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Robotic reactions: Delay-induced patterns in autonomous vehicle systems
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Fundamental design principles are presented for vehicle systems governed by autonomous cruise control
devices. By analyzing the corresponding delay differential equations, it is shown that for any car-following

model short-wavelength oscillations can appear due to robotic reaction times, and that there are tradeoffs
between the time delay and the control gains. The analytical findings are demonstrated on an optimal velocity
model using numerical continuation and numerical simulation.
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I. INTRODUCTION

Early car-following models, such as the California model
[1], allowed the study of linear stability of uniform traffic
flow. These models already incorporated driver reaction time
(see [2] for a review), but at that time the mathematical
theory for the corresponding delay differential equations
(DDEs) [3] was not available. By the 1990s, nonlinearities
penetrated the car-following theory due to the increasing
speed and availability of computers, which allowed the ex-
ploration of traffic dynamics by means of numerical simula-
tion. The first nonlinear models, such as the optimal velocity
model (OVM) [4], were able to reproduce both uniform flow
and stop-and-go waves. (In fact, the OVM with reaction-time
delay [5] is a nonlinear extension of the California model.) In
the last two decades, a large number of car-following models
were constructed and investigated by simulations.

Recently, tools from dynamical systems theory have been
applied to explore “hidden” unstable motions [6—8] and the
effects of reaction-time delay [7-10] in car-following sys-
tems. It has been shown that the delay increases the domains
of linear instability of the uniform flow. However, drivers
may partially compensate for this by anticipatory actions,
e.g., by monitoring more than one vehicle in front [9]. On the
other hand, sufficiently large excitations (such as sudden
braking due to bad lane changes) may still trigger traffic
jams even when the uniform flow is linearly stable [7,8,11].

Such excitable dynamics may not allow a traffic engineer
to stabilize the uniform flow by controllable message signs.
However, one may ‘‘substitute’ human drivers with autono-
mous cruise control (ACC) devices that can measure the dis-
tances and velocity differences between vehicles by radar,
calculate the required action, and actuate cars accordingly
[12]. Time delays appear in such systems due to the time
needed for sensing, computation, and actuation. Such robotic
reaction times are smaller than the human ones, but only the
motion of the car immediately in front can be monitored. In
[13], ACC dynamics were studied by numerical simulation
for a specific model, and short-wavelength oscillations, pre-
viously observed in experiments, were detected for certain
combinations of gain parameters. The goal of this Rapid
Communication is to unveil the dynamical principles under-
lying such phenomena and to determine the parameter re-
gimes for a general car-following model where the uniform
flow can be stabilized by ACCs.
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II. MODELING AND STABILITY

Assuming identical vehicles, the acceleration of the ith
vehicle is given by

vi(t):f(hi(t_ T)shi(t_ T)9vi(t_ T))’ (1)

where the dot stands for differentiation with respect to time ¢,
v; is the velocity of the ith vehicle, A; is the distance between
the ith and the i+ Ist vehicles, called the headway, and 7 is
the reaction-time delay. The system is completed by the ki-
nematic condition

hi(t) = v, (1) = v,(0). )

We assume that system (1,2) possesses a one-parameter
set of uniform flow equilibria,
hl(t) = h*, hz(t) = 03 vi(t) = U*3 (3)
and that there exists a functional relation between the equi-
librium headway 4" and the equilibrium velocity v*,

0=f(h*,0,v") = v* = V(h"). 4)

Here the monotonically increasing non-negative function V
expresses that the more sparse traffic is, the faster drivers
want to go.

For simplicity, we assume periodic boundary conditions:
N vehicles are placed on a circular road of length L, which
yields the algebraic equation =Y ,4,(f)=L. This determines
the equilibrium headway A*=L/N and the equilibrium veloc-
ity v* through Eq. (4). We remark that when considering the
case of a semi-infinite road, the velocity v™ is prescribed (by
the velocity of the leader), and the equilibrium headway is
given by 1*=V~!(v*). In this Rapid Communication, the ana-
lytical results are calculated for arbitrary N while the stability
charts and bifurcation diagrams are shown for N=33. This is
small enough to keep the illustrations readable but is large
enough to represent the “large N case”: N— o such that L/N
is kept constant. For physically realistic models, the deriva-
tives of f satisfy

dJ ® *
G=—f(h",0,0) =0,

(9 * *
F=—f(h",0,0%) =0,
oh oh
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FIG. 1. (Color online) Linear stability diagrams for the general model (1,2). The stable regions are shaded and solid arrows show the
increase of the discrete wave number k. For small delay the stability boundary is the k=1 curve, while, for larger delay, curves for
k=N/2 constitute the boundary. The red circles locate where the k=1 and k=N/2 curves intersect. In panel (b), we use the notation

g=21%+1.

H=— (0" 0,0%) = 0, (5)
Jdv
see [11]. (Notice the minus sign in the definition of H.)
When the uniform flow equilibrium (3) loses stability, dif-
ferent spatial patterns may appear. By linearizing the system
(1,2) about the uniform flow and using trial solutions propor-
tional to e, X\ e C, one may obtain the characteristic equa-
tion. Then considering the critical eigenvalues A= *iw, w
>0, separating the real and imaginary parts, and using some
trigonometric identities, one can determine the Hopf stability

curves
F o ki kT
—=—|cos| —|EP 2sin|l — | |,
H° H N N
TH = —arccos| —sin| — 2—+1]|cos| — | =P,
w w N H N

w? G 2 o km
where P=/—>—|2—+1] sin"{ —/, (6)
H H N

and k=1,...,N—1 is a discrete wave number. Formula (6)
describes stability curves in the (F/H?,7H) plane that are
parameterized by the rescaled frequency w/H, as shown in
Fig. 1 for different values of G/H. The uniform flow is stable
in the shaded domains, solid arrows indicate the increase of
the wave number from 1 to N—1, and the curves are colored
blue (dark gray) for k<<N/2 and green (light gray) for k
> N/2. Since the number of vehicles N=33 is odd there is no
k=N/2 curve; for even N this is located between the “last”
blue (dark gray) and the “first” green (light gray) curves.
Note that no steady-state bifurcation occurs here, as can be
shown by substituting A=0 into the characteristic equation.
When crossing a stability curve a Hopf bifurcation takes
place; i.e., a pair of complex-conjugate eigenvalues crosses
the imaginary axis. In the vicinity of the bifurcation point,
the resulting small-amplitude oscillations are traveling waves
that can be written in the form v/(f)=v"+v,n, cos(%ri
+@t) =0+ Uy cos(ii—fs+wt); see [7,11]. Here s:,%i and

the spatial wavelength is A+=% for k=N/2 and A_=1ﬁ for
k>N/2; i.e., the same spatial pattern arises for wave num-
bers k and N—k.

Figure 1 shows that for small delay the curve for the
lowest wave number k=1 is the stability boundary, while for
larger delay the k= N/2 curves constitute the boundary. This
means that when increasing F for small delay, the uniform
flow loses stability to long-wavelength oscillations and
waves of shorter and shorter wavelengths show up when fur-
ther curves are crossed. For sufficiently large delay, however,
short-wavelength oscillations appear first and these are fol-
lowed by waves of longer wavelengths. That is, the time
delay can qualitatively alter the spatial dynamics for ACC
systems.

In order to explain this qualitative change, we focus our
attention to what happens along the horizontal and vertical
axes. For 7=0 (along the horizontal axis in Fig. 1), one may
eliminate the frequency w from Eq. (6) and obtain

F 1/ G G o k7
I?:§<25+1)|:(25+1>tan (W>+1}’ (7)

which increases as k grows from 1 toward N/2. (Note that
the k> N/2 curves do not cross the horizontal axis.) This
result agrees with the proof constructed in [11] for the non-
delayed system. Similarly, for F=0 (along the vertical axis in
Fig. 1), eliminating  yields

o[ ol
N

which reaches its minimum when k=~ N/2. The change in
the order of curves along the axes makes it necessary
that curves for different wave numbers cross each other
in the (F/H?, 7H) plane. These crossings correspond to
codimension-two Hopf bifurcations that potentially lead to
complex dynamics. (A curve may cross itself as occurs at the
points denoted by black dots in Fig. 1.)

To approximate the value of the delay where qualitative
change occurs (i.e., locate the small region in the middle of
the panels where most curves cross each other) we calculate
where the k=1 and the k=N/2 curves intersect (in the large

kar

TH = (8)
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FIG. 2. (Color online) Linear
stability diagrams for the OVM
(1,2,12,13) corresponding to Fig.
1(a), i.e., for G=0. Notation as in
Fig. 1 and the horizontal dotted
line in panel (a) corresponds to the
bifurcation diagrams in Figs. 3(a)

(c)
a =20

N limit). These points are highlighted by the red circles
in Fig. 1. First, notice that in the vicinity of the intersection
the k=1 curve is well approximated by a vertical line located

at
F 1/ G
(2—+ 1) =

=2 ©

that is obtained by considering 7=0 and k/N—0. Indeed,
G=0&g=1. Substituting Eq. (9) and k=N/2 into Eq. (6)
and eliminating w, one obtains

1 2 1 2
—  —— arccos| ——— | /—™
g V1+\1+4g72 g1+\1+4g72

T™H=—
_ 2 ’ (10)
g+ w2

where the larger g is, the better the lower estimation is. For
G=0<g=1 [Fig. 1(a)], Eq. (10) simplifies to

1 1
™H = \/jarccos[—] = 0.711,
¢ ¢

where ¢=(1 +\f§)/2~ 1.618 is the golden ratio.

One may observe a tradeoff in the stability charts in Fig.
1: when G is increased, there is an increase of stability in F
but a decrease of stability in 7, that is, the stable domain is
stretched in one direction but squeezed in the other. Similar
deformation occurs when H is increased as will be explained
below on a concrete example. This means that a common
rule of thumb of the nondelayed system, namely that increas-
ing the gains G and H is beneficial for stability, is violated
when the delay is sufficiently large.

(11)

III. OPTIMAL VELOCITY MODEL

Formula (1) with restriction (5) on the signs of derivatives
describes a large family of nonlinear models. Here we dem-
onstrate the above linear results and their possible conse-
quences for the nonlinear dynamics on a concrete nonlinear
car-following model, the OVM [4,5,7,8] where

f(h,h,v) = o V(h) -], (12)

and the V determines the equilibrium according to (4). Here
we use the dimensionless function

0, if hel0,1]

(h-1)° ;

V(h) = .
ooy Thell®

(13)

and 3(b).

where space is rescaled by the stopping distance (below
which V(h)=0) and velocity is rescaled by the maximum
velocity (that is approached when h— ); see [8].

Knowing f explicitly allows us to transform the stability
charts to physically meaningful parameters (such as the av-
erage headway h*=L/N). The derivatives in Eq. (5) become

F=aV'(h*), G=0, H=a, (14)

and using (6,13,14) one may draw stability charts in the
(h*,7) plane for different values of «, as depicted in Fig. 2.
These correspond to the chart in Fig. 1(a) with 7H= 7« and
F/H?>=V'(h*)/ a. For small a there are two “copies” of the
stable domain on the left and the right sides, while for larger
a these areas merge. Indeed, when varying i* for sufficiently
large delay, the ““first” instability yields short-wavelength os-
cillations. A tradeoff can also be observed: when « is in-
creased the width of the unstable domain decreases (and
even disappears for small delay) but the height of the stable
domain decreases. One may show that there is a critical de-
lay (7.4~ 0.39) above which the unstable domain cannot be
diminished by increasing the gain parameter a. We remark
that for h*=1 the model (1,2,12,13) simplifies to v;(r)=
—av(t—7), i=1,...,N. This is a classic example of a linear
scalar delay differential equation [3] that is stable for 7
<5 as pointed out in Fig. 2(b).

We use numerical continuation techniques [14] to demon-
strate the complexity that can arise at the nonlinear level due
to the change in the order of stability curves. These tech-
niques allow us to trace both stable and unstable oscillatory
solutions (traveling waves) arising from the Hopf bifurcation
points. We fix @=1.0 and 7=0.7, that is, we study the system
along the dotted horizontal line in Fig. 2(a). In Fig. 3(a) the
amplitude of velocity oscillations is shown for different wave
numbers, with detail of the top of the branches in Fig. 3(b).
Stable and unstable states are represented by green (light
gray) and red (dark gray) curves, respectively. The horizontal
axis represents the uniform flow and Hopf bifurcations are
denoted by blue stars along the axis. The outermost bifurca-
tions are subcritical, so unstable oscillations/waves appear
“before” the uniform flow loses stability.

The branches of oscillations undergo further bifurcations.
Fold bifurcations (denoted by blue crosses) occur where
branches fold back, while Neimark-Sacker and period-
doubling bifurcations (denoted by blue stars and blue dia-
monds) happen where the stability changes. In the latter
cases, quasiperiodic oscillations arise that are not studied in
detail in this Rapid Communication. We recall that without
delay the only stable oscillatory solution is the one-wave
solution [6] and this feature is preserved for small delays.
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FIG. 3. (Color online) In panel (a) the amplitude of velocity oscillations is shown for different wave numbers for the OVM (1,2,12,13)
and a zoom of the top section is displayed in panel (b). Stable and unstable solutions are shown as green (light gray) and red (dark gray)
curves, respectively. The solid arrows represent the increase of the wave number k for large amplitude. Panel (c) shows a spatiotemporal plot

generated by an initial value simulation at 2*=2.0.

However, our results indicate that, for sufficiently large de-
lay, oscillations for larger wave numbers (shorter wave-
lengths) may also become stable. Notice that even though the
order of wave numbers is nonincreasing along the horizontal
axis, the increasing order is gained back for larger amplitude,
as shown by the solid arrow in Fig. 3(a).

To visualize the resulting spatial patterns we use numeri-
cal simulations. The spatiotemporal plot in Fig. 3(c) is shown
for a=1.0, 7=0.7, h*=2.0 that corresponds to the middle of
Figs. 3(a) and 3(b). [The constraint v;(t) =0, i=1,...,N is
used to eliminate unphysical motions such as reversing.] The
initial conditions are chosen to be constant functions along
the interval [—7,0] such that vehicles are placed into the
uniform flow equilibrium except one whose velocity and
headway is reduced to mimic the effect of a sudden braking.
The effect of braking propagates against the flow leading to a
long-wavelength stop-and-go wave. Simultaneously, short-
wavelength oscillations develop “spontaneously”; i.e., a state
that is a “mixture” of long- and short-wavelength motions is
approached. As time progresses the long-wavelength regime
becomes narrower and this would occur faster if noise was
added to the system. The detailed analysis of such patterns
will be the subject of future research.

IV. DISCUSSION

ACCs are primarily developed to increase the drivers’
comfort for individual vehicles, but, as was shown above,
these devices may also help to avoid congestion. To achieve
this goal it is essential to take into account the above design
principles (delay-induced short-wavelength instabilities and
delay-gain tradeoffs) when designing ACC algorithms. The
digital controllers built into the robotic vehicles sample time
periodically and hold the accelerations constant during the
sampling period [15]. Exploring the effects of such quanti-
zation is an interesting future research direction. Finally,
even though ACCs are only capable of controlling the one-
dimensional (longitudinal) motion of cooperative vehicles
systems, one may expect that time delays become important
for two-dimensional vehicle configurations, especially for
high-speed maneuvers [16,17].
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