
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 88, 040902(R) (2013)

Decomposing the dynamics of heterogeneous delayed networks
with applications to connected vehicle systems
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Delay-coupled networks are investigated with nonidentical delay times and the effects of such heterogeneity on
the emergent dynamics of complex systems are characterized. A simple decomposition method is presented that
decouples the dynamics of the network into node-size modal equations in the vicinity of equilibria. The resulting
independent components contain distributed delays that map the spatiotemporal complexity of the system to
the time domain. We demonstrate that this approach can be used to reveal physical phenomena in heterogenous
vehicular traffic when vehicles are linked via vehicle-to-vehicle communication.
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The dynamics of delayed networks are in the current interest
of research communities in physics, biology, and engineering.
Applications include neural networks [1–3], gene regulatory
networks [4,5], semiconductor lasers [6,7], and traffic systems
[8–10]. In these systems, delays arise in the couplings between
components due to finite-time information propagation, which
greatly influence the arising patterns of activity. However,
in the above cases it has been assumed that the delays are
identical. This is clearly not the case in physical systems,
where communication channels have different transmission
rates and information travels greatly varying distances. In
this Rapid Communication, we characterize the behavior of
realistic heterogenous delayed systems about equilibria by
applying a simple decomposition method. In particular, we
analyze the dynamics of a connected vehicle system and
show that having an optimal level of delay heterogeneity may
maximize stability of the uniform flow, which has significant
implications on traffic dynamics.

In order to understand the system-level behavior aris-
ing through delayed connectivity, large systems of delay
differential equations have to be analyzed. Even in the
absence of delays, one needs to handle high-dimensional
systems. Moreover, delays make the dynamics infinite di-
mensional, which typically leads to complicated dynamics
even for simple systems. For the case of identical delays,
decomposition methods have been proposed [3,7,11–14] to
investigate the dynamics in the vicinity of the synchronized
equilibrium, which result in (linear autonomous) delayed
modal equations of small size. The decomposition methods
have been extended to handle the dynamics in the vicinity
of synchronous periodic orbits using Floquet theory [3] and
synchronous chaos using Lyapunov exponents [15]. Further
developments allow decomposition of the dynamics in the
vicinity of steady and oscillatory cluster states [16,17] and the
analysis of traveling-wave solutions [2]. However, networks
with heterogenous delays escaped many attempts of modal
decomposition, because no finite-dimensional transformation
can untangle the interaction of nonidentical delays. As a
first step, in this Rapid Communication we propose a simple
approach that can handle heterogenous delays in the vicinity
of equilibria at the linear level. The key idea is to decompose
the system in the Laplace domain and then transform the

uncoupled modal equations back to the time domain. This
results in delayed modal equations with distributed delays
where the spatiotemporal complexity of the original coupled
system is mapped to the time domain by the delay distributions.

As a motivating example we consider a simple, but hetero-
geneous, car-following model [9,10,18] where the interaction
of vehicles is facilitated by automatic control that is based
on wireless vehicle-to-vehicle (V2V) communication [19,20].
As different channels of information exchange have naturally
different delay times, this model is unsuitable for available
modal decomposition techniques. By applying our method, we
illustrate how individual delays are mixed in the decomposed
system. The corresponding modes are traveling-wave-like
solutions that become traveling waves of different wavelengths
in the case of identical delays and next-neighbor interactions
[8,21]. Synthesizing the results obtained for individual traffic
modes, we develop a systematic understanding of heteroge-
neous traffic dynamics for our simple example. The presented
method may be used to develop control strategies for larger
systems involving V2V communication.

We consider a general description of dynamics on a network
written in the form of

ẋi(t) = f (xi(t)) +
N∑

j=1

aij g(xi(t),xj (t − τij )), (1)

for i = 1, . . . ,N , where the state of node i is given by
the vector xi ∈ Rn, the internal dynamics are described by
f (xi), and the couplings g(xi,xj ) depend on the states of the
interacting nodes [22]. The time delays τij account for signal
propagation and processing times. The coupling structure of
the system is captured by a weighted directed graph described
by the N -dimensional adjacency matrix AN = [aij ] whose
elements are defined as aij �= 0 if node j is connected to
node i and aij = 0 otherwise for i,j = 1, . . . ,N . Our goal
is to decompose the dynamics of (1) around an equilibrium
and define modal coordinates in which the system becomes
uncoupled and the corresponding modal equations can be
analyzed separately by current state-of-the-art tools [23–25].

In this Rapid Communication, for the sake of simplicity,
we focus on the dynamics in the vicinity of the synchronous
or uniform equilibrium xi(t) ≡ x∗, i = 1, . . . ,N [26]. We
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define the perturbations yi = xi − x∗ for i = 1, . . . ,N , so the
linearization of (1) can be written as

ẏi(t) = Lyi(t) + R

N∑
j=1

aij yj (t − τij ). (2)

The n-dimensional matrices L,R are given by

L = ∂f (x∗) + m ∂1g(x∗,x∗), R = ∂2g(x∗,x∗), (3)

where ∂1 and ∂2 represent partial derivatives with respect to
the first and second set of variables, respectively, while m =∑N

j=1 aij is the (constant) row sum [26].
Using the notation y = col[y1 y2 · · · yN ] ∈ RnN the linear

system (2) can be rewritten as

ẏ(t) = (IN ⊗ L)y(t) + (AN ⊗ R)y(t), (4)

where IN is the N -dimensional identity matrix while AN =
[aij S−τij

] is an adjacency operator that incorporates the
components of the adjacency matrix as well as the time-shift
operator

S−τij
yj (t) = yj (t − τij ). (5)

In order to decompose system (4) into N modes of size n,
one needs to diagonalize the adjacency operator AN . First, we
take the Laplace transform of (4) and neglect the terms that
would arise from a particular initial condition:

s Y(s) = (IN ⊗ L)Y(s) + (BN (s) ⊗ R)Y(s), (6)

where the matrix BN (s) = [aij e−s τij ] is the Laplace transform
of the adjacency operator AN [27,28]. Then we define the
modal transformation

Y(s) = (TN (s) ⊗ I )Z(s), (7)

where the columns of the matrix TN (s) consist of the
eigenvectors of BN (s). This yields

s Z(s) = (IN ⊗ L)Z(s) + (CN (s) ⊗ R)Z(s), (8)

where Z(s) is the Laplace transform of the vector z =
col[z1 z2 · · · zN ] ∈ RnN and the diagonal matrix CN (s)
contains the eigenvalues �k(s) of BN (s). That is, the node-size
modal equations in the Laplace domain become uncoupled:

s Zk(s) = LZk(s) + R �k(s)Zk(s), (9)

for k = 1, . . . ,N . We remark that even if the adjacency
matric AN is not diagonalizable (i.e., it has eigenvalues
whose algebraic multiplicity is larger than their geometric
multiplicity), the matrix BN (s) in (6) may still be diagonalized,
that is, heterogeneity in the delays can destroy the symmetry
imposed by the coupling structure.

The inverse Laplace transform of (9) results in the dis-
tributed delay systems

żk(t) = Lzk(t) + R

∫ t

0
λk(ξ )zk(t − ξ )dξ, (10)

in the time domain where λk(ξ ) is the inverse Laplace
transform of �k(s) for k = 1, . . . ,N . We remark that the
infinite dimensionality of transformation TN (s) in (7) can be
understood by observing that it “shuffles” the present and past
values of the coordinates in the time domain.

The stability of the modal equations (10) can be analyzed
by the direct methods given in Ref. [29] or by obtaining λk(ξ )
using inverse Laplace transform. Note that the eigenvalues can
be written as

�k(s) = �̄k(e−s τ11 ,e−s τ12 , . . . ,e−s τNN ). (11)

In general �̄k is a nonlinear function and e−s τij are periodic
along the contour s = iω, which makes (11) quasiperiodic with
frequencies τij . Furthermore, the inverse Laplace transform is
equivalent to the Fourier transform [30] that takes quasiperi-
odic functions into sums of periodic functions with frequencies
from the set � = {∑ij pij τij � 0 : pij ∈ Z}. Therefore the
eigenvalues can be approximated as

�k(s) ≈
∑

	:Tk,	∈�

ρk,	 e−s Tk,	 , (12)

where the coefficients are calculated by truncating the Fourier
transform

ρk,	 = lim
T →∞

1

T

∫ T

0
�k(iω)eiω Tk,	dω. (13)

If �̄k in (11) is a smooth function of its variables,
more insight can be gained by using a multivariable Tay-
lor expansion about a point where all the variables as-
sume the value e−s T0 (identical delays τij = T0) [31]. The
corresponding coefficients can be obtained by calculat-
ing the partial derivatives ∂

q1
1 · · · ∂qM

M �̄k(e−s T0 , . . . ,e−s T0 ) =
e(Q−1)s T0�k,q1···qM

, where M = N2 is the number of variables,
Q = q1 + · · · + qM is the order of the derivative, and �k,q1···qM

only depend on the coupling strengths aij , hence they are
independent of s [32]. Choosing T0 = min{τij } guarantees that
all the resulting exponential terms are in the form of e−s Tk,	

with non-negative Tk,	 ∈ �, which is required by causality.
The clear advantage of the Taylor expansion over the integral
method is that it is more likely to provide analytical results in
some simple cases.

The inverse Laplace transform of e−s Tk,	 is the Dirac delta
δ(ξ − Tk,	), that is, (12) results in the distribution

λk(ξ ) ≈
∑

	:Tk,	∈�

ρk,	 δ(ξ − Tk,	). (14)

Thus, the convolution integral in (10) can be evaluated,
yielding the delay equations

żk(t) = Lzk(t) + R
∑

	:Tk,	∈�

ρk,	 zk(t − Tk,	), (15)

for k = 1, . . . ,N , which approximate distributed delays by (in-
finitely many) discrete delays. The stability of the equilibrium
can be studied using the approximate characteristic equations

det

⎛
⎝sI − L − R

∑
	:Tk,	∈�

ρk,	 e−s Tk,	

⎞
⎠ = 0, (16)

where I is the n-dimensional identity matrix. Considering s =
i ω, ω � 0, the stability boundaries can be derived analytically
[23], while discretizing time in (10) or (15) may allow
numerical approximation of the characteristic roots s [24].

To gain insight into the physics of connected vehicle sys-
tems and to illustrate our above derived formalism we consider
a simple car-following model. Car-following models describe
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FIG. 1. (Color online) (a) A sketch of three vehicles following
each other on a ring road. Orange and purple arrows show the
direction of information propagation through V2V communication
with delays marked on each link. (b) Delay distributions (14) with
support (22) for modes k = 1,2. Dashed-dotted blue lines with circles
and solid red lines with crosses correspond to the distributions
calculated analytically for modes 1 and 2, respectively. Numerical
approximations are shown as solid gray curves. (c) Stability chart
with the stable domain shaded. Dashed-dotted blue, solid red, and
dashed green curves correspond to the first, second, and third
modes, respectively. When crossing thin curves stability changes
through a pair of complex conjugate characteristic roots while thick
lines correspond to a stability change with zero characteristic root.
(d) Comparing the leading characteristic roots obtained from (18)
(black circles) and (21) (blue plus, red cross, green star for modes
1,2,3) for K = 6. Parameters correspond to the point marked by a dot
on (c).

the motion of individual vehicles moving in continuous time
and space [9,18]. These models can be extended to incorporate
vehicle-to-vehicle (V2V) communication which changes the
network structure by introducing long-range connections with
heterogenous delays.

We consider a simplified model with node dimension n = 1,
where only the vehicles’ speed vi , i = 1, . . . ,N are exchanged
via communication:

v̇i(t) = γ (v0 − vi(t)) +
N∑

j=1

βijV (vj (t − τij ) − vi(t)). (17)

Here V is a monotonously increasing function with V (0) = 0,
while γ and βij represent the gains to maintain the desired
velocity v0 and zero relative velocity, respectively. We consider
periodic boundary conditions, i.e., put the vehicles on a ring
road. It can be shown analytically that the linear stability
conditions obtained for large N are equivalent to the conditions
that guarantee attenuation of perturbations along vehicle
platoons [9]. For the sake of simplicity here we restrict
ourselves to the simplest nontrivial case of N = 3 vehicles;
see Fig. 1(a). Also, we consider the coupling constants βii = 0
and βij = β for i �= j and the heterogenous delay setup τij = τ

for i �= j except τ32 = σ � τ . This mimics the scenario that
vehicle 1 obstructs the transmission of information from
vehicle 2 to vehicle 3, resulting in longer delay.

By linearizing (17) about the uniform equilibrium vi(t) ≡
v0, i = 1,2,3 we obtain the linear system⎡

⎢⎣
˙̃v1(t)
˙̃v2(t)
˙̃v3(t)

⎤
⎥⎦ = a

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

︸ ︷︷ ︸
IN

⎡
⎢⎣

ṽ1(t)

ṽ2(t)

ṽ3(t)

⎤
⎥⎦

+ b

⎡
⎢⎣

0 S−τ S−τ

S−τ 0 S−τ

S−τ S−σ 0

⎤
⎥⎦

︸ ︷︷ ︸
AN

⎡
⎢⎣

ṽ1(t)

ṽ2(t)

ṽ3(t)

⎤
⎥⎦, (18)

where ṽi = vi − v0, a = −γ − 2βV ′(0), and b = βV ′(0).
To decompose (18) into its modal components we calculate

the Laplace transform of the adjacency operator AN :

BN (s) =

⎡
⎢⎣

0 e−s τ e−s τ

e−s τ 0 e−s τ

e−s τ e−s σ 0

⎤
⎥⎦ (19)

[cf. (6)], which possesses the eigenvalues

�1,2(s) = 1
2 (e−s τ ± √

5e−2s τ + 4e−s (τ+σ )),

�3(s) = −e−s τ , (20)

that appear in the modal equations (9) in the Laplace domain.
To approximate the convolution by discrete delays in the modal
equations (10) in the time domain we calculate the Taylor
expansion of �̄1,2(x,y) = 1

2 (x ±
√

5x2 + 4xy) about (x0,y0)
and then set x0 = y0 = e−s τ [cf. (11) and the discussion after
(13)]. The resulting expression is a polynomial in e−s τ and
e−s σ . Calculating the inverse Laplace transform we obtain the
modal equations

˙̃wk(t) = a w̃k(t) + b

K∑
	=0

ρk,	 w̃k(t − Tk,	), k = 1,2,

˙̃w3(t) = a w̃3(t) − b w̃3(t − τ ), (21)

where the support of the delay distributions is given by

Tk,	 = 	σ − (	 − 1)τ, (22)

for k = 1,2. In Fig. 1(b) the dashed-dotted blue lines with
circles and solid red lines with crosses show the delay
distributions for modes 1 and 2, respectively, for K = 6.
These analytical results are approximated very well by the
distributions obtained numerically using (13) that are shown
as solid gray curves. We used T = 1000 τ and p1,p2 =
−20, . . . ,20 so that Tk,	 = p1τ + p2σ � 0.

The modal equations (21) result in the characteristic
equations

s − a − b

K∑
	=0

ρk,	 e−s Tk,	 = 0, k = 1,2,

s − a + b e−s τ = 0. (23)

040902-3



RAPID COMMUNICATIONS
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FIG. 2. (Color online) Stability charts with different delay values
as indicated on each panel. The same notation is used as in Fig. 1(c).

Substituting s = i ω, ω � 0 we obtain the stability boundaries
in the (a,b) plane in parametric form for each mode. These
are shown in Fig. 1(c) where modes are distinguished by
color and line type; see the caption. Thin curves correspond
to ω > 0 while thick lines correspond to ω = 0. When
crossing a thin curve, oscillations arise with frequency ω

while crossing a thick line leads to nonoscillatory stability
loss. [In the corresponding nonlinear system (17), Hopf and
fold bifurcations take place.] Indeed, the equilibrium is stable
if all modes are stable, as indicated by the shaded domain. The
accuracy of the stability boundaries improve when increasing
the number of delays K in (23).

When discretizing time in systems (18) and (21), one may
calculate the characteristic roots s numerically. Figure 1(d)
compares the characteristic roots for K = 6 for the parameter
values corresponding to the dot in Fig. 1(c). Circles represent
the characteristic roots obtained for (18) while other symbols
represent the characteristic roots obtained for the individual
modes in (21); see the caption. Notice that the leading
characteristic roots are reproduced very well while deviations
occur for characteristic roots with a smaller negative real
part [33].

In order to evaluate the effects of delay heterogeneity on the
system dynamics we depict the stability charts for different σ

values in Fig. 2. Using a larger parameter window compared
to Fig. 1(c) reveals other stability curves (belonging to higher

values of ω). Crossing these only makes the system “more
unstable” with more characteristic roots on the right hand side.
As can be seen in Fig. 2(a), the stability boundaries for modes
2 and 3 become identical when σ = τ . In this case mode
1 is called the tangential mode: When instability occurs in
this mode the synchronous or uniform configuration is kept.
On the other hand, modes 2 and 3 are transversal modes:
Stability losses in these modes break synchrony [3], leading
to traveling waves. Such categorization is not possible for
heterogenous delays. In this case, each mode gives a different
set of curves [see Figs. 2(b)–2(d)] that correspond to different
spatiotemporal patterns: traveling waves that are asymmetric
due to the delays. Notice that as the heterogeneity in the delays
increases, the stable domain may increase or decrease in the
(a,b) parameter plane. In fact, choosing the level of delay
heterogeneity appropriately, one may maximize the stable
domain and so increase the robustness of the uniform flow.

In summary, this Rapid Communication introduced a
method for analyzing complex systems with coupling-delay
heterogeneity that can be followed in a range of applications.
In the vicinity of the synchronized equilibrium, through an
infinite-dimensional modal transformation, modal equations
with distributed delays were derived for heterogeneous delayed
networks so that the spatiotemporal complexity of the network
is embedded in the delay distributions. The analysis of the
modal equations provide a systematic way to map out the
system-level dynamics. It was demonstrated that the method
can be used to analyze the spatiotemporal dynamics of
connected vehicle systems. It was found that having an
appropriate level of delay heterogeneity can maximize the
robustness of the uniform traffic flow.

Our future research we will extend these results using more
realistic car-following models and connectivity structures.
Indeed, applications extend beyond this specific problem. For
example, one may extend the current framework to nonsyn-
chronized equilibria that can be used to design gene regulatory
circuits of given functional properties [5]. Also, extending the
framework to periodic orbits may allow one to characterize
self-organized criticality in neural networks [3,17], which
can lead to a better understanding of neurocomputation and
memory in the brain.
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