − cos(σ1θ)

sin(θk)
ωk2(i2, σ2, i3, σ3)

+
(
3

2
ωk0 + α

2

1

tan
(

θk
2

)
)

ωk3(i1, σ1, i2, σ2, i3, σ3)

+ 6ωk1(i1, σ1)

(
Re K1(i2, σ2, i3, σ3)|c 1

tan(θk)

+ Im K1(i2, σ2, i3, σ3)|c
)

+ 6ωk0

(
∂ε1Re K1(i2, σ2, i3, σ3)|c 1

tan(θk)

+ ∂ε1 Im K1(i2, σ2, i3, σ3)|c
)

+ 6ωk0

(
Re L1(i1, σ1, i2, σ2, i3, σ3)|c 1

tan(θk)

+ Im L1(i1, σ1, i2, σ2, i3, σ3)|c
)

+ 6

(
∂ε1 Im K0(i2, σ2, i3, σ3)|c 1

tan(θk)

− ∂ε1Re K0(i2, σ2, i3, σ3)|c
)

+ 6

(
Im L0(i1, σ1, i2, σ2, i3, σ3)|c 1

tan(θk)

−Re L0(i1, σ1, i2, σ2, i3, σ3)|c
)

,

ωk3(i1, σ1, i2, σ2, i3, σ3) = −3
ωk1(i1, σ1)ωk2(i2, σ2, i3, σ3)

ωk0

+ 6
ωk1(i1, σ1)

ωk0

(
Re K1(i2, σ2, i3, σ3)|c tan

(
θk
2

)

− Im K1(i2, σ2, i3, σ3)|c
)

+ 6

(
∂ε1Re K1(i2, σ2, i3, σ3)|c tan

(
θk
2

)

− ∂ε1 Im K1(i2, σ2, i3, σ3)|c
)

+ 6

(
Re L1(i1, σ1, i2, σ2, i3, σ3)|c tan

(
θk
2

)

− Im L1(i1, σ1, i2, σ2, i3, σ3)|c
)

+ 6

ωk0

(
∂ε1Re K0(i2, σ2, i3, σ3)|c

+ ∂ε1 Im K0(i2, σ2, i3, σ3)|c tan( θk
2 )

)

+ 6

ωk0

(
Re L0(i1, σ1, i2, σ2, i3, σ3)|c

+ Im L0(i1, σ1, i2, σ2, i3, σ3)|c tan
(

θk
2

))
. (101)
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