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This introductory paper reviews the current state-of-the-art scientific methods used
for modelling, analysing and controlling the dynamics of vehicular traffic. Possible
mechanisms underlying traffic jam formation and propagation are presented from a
dynamical viewpoint. Stable and unstable motions are described that may give the
skeleton of traffic dynamics, and the effects of driver behaviour are emphasized in
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I asked Fermi whether he was not impressed by the agreement between our calculated
numbers and his measured numbers. He replied, ‘How many arbitrary parameters did you use
for your calculations?’ I thought for a moment about our cut-off procedures and said, ‘Four’.
He said, ‘I remember my friend Johnny von Neumann used to say, with four parameters I
can fit an elephant, and with five I can make him wiggle his trunk’.

(Dyson 2004, p. 297)

1. Background and challenges

The introduction of the assembly line in the automotive industry about a century
ago allowed the mass production of automobiles, which, in turn, revolutionized
land transportation. At the same time, a problem was also generated that has not
yet been resolved: traffic congestion. Since then, researchers from many different
disciplines (mathematics, physics and engineering) have targeted this problem,
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often using sophisticated mathematical tools brought from their own area of
expertise. Also, analogies between traffic flow and other flows (fluid flow, gas flow
and granular flow) were established. Although such analogies may help scientists
to gain understanding of vehicular systems, it is becoming more and more obvious
that traffic flows like no other flow in the Newtonian universe.

To date, a vast number of different models have been constructed, but still
no first principles have been established to guide the modelling procedure (if
such principles exist at all). In many cases, authors claimed that the developed
model described traffic better than models prior to that point, and such claims
were often justified by fitting the models to empirical data. The quote at the
beginning of this paper tries to illustrate, without questioning the importance of
any specific model, that the above approach may easily lead to research capturing,
but also missing, some essential characteristics. We believe that another way
to conduct research in traffic can be by studying general classes of models
and classifying their qualitative dynamical features (including ‘hidden’ unstable
motions) when varying model parameters. To set such a dynamical viewpoint
in the traffic community requires a unified mathematical language that allows
scientists, working in different disciplines from mathematics through physics to
engineering, to communicate. As a first step in this quest, we invited a group
of world leading experts working on traffic problems in different fields to submit
papers for this Theme Issue. Besides presenting novel results, they emphasize
the fundamental dynamical features of traffic from their perspective. The papers
published in this theme issue represent the state of the art of traffic science, and
they are also aimed to be accessible to a broader audience.

In this introductory paper (that also serves as an introduction to the theme
issue), we provide readers with a brief overview of traffic data, modelling,
dynamics and control. The presentation here is based on the simplest possible
setting, i.e. vehicles following each other on a single lane, but we provide
references to articles where such a concept has been extended for multi-
lane traffic, junctions, traffic signals and urban traffic. Many of these extensions
are also specifically targeted by one or more papers published in the theme issue.

2. Traffic data

By the 1930s, vehicular traffic in the USA had already reached the level
that required management. The first step towards this was to collect traffic
data. Empirical data were collected by using photographic measurements at
cross sections, and the data were summarized by the so-called flux–density or
fundamental diagram (FD) where the flux (number of vehicles passing the cross
section in unit time) was plotted as a function of the traffic density (Greenshields
1935). Moreover, driver parameters, such as reaction time, were already recorded
at that time (Greenshields 1936). Since then, FDs have been used to characterize
traffic behaviour. The FD in figure 1a, which is reproduced from Kerner (2004),
represents data collected from the German A5 autobahn near Frankfurt. Clearly,
when constructing an FD, one ‘projects’ the behaviour of a very high-dimensional
system to a very low-dimensional diagram. It is not clear, however, whether a
state variable is plotted as a function of a parameter or a state space diagram is
created; both interpretations are used in the literature.
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Figure 1. Summarizing traffic data. (a) Flux–density diagram constructed from data collected
from the German A5 autobahn near Frankfurt—adapted from Kerner (2004). (b) Spatio-
temporal diagram compiled from data collected from the UK M25 motorway encircling London
(Highways Agency, UK). (c) Vehicle trajectories reconstructed from camera data collected from
the California Highway 101 in Los Angeles—adapted from Laval & Leclercq (2010).

In recent decades, information technology has advanced substantially, and
now it allows us to collect ‘higher dimensional’ traffic data. There are two
different approaches used in practice. So-called macroscopic data are collected
by installing sensors (usually double induction loop detectors) along the road
that measure flux and speed at a certain location, and density may be calculated
as the ratio of the two quantities. Usually the data are aggregated in time
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(e.g. in 1 min units) and used for generating spatio-temporal plots where the
density and speed are colour-coded. Figure 1b shows such a diagram that is
generated from data collected along the UK M25 motorway, which encircles
London (Highways Agency, UK). When studying such a diagram, one may
observe some distinctive spatio-temporal patterns. In certain regions, the velocity
is almost homogeneous, that is, we say, uniform flow is observed. When the
corresponding velocity is also high, it is often called free flow. In other regions
the velocity changes in space and time; in particular, waves of congestion travel
upstream with a characteristic speed of 15–20 km h−1. One major goal in traffic
research is to understand the mechanisms of formation and propagation of these
so-called stop-and-go waves (also called wide moving jams sometimes). Indeed,
for each detector, a separate FD may be constructed and analysed (Kerner 2004).

More recently, so-called microscopic data (describing the motion of individual
vehicles) have become available. Such data are collected by mounting a camera
on a place of higher elevation or on a helicopter from which individual vehicles
can be traced and so vehicle trajectories may be reconstructed. In figure 1c,
adapted from Laval & Leclercq (2010), vehicle trajectories are reconstructed
from data collected from the California Highway 101 in Los Angeles (NGSIM).
Analysing such data can lead to better understanding of driver behaviour during
car-following (Yeo & Skabardonis 2009).

Macroscopic models that describe traffic in terms of density and velocity
distributions (Eulerian description) can be fitted to macroscopic data, and model
parameters can be estimated this way. Similarly, microscopic models that describe
the behaviour of individual drivers (Lagrangian description) may be fitted to
microscopic data, and the corresponding driver parameters can be determined.
It is also possible to fit microscopic models to macroscopic data and vice versa,
but this is less straightforward. Data-fitting for traffic systems is far from trivial,
caused partly by the possibly large number of model parameters and partly by the
fact that the studied high degree-of-freedom system changes in time; it is not that
easy to fit an elephant in motion (see the quote at the beginning of this paper).
In Wagner (2010), macroscopic data are used to estimate model parameters
for both macroscopic and microscopic models, while, in Hoogendoorn &
Hoogendoorn (2010), microscopic models are fitted to microscopic data. In
Laval & Leclercq (2010), microscopic data are used to build microscopic models,
and it has been proved essential to add dynamics to kinematic models to be able
to reproduce traffic jam formation as observed in data.

3. Traffic modelling

In this section, we give a brief review of the mathematics and physics literature
about simplified traffic models; for more discussion, see Helbing (2001) and Nagel
et al. (2003). We do not attempt to give a complete list of models generated since
the 1950s, but rather emphasize the dynamical assumptions behind the classes of
models that have shaped traffic research in recent decades. We focus on models
that are continuous in time and space, but also mention models where these
quantities are discretized. Note that discretizing time and/or space in a multi-
scale system may ‘wash away’ some interesting dynamics and, consequently, may
lead to limited or even incorrect conjectures.
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Depending on the spatial scales represented, two different classes of models
exist. Macroscopic (or continuum) models do not consider individual vehicles but
rather describe traffic in terms of continuous density and velocity distributions
as functions of space and time. The dynamics, i.e. the time evolution of these
distributions, is given by partial differential equations (PDEs). On the other
hand, microscopic (or car-following) models describe the behaviour of individual
vehicles: discrete entities that move in continuous space. Here, the motion of
vehicles is given by ordinary and delay differential equations. Despite six decades
of research, the connection between the two classes of models is still not clarified
for two main reasons. On one hand, as mentioned above, the viewpoints of the two
modelling approaches are different. The Eulerian view of continuum models deals
with the changes of density and velocity in time at a fixed location, while, in the
Lagrangian view of car-following models, distances and velocities are monitored
when ‘travelling together with individual vehicles’. Moreover, the relationship
between distances and densities is far from trivial in dynamical situations (Berg
et al. 2000). On the other hand, the psychological actions of drivers make traffic
different from any other flow. In this ‘fluid’, ‘particles’ (of finite size) interact by
violating Newton’s Third Axiom since the leader’s motion influences the follower’s
motion but not vice versa—except when collisions occur.

(a) Continuum models

In continuum models, traffic is described via a density distribution r(x , t) and
a velocity distribution v(x , t), which are continuous functions of location x and
time t. In such models, we have conservation of vehicles, so that in the absence
of sources and sinks (on- and off-ramps)

vtr + vx(rv) = 0, (3.1)

where v stands for partial differentiation. The quantity q(x , t) := r(x , t)v(x , t)
describes the instantaneous flux (also called throughput or flow) at location x
and time t. Further refinements are possible considering multi-species models,
multi-lane configurations and junctions (Daganzo 2002a,b; Benzoni-Gavage &
Colombo 2003).

To complete the model, one needs to define the relationship between density
and velocity (or alternatively between density and flux). One possibility is to
assign the velocity directly as a function of density (and its spatial derivatives)

v = G(r, vxr, vxxr, . . .). (3.2)

Formulae (3.1), (3.2) are often called kinematic or first-order models. In the
simplest setting, introduced in Lighthill & Whitham (1955), we have

v = V(r), (3.3)

where V(r) is a decreasing function, modelling that dense traffic should travel
slower than sparse traffic for safety reasons. Equivalently, the flux can be assigned
as q = rv = rV(r) := Q(r). If one initializes this model so that fast traffic is
placed behind slow traffic, the solution profile sharpens and a discontinuous
shock develops in finite time where the velocity jumps downwards, requiring
infinite deceleration.
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To represent vehicles’ inertia, dynamic or second-order models may be
constructed where formula (3.1) is supplemented with an equation for the
acceleration (i.e. the total derivative of the velocity)

vtv + vvxv = F (r, vxr, vxxr, . . . , v, vxv, vxxv, . . .). (3.4)

As a matter of fact, most models in the literature can be written in the
specific form

vtv + vvxv = 1
T

(V(r) − v) + N (r, vxr, vxxr, vxv, vxxv). (3.5)

The first term on the right-hand side corresponds to relaxation to a density-
dependent optimal velocity given by the decreasing function V(r) with a
relaxation time T . The limit T → 0 suggests a connection with equation (3.3).
Note that this idea also appears in microscopic models as explained further below.
The second term is such that N = 0 for constant density and velocity, in which
case equation (3.3) still holds. This term may be constructed using fluid dynamical
analogies and usually contains a ‘pressure term’ that is proportional to −vxr/r
and represents anticipation of drivers to events ahead, and a ‘diffusion term’ that
is proportional to vxx and represents the averaged effects of noise (Payne 1979;
Kerner & Konhäuser 1994).

Despite the fact that pressure and diffusion are abstractions that are difficult to
interpret in traffic, these models are able to reproduce uniform flow as well as stop-
and-go waves (without discontinuities). However, they have been criticized for
predicting non-physical flow motions (negative flux and negative velocities) under
certain conditions (Daganzo 1995). In response to this criticism N = rP ′(r)vxv
has been proposed by Aw & Rascle (2000), where the function P(r) represents
anticipation. Moving N to the left-hand side and using equation (3.1), model
(3.5) can be rewritten as

vt(v + P(r)) + vvx(v + P(r)) = 1
T

(V(r) − v). (3.6)

Here v + P(r) represents a Lagrangian quantity and the model is claimed to
properly describe the anisotropy of traffic flow: particles respond to stimuli from
the front but not from the back. Notice that model (3.1), (3.6) is a hyperbolic
PDE with a source term on the right-hand side. Continuum models can also
be developed from microscopic models, yielding the form (3.5) where the spatial
derivatives appear owing to the discrete-to-continuous transformation (Berg et al.
2000). Time delays may also be included in continuum models (Siebel & Mauser
2006) to mimic driver reaction time. As will be shown below, reaction time is
an essential element of car-following models, but it is not clear how it should be
incorporated in continuum models. Noise may also be added explicitly to any of
the above models, but it has rarely been done in the literature.

The advantages of continuum models are that the results can be directly
compared with macroscopic data, such as the FD in figure 1a and the space–
time diagram in figure 2b (Kerner 2004), and that it is also relatively easy
to provide the boundary conditions for velocity and flux. Their disadvantage
is, however, that it is difficult to relate the model parameters to microscopic
driver parameters. Moreover, it is not clear what limitations are imposed by
the fact that fundamentally discrete systems are being modelled as continua.
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Figure 2. Sequence of cars on a single-lane road showing vehicles’ positions, velocities and headways.

Finally, we remark that there are Boltzman-type gas-kinetic models, which are
based on collisions of particles and contain noise explicitly (Prigogine & Herman
1971; Helbing 1995), but these cannot be presented in the form of (3.1), (3.2)
or (3.1), (3.4).

(b) Car-following models

In car-following models, discrete entities move in continuous time and
continuous space, as shown figure 2, where vehicles of equal length � are plotted
in a specific setting. At time t, the position of the front bumper of the nth
car is denoted by xn(t), its velocity is vn(t) and the bumper-to-bumper distance
to the vehicle in front (called the headway) is hn(t). Differentiating hn(t) =
xn+1(t) − xn(t) − � with respect to time t and using ẋ n(t) = vn(t), one obtains

ḣn(t) = vn+1(t) − vn(t). (3.7)

To complete the model this equation has to be supplemented with a car-following
rule, that is, the velocity or the acceleration has to be given as the function of
stimuli that are usually the distance hn , the velocity difference ḣn and the vehicle’s
own velocity vn . Note that some models also contain the velocity vn+1 and/or
the acceleration v̇n+1 of the leader, which will not be explicitly represented by
the notation used below. To further simplify the matter, drivers with identical
characteristics are often considered.

When velocities are assigned, the corresponding kinematic models can be
written in the form

vn(t) = g(hn(t − t), ḣn(t − s), vn(t − k)), (3.8)

which are sometimes called collision avoidance models (Kometani & Sasaki 1958).
At least one of the delays t, s, k has to be positive to obtain a feasible model, but
it is not always obvious what these quantities physically mean. For example, in
the model vn(t) = vn+1(t − s), the delay s stands for a time gap (a time distance
the driver keeps from the leader; Newell 2002), while in the model

vn(t) = V (hn(t − t)) (3.9)

the delay t may represent a reaction time (a dead time required to process
information and initiate action) and/or a relaxation time (that corresponds to
the driver’s reaction inertia; Newell 1961, 2002; Igarashi et al. 2001). Here, V (h)
is an increasing function that represents that the larger the headways are, the
faster the drivers intend to go. To establish a connection between models (3.3)
and (3.9), one may define V(r) := V (1/r − �). In more complicated kinematic
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models, like that in Gipps (1981), usually the set-up t = s = k is used and the
delay stands for the driver reaction time. Note that the kinematic rule (3.8) may
require infinite accelerations.

In dynamic models, the accelerations are prescribed as

v̇n(t) = f (hn(t − t), ḣn(t − s), vn(t − k)), (3.10)

where t, s, k represent driver reaction times to different stimuli. As will be shown
below, these are different from the time gap and from the relaxation time. To
make the model more tractable, simple relations may be assumed between the
different delays. There are three simplifications commonly used in the literature:

— Zero reaction times: t = s = k = 0. This is usually justified by saying that
dynamic models (3.10) may reproduce uniform flow as well as stop-and-go
waves for zero reaction time by varying some other characteristic times
(Bando et al. 1995).

— ‘Human driver set-up’: t = s > 0, k = 0. This set-up represents that drivers
react to the distance and to the velocity difference with (the same) delay,
but they are aware of their own velocity immediately (Gazis et al. 1961;
Davis 2003; Orosz et al. 2009).

— ‘Robotic driver set-up’: t = s = k > 0. This set-up is mainly used in the
adaptive/automatic/autonomous cruise control (ACC) literature. The
delay is introduced to account for the time needed for sensing, computation
and actuation in computer-controlled vehicles (Kesting & Treiber 2008;
Orosz et al. 2010).

Many other set-ups are also possible; for example, one may account for human
memory effects by using distributed delays, as in Sipahi & Niculescu (2010).

Early dynamical car-following models, such as those in Gazis et al. (1961), took
the form

f (h, ḣ, v) = 1
T

ḣqvr

hp
, p, q, r ∈ N, (3.11)

and used the human driver set-up; see Holland (1998) for a review. A shortcoming
of these models is that they require no acceleration for zero relative velocity
(ḣ = 0) independent of the distance h. That is, extremely small headways are
allowed even when travelling with extremely high speed.

A class of models that managed to eliminate this problem is called the optimal
velocity model (OVM),

f (h, ḣ, v) = 1
T

(V (h) − v) + W (ḣ). (3.12)

The first term corresponds to relaxation to a density-dependent optimal velocity
given by the increasing function V (h) with a relaxation time T . Clearly, for
the human driver set-up, T = 0 leads to model (3.9). The increasing function
W (ḣ) shows the dependence on the relative velocity. Notice that one may develop
a continuum model like (3.5) from (3.12), but, even for W = 0, one obtains
N �= 0 since r = 1/(h + �) cannot be used in dynamical situations (Berg et al.
2000). For W = 0, the model has been studied extensively without reaction
time (Bando et al. 1995; Gasser et al. 2004), using human driver set-up
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(Davis 2003; Orosz et al. 2009) and using robotic driver set-up (Chandler et al.
1958; Bando et al. 1998; Orosz et al. 2010). In this case, the model contains
only a few parameters: the relaxation time T , the desired maximum velocity
vmax = max V (h) (attained for large h), the desired stopping distance hstop (below
which V (h) ≡ 0) and one more parameter corresponding to a desired time gap
(that is embedded in V ). Despite its simplicity, model (3.12) can reproduce
qualitatively almost all kinds of traffic behaviour and also transitions between
different behaviours. A shortcoming of the model is that some parameters (like the
desired time gap) do not appear explicitly, while others (like the relaxation time
T ) may be smaller than expected when fitting the model to data (Wagner 2010).

Another car-following model that gained popularity in the last decade was
introduced in Treiber et al. (2000) and is called the intelligent driver model (IDM),

f (h, ḣ, v) = a

⎡
⎣1 −

(
v

vmax

)4

−
(

hstop + vTgap − ḣv/
√

4ab
h

)2
⎤
⎦. (3.13)

In this model, all parameters have a clear physical meaning: a is the maximum
acceleration, b is the comfortable deceleration, vmax is the desired maximum
velocity, hstop is the desired stopping distance and Tgap is the desired time gap,
and their values are as expected when fitting the model to data (Hoogendoorn &
Hoogendoorn 2010). In some situations, the IDM produces unreasonably hard
braking behaviour that has recently been eliminated by further adjustments
(Kesting et al. 2010). Numerous other dynamic models have been developed in
the last two decades that are not listed here. We present only those that are
simple in form and that we believe had a strong impact on traffic modelling.
Note that much more complicated models may be implemented in simulation
packages (MITSIM).

There exist a couple of extensions of the car-following models (3.8) and (3.10).
In multi-look-ahead models (Herman et al. 1959; Wilson et al. 2004) drivers
respond to the motion of more than one vehicle ahead. Consequently, when
monitoring M vehicles in front, the quantities

∑m−1
j=0 hn+j + (m − 1)� = xn+m −

xn − � and
∑m−1

j=0 ḣn+j = vn+m − vn , m = 2, . . . , M , also appear in the governing
equations (involving reaction times that are usually larger than t and s). Notice
that, while using the variables hn , vn in systems (3.7), (3.8) and (3.7), (3.10),
the vehicle length � can be eliminated; this is not possible in the multi-look-
ahead case. Such next-nearest neighbour interactions can increase the (linear)
stability of uniform flow. There also exist multi-species models (Mason & Woods
1997; Nagatani 2000) where drivers with different characteristics are considered,
that is, g, f , �, t, s, k → gn , fn , �n , tn , sn , kn is assumed, which may be different for
each n. However, usually only two different species are mixed, corresponding to
automobiles and trucks. One might also extend car-following models to make
them capable of modelling multi-lane traffic or junctions, in which case lane
changes need to be handled (Davis 2004; Kesting et al. 2007). Indeed, when a
lane change occurs, the right-hand side of model (3.8) or (3.10) changes, that is,
one needs to deal with a ‘discontinuous dynamical system’.

It is also possible to incorporate stochastic effects to model inconsistencies
of driver behaviour and external disturbances (such as the weather or road
unevenness). However, in the current literature, this is not typical, except in
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cases when the model is discretized in time. It has particular importance when
space and velocities are also discretized (besides time), in which case we talk
about cellular automata models (Nagel & Schreckenberg 1992). These models
used to be very popular because quick realizations of numerical simulations were
possible, but the discretization may ‘wash away’ many dynamical effects that are
important for understanding traffic dynamics.

Before concluding this section, we collect the characteristic times appearing in
traffic. We would like to emphasize that, even though these are close to each other
in magnitude, their physical meaning and their effects on the dynamics may be
completely different.

— Reaction time. t, s, k ≈ 0.5–1.5 s is a dead time required to process
information about stimuli and to initiate actions. It may be different for
different kinds of stimuli; see model (3.10).

— Relaxation time. T ≈ 1–10 s appears owing to the fact that vehicles are
capable of only finite acceleration; see model (3.12).

— Desired time gap (also called time headway). Tgap ≈ 1–2 s is the time
distance drivers would like to keep when following a leader; see
model (3.13).

We remark that these times should also be distinguished from the numerical
update time that is simply an artefact of time discretization. However, depending
on the discretization scheme, its effects may be similar to those of the multiples of
the reaction time (Kesting & Treiber 2008). In the following sections, all results
are presented on the dynamic car-following model (3.7), (3.10), but most methods
are also applicable to (3.7), (3.8) and (3.1), (3.4).

4. Traffic in equilibrium

As mentioned above, a traffic model should be able to reproduce uniform flow
where both the velocities and the headways are time independent, that is, for
identical vehicles, we have

hn(t) ≡ h∗, ḣn(t) ≡ 0 and vn(t) ≡ v∗. (4.1)
(For non-identical vehicles, the first formula would become hn(t) ≡ h∗

n , where h∗
n

may be different for each vehicle.) We also assume that a functional relationship
exists between the equilibrium headway h∗ and the equilibrium velocity v∗, that is,

0 = f (h∗, 0, v∗) ⇒ v∗ = V (h∗) ⇔ h∗ = V −1(v∗), (4.2)
where V is assumed to have the following properties:

— V is continuous and monotonously increasing (the more sparse traffic is,
the faster drivers want to travel).

— V (h) ≡ 0 for h ≤ hstop (in very dense traffic, drivers intend to stop).
— V (h) ≡ vmax for large h (in very sparse traffic, drivers intend to drive with

maximum speed—often called free flow).

Two examples are shown in figure 3a,b. The function in figure 3a represents that
between stopping and free-flow conditions—drivers intend to keep a constant
time gap Tgap. However, this function is non-smooth, which can complicate the
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Figure 3. (a,b) Equilibrium speed–density diagrams. (c,d) Equilibrium flux–density (fundamental)
diagrams determined from (a,b) by using equation (4.3). (e,f ) Non-equilibrium FDs suggested in
the literature (see figure 1a).

mathematical analysis of the corresponding models, so in many cases smoothed
functions such as the one in figure 3b are used (that usually do not contain
Tgap explicitly).

Such an equilibrium speed–density function has been explicitly built
into the models (3.9) and (3.10), (3.12), where it is often called the
optimal velocity function. For (3.10), (3.13), one finds that V −1(v∗) = (hstop +
v∗Tgap)/

√
1 − (v∗/vmax)4 and the corresponding V is similar in shape to

figure 3b—except that V (h) < 0 for h ≤ hstop, i.e. cars intend to reverse in this
regime. However, the uniform flow is usually unstable here, and such a non-
physical motion is rarely observed in simulations. Notice also that V ′(hstop) =
1/Tgap. Finally, we remark that the model (3.10), (3.11) does not admit such a
uniform flow equilibrium: assuming vn(t) ≡ v∗, any hn(t) ≡ h∗

n is possible (where
h∗

n may be different for each vehicle, even for identical drivers).
In equilibrium, one may define the equilibrium density and the flux as

r∗ = 1
h∗ + �

and q∗ = r∗v∗ = V (h∗)
h∗ + �

= r∗V(r∗) := Q(r∗), (4.3)

where V(r∗) = V (1/r∗ − �). This way, the equilibrium speed–headway diagrams
in figure 3a,b can be transformed into the equilibrium flux–density (fundamental)
diagrams in figure 3c,d. Indeed, the function V is explicitly built into the
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models (3.3) and (3.5). The triangular diagram in figure 3c is widely used in
the literature because of its simplicity. In particular, when inserting it into
the kinematic model (3.3), the fronts separating regions of different velocities
(often called characteristics) propagate upstream with the constant speed
cwave = −(hstop + �)/Tgap < 0.

The equilibrium FDs nicely match the ‘curve’ on the left-hand side of the
experimental diagram in figure 1a, but definitely do not do a good job describing
the ‘patch’ on the right-hand side and the region where the curve and the patch
overlap. To fix this shortcoming of equilibrium FDs, the non-equilibrium FDs
in figure 3e,f are suggested in the literature (Kerner 2004)—in figure 3f, the
whole shaded domain is part of the diagram. Clearly, dynamical effects need
to be involved to explain these, especially if one wishes to explain the transitions
between different states in the overlapping region. Some authors claim that such
diagrams are the effect of a new ‘phase’ appearing in multi-lane traffic (Kerner
2009)—an explanation that has been criticized by others (Schönhof & Helbing
2009). In the next two sections, without trying to reconcile this conflict, we will
show that, for sufficiently large reaction times, the dynamics of model (3.10) can
reproduce figure 1a when considering only single-lane traffic. Furthermore, we
will emphasize that it is useful to study ‘hidden’ unstable solutions (that are not
observable in measurements) for characterizing the mechanisms of jam formation.

5. Linear traffic dynamics

There may be two obvious reasons why the right-hand side of the equilibrium
FDs in figure 3c,d is not observable in empirical data. The equilibria either do
not exist or they are not stable (solutions diverge and approach some other state).
The latter case may be studied by linearizing model (3.10) about the equilibrium
(equation (4.1)). Defining the perturbations h̃n(t) = hn(t) − h∗, ṽn(t) = vn(t) − v∗,
one may obtain the linearized equations

˙̃vn(t) = Fh̃n(t − t) + G ˙̃hn(t − s) − H ṽn(t − k), (5.1)

where the derivatives

F = vhf (h∗, 0, v∗), G = vḣ f (h
∗, 0, v∗) and H = −vvf (h∗, 0, v∗) (5.2)

are assumed to be positive to obtain physically realistic driver behaviour, i.e.
drivers intend to decrease the perturbations. Indeed, we have h̃n(t) = x̃ n+1(t) −
x̃ n(t), ˙̃xn(t) = ṽn(t) and ˙̃hn(t) = ṽn+1(t) − ṽn(t) here.

There are (at least) three different methodologies to study the linear stability of
the uniform flow (also often called string stability) that are used in the literature
and lead to the same results. We named these approaches after the communities
that use them the most.

— ‘Physicist’s approach’. An infinite road is considered and (without
specifying the boundary conditions) the travelling wave ansatz x̃ n(t) =
Re(A elt+iqn), l ∈ C, q ∈ (0, 2p), is assumed. Indeed, this ansatz is
equivalent to performing a Laplace transformation in time and a (discrete)
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Fourier transformation in space, and it leads to a second-order equation
for l. To obtain stability, one needs to ensure Re(l) < 0 for all solutions
(Bando et al. 1995; Wilson 2008).

— ‘Dynamical systems approach’. A circular road configuration (i.e. periodic
boundary conditions) is considered such that N vehicles are placed on a
ring of length L + N � (yielding h∗ = L/N and xN+1(t) ≡ x1(t)). Usually,
the large N limit is taken: N → ∞ such that L/N is kept constant. The
trial solution x̃ n(t) = An elt , l, An ∈ C, is assumed, which is equivalent to
performing a Laplace transformation in time. This leads to a 2N th-order
characteristic equation for l and again Re(l) < 0 ensures stability (Gasser
et al. 2004; Orosz et al. 2010).

— ‘Control engineer’s approach’. A platoon configuration is considered such
that the leader’s motion can be assigned—in equilibrium, it travels with
v∗. Then the (n + 1)st and the nth vehicles are considered as an input
(x̃ n+1) output (x̃ n) system, and a transfer function is determined through
a Laplace transformation. The condition for string stability requires the
magnitude of the corresponding transfer function to be less than 1 for
every excitation frequency (output has to be smaller than input) along the
platoon (Ioannou & Xu 1994; Swaroop et al. 1994; Zhou & Peng 2005).

Notice that, in the second approach, the key parameter is the equilibrium headway
h∗, while, in the third approach, it is the equilibrium velocity v∗. However, these
quantities are linked by equation (4.2).

The stability loss occurs for l = ±iu, and travelling waves with frequency
u ∈ R

+ appear. In the dynamical system terminology, this kind of stability
loss is called a Hopf bifurcation. One may calculate that An = A ei(2kp/N )n ,
k = 1, . . . , N − 1, and so the small-amplitude waves can be written in the form

x̃ n(t) = A sin
(

ut + 2kp

N
n
)

⇒ ṽn(t) = vamp cos
(

ut + 2kp

N
n
)

, (5.3)

where vamp = Au. This justifies the physicist’s ansatz about the spatial patterns
and gives q = 2kp/N , k = 1, . . . , N − 1. Note that k plays the role of a discrete
wavenumber.

In appendix A, the simple case of zero delays is considered. In this case, the
characteristic equation has finitely many solutions for l, and it is easy to prove
that all approaches give the same stability condition and that stability is lost to
low-frequency, long-wavelength (k = 1) oscillations. For non-zero delays, however,
the characteristic equation has infinitely many solutions for l owing to the terms
e−lt, e−ls, e−lk. If the delays are sufficiently large, the flow may lose its stability
to high-frequency, short-wavelength (k � 1) oscillations (Kesting & Treiber 2008;
Orosz et al. 2010). Choosing even larger delays may lead to situations in which
even the drivers’ intentions to decrease the transients (expressed by F , G, H > 0 in
equation (5.1)) fail to work and so the controller becomes unstable (Sipahi &
Niculescu 2010). Finally, we remark that the control engineer’s approach may
allow one to study convective instabilities (Pipes 1953; Ward & Wilson 2010),
while the dynamical systems approach is useful if one wishes to analyse the effects
of nonlinearities. In the next section, we demonstrate that nonlinearities play an
essential role in determining the emergent state of traffic systems.
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6. Nonlinear traffic dynamics

The most popular way to study the behaviour of nonlinear traffic models is
using numerical simulations. The great advantage of this approach is that almost
any extension of model (3.10) can be implemented (non-identical drivers, multi-
lane traffic, junctions). In some cases, it is more difficult to write the system
in a closed mathematical form than implementing the algorithm for numerical
simulations. Still, this approach has drawbacks. It may not be easy to determine
the causes of certain behaviours appearing in simulations (especially in regions
of multi-stability). This is due to the difficulty in detecting unstable solutions
by numerical simulation in such a high-degree-of-freedom system without having
some prior knowledge about them. As will be explained below, it is critical to
explore such solutions if one wishes to understand the underlying mechanisms of
jam formation.

In this section, we consider a single lane with periodic boundary conditions,
building the analysis on the dynamical systems approach outlined in the previous
section. We show that the qualitative features of the empirical FD in figure 1a can
be reproduced by a dynamic model (3.10) when considering finite reaction times.
For more details about the techniques used and results presented, one may consult
Gasser et al. (2004), Orosz & Stépán (2006) and Orosz et al. (2009). Some claims
about multi-stability are also given in Krauss et al. (1997), Lee et al. (1998),
Igarashi et al. (2001), Safonov et al. (2002) and Helbing & Moussaid (2009) by
using different tools.

Here we consider the OVM (3.10), (3.12), but one may reproduce the analysis—
and obtain qualitatively similar behaviour—for any dynamic model that admits
a uniform flow equilibrium (4.1), (4.2) with an equilibrium function that looks
like figure 3b; for example, see the IDM (3.10), (3.13) except for small equilibrium
headways. We consider the human driver set-up t = s > 0, k = 0 for the reaction
times and assume the optimal and relative velocity functions

V (h) = vmax

⎧⎪⎨
⎪⎩

0, if h ∈ [0, 1],
((h − hstop)/s)3

1 + ((h − hstop)/s)3
, if h ∈ [1, ∞),

W (ḣ) = bḣ. (6.1)

The function V is shown in figure 3b. To decrease the number of parameters,
we rescale the distances by the desired stopping distance hstop and rescale
the velocities by the desired speed vmax. However, to maintain the clarity
of presentation, we do not represent this rescaling in the illustrations below.
The corresponding dimensionless parameters are fixed as s/hstop = 2, �/hstop = 1,
bhstop/vmax = 0.1, Tvmax/hstop = 2, tvmax/hstop = 2. Thus, the only free parameter
left in the model (3.10), (3.12), (6.1) is the equilibrium headway h∗ = L/N ,
and we show the qualitative changes in the dynamics when this parameter is
varied. The results are given for N = 33, which is small enough to reveal the
detailed microscopic dynamics but large enough to approximate the N → ∞
case well.

First, the results of the linear stability investigations are shown. Considering
the linearization (5.1), one obtains F = V ′(h∗)/T , G = b, H = 1/T . The algebraic
expressions for the stability boundaries are fairly complicated for t > 0, and
they are not shown here. However, the stability criterion is qualitatively similar
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Figure 4. Stable and unstable solutions in traffic represented by green (light grey) and red (dark
grey) curves, respectively. (a–c) Bifurcation diagrams showing the qualitative changes in dynamics
when the equilibrium headway h∗ (or the equilibrium density r∗) is varied. Thick curves represent
uniform flow equilibria while thin curves represent travelling waves. Stability changes are denoted
by blue stars for equilibria (Hopf bifurcations) and by blue crosses for travelling waves (fold
bifurcations). (d–f ) Stable and unstable solutions in time and in state space corresponding to
the points A, B and C in (b,c). (g) Development of stop-and-go oscillations triggered by an
over-the-threshold perturbation. Each curve represents the motion of a particular vehicle and
the backward-propagating stop-front and go-front are highlighted in red. (h) FD diagram with
data collected for different values of r∗ at the cross section x = xdet during the time interval
t ∈ [0, tdet].
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to (A 8): the uniform flow is stable below a critical F , and the first instability
occurs for the wavenumber k = 1 (at least for sufficiently small b).1 Since V ′(h∗)
is non-monotonous but larger for intermediate values of h∗, linear instability of
the flow occurs, as shown by the equilibrium speed–headway curve v∗ = V (h∗) in
figure 4a. Solid green (light grey) and dashed red (dark grey) sections of the curve
correspond to stable and unstable solutions (and the same colour-coding is used
throughout the figure). The losses of stability (Hopf bifurcations) at (hHi , vHi =
V (hHi)), i = 1, 2, are marked by blue stars. The corresponding equilibrium flux–
density relation q∗ = Q(r∗) is shown by the thick curve in the FD in figure 4c,
where the losses of stability occur at (rHi , qHi = Q(rHi)), i = 1, 2; see equation
(4.3). Notice that, in figure 4b, the equilibria are located along the horizontal
axis where the amplitudes of velocity oscillations are zero. We remark that the
reaction time makes hH1 (hH2) slightly smaller (larger) than the non-delayed case.

As explained in the previous section, by analysing the linearized model (5.1),
one may conclude that travelling waves of the form (5.3) emerge (with k = 1),
but it is not possible to determine the amplitude vamp and stability of the small-
amplitude oscillations that appear. By including nonlinearities up to third order
in the modelling equations (3.10), (3.12), (6.1), one may perform normal form
calculations and conclude that these waves are unstable (the Hopf bifurcation is
subcritical) and derive the amplitudes vamp ∼ √

hH1 − h∗ and vamp ∼ √
h∗ − hH2 in

the vicinity of the Hopf points (Orosz & Stépán 2006). This robustly subcritical
behaviour is primarily attributed to the fact that the driver reaction time is
finite—for zero reaction time, one needs to carefully tune other parameters
to obtain such behaviour. When performing such analytical calculations, the
nonlinearities of V are only approximated well close to the Hopf points, so
one needs to use numerical techniques to track the unstable solutions for larger
|h∗ − hHi|, e.g. numerical continuation techniques need to be applied (Roose &
Szalai 2007; Orosz et al. 2009).

In figure 4b, the thin curve shows the oscillation amplitude vamp. One
may observe that further away from the Hopf points the amplitude increases
approximately linearly with |h∗ − hHi| until reaching h∗ ≈ h− or h∗ ≈ h+, where
the branch folds back (a fold bifurcation occurs) and a stable section connecting
the two fold points is created. The fold points are marked by blue crosses
and, for N → ∞, these are located at h∗ = h− and h∗ = h+. The meaning of
h− and h+ is explained further below. Depending on the equilibrium headway
h∗, three qualitatively different behaviours can be observed. For h∗ < h− and
h∗ > h+, the only stable solution is the linearly stable equilibrium, which is,
consequently, globally stable. For hH1 < h∗ < hH2, the equilibrium is unstable, and
the only stable solution is the large-amplitude oscillatory solution. Finally, for
h− < h∗ < hH1 and hH2 < h∗ < h+, both the equilibrium and the large-amplitude
oscillatory solution are stable (bistability occurs), and their basins of attraction
are separated by the unstable oscillatory solution. It is important to remark
that h− (h+) increases (decreases) with the reaction time and, consequently, the
bistable domains (h−, hH1) and (hH2, h+) become much more extended than the
non-delayed case.

1We remark that the wavenumbers k > 1 may also have important roles (Orosz et al. 2009, 2010),
but those are not discussed here in detail.
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Before explaining how to represent the oscillatory branches on the FD, we
describe the oscillatory solutions in more detail. In figure 4b, we marked the
points A, B and C along the branches in the bistable regime hH2 < h∗ < h+ (at
h∗/hstop = 4.7) and show the corresponding velocity profiles vn(t) in figure 4d.
Indeed, the velocity is constant for the equilibrium (A) but changes periodically
for oscillations (B and C). The time profiles are shown for a chosen vehicle,
but they look identical for all other vehicles except for a time shift: for two
consecutive vehicles, vn(t) = vn+1(t − Tper/N ), where Tper is the period, which
is almost the same for the stable and unstable oscillations. These are, indeed,
travelling waves, but they are not approximated well by harmonic oscillations
anymore; see equation (5.3) for k = 1, where Tper = 2p/u. For the unstable
oscillatory solution, the velocity only changes in a short time interval: the
driver taps on the brake. For the stable oscillatory solution, high- and low-
velocity plateaux appear that are connected by a stop-front (where the velocity
drops) and a go-front (where the velocity rises): these are the well-known
stop-and-go waves.

The corresponding trajectories are shown in the state space (hn , vn) in figure 4e,
where the points (h∗, v∗), (h+, v+) and (h−, v−) are marked. The first point is the
uniform flow equilibrium where v∗ = V (h∗); see equations (4.1), (4.2). The latter
two points we call semiequilibria because along the stable oscillations vehicles
stay in one of these states most of the time (figure 4d) and, consequently, at a
chosen time instant, most vehicles are in one of these equilibria. One may find
that, for quasi-equilibria,

v± ≈ V (h±) (6.2)

is true (see equation (4.2)). We remark that it is not known how to determine h±
analytically for a given car-following model. One may also plot the oscillations by
using the ‘Lagrangian density’ rn = 1/(hn + �) and ‘Lagrangian flux’ qn = rnvn ,
as shown in figure 4f. Here, the equilibrium is located at (r∗, q∗), whereas the
quasi-equilibria are located at (r+, q+) and (r−, q−), where

r± = 1
h± + �

and q± = r±v± ≈ Q(r±); (6.3)

see equations (4.3) and (6.2).
In the bistable regimes, the system may approach the equilibrium or the stop-

and-go oscillation depending on the initial conditions. The role of the unstable
oscillation is that it separates the basins of attractions of the two stable states.
In other words, it determines the threshold for the strength of perturbations
necessary to ‘transfer’ the systems from uniform flow to stop-and-go motion.
Over-the-threshold localized perturbations may trigger stop-and-go jams even
when the uniform flow is linearly stable. Figure 4g shows the vehicles’ trajectories
in space–time when the system is initialized in equilibrium, except one driver
whose velocity and headway is reduced (h∗/hstop = 4.7, as in figure 4d–f ). This
finite perturbation is chosen to be over-the-threshold, and consequently it is
amplified when propagating upstream, leading to stop-and-go oscillation. The
stop-front (where the velocity drops) and the go-front (where the velocity rises)
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are highlighted in red. During the formation of the stop-and-go wave, there are
three different characteristic wave speeds observable:

— The wave speed corresponding to the linear stability loss at the Hopf
points. This may be calculated from equations (5.3), (A 7), (A 8) because
the delay does not alter the expression in the large N limit (k = 1, N →
∞ ⇒ k/N → 0). Thus, one may obtain

cHi
wave = vHi − (hHi + �)

FHi

H Hi
, i = 1, 2, (6.4)

where FHi = vhf (hHi , 0, vHi) and H Hi = −vvf (hHi , 0, vHi); see equation
(5.2). For the OVM (3.10), (3.12), (6.1), we have FHi/H Hi = V ′(hHi),
which yields

cHi
wave = vHi − (hHi + �)V ′(hHi) = Q′(rHi), i = 1, 2. (6.5)

This approximates the wave speed in figure 4g for t � t1 (for i = 2), because
h∗ is quite close to hH2.

— The wave speed of the developing stop-and-go wave (t1 � t � t2 in
figure 4g). In this case, the speed of the stop-front (where vehicles enter
the jam) and the go-front (where they leave the jam) is different and may
be determined by adding higher order corrections in k/N to equation (6.4)
(Ward & Wilson 2010).

— The wave speed of the fully developed stop-and-go wave (t � t2 in
figure 4g). This is very well approximated by

cs&g
wave = h+v− − h−v+ + �(v− − v+)

h+ − h− = q+ − q−

r+ − r− < 0, (6.6)

which may be obtained from wave kinematics (Lighthill & Whitham 1955).

When studying the oscillations for different values of h∗, one may observe
that unstable solutions for hH2 < h∗ < h+ are similar in shape to those shown in
figure 4d–f , but their minima decrease as h∗ approaches h+. For h− < h∗ < hH1,
the unstable solutions look like the unstable solutions in figure 4d but upside-
down, and now the maxima increase as h∗ approaches h−. On the other hand,
one may find that the stable stop-and-go solution for h− < h∗ < h+ almost does
not change in state space compared with figure 4e,f, but the lengths of low- and
high-velocity plateaux change compared with figure 4d according to

Tjam

Tper
≈ h+ − h∗

h+ − h− . (6.7)

(Here Tjam is measured at vn = vmax/3.) In other words, h+ and h− are
independent of the equilibrium density h∗, and, in fact, the fold bifurcations
happen in figure 4b when the low- and high-velocity plateaux disappear at h∗ ≈ h+
and h∗ ≈ h−, respectively.
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To approximate the flow along the oscillatory branch, we averaged the
Lagrangian flux qn = rnvn for one period and plotted the average 〈q〉 as a function
of equilibrium density r∗ in figure 4c. For equilibria, 〈q〉 = q∗, while, for the
stop-and-go oscillations, one may use equation (6.7) and obtain

〈q〉 ≈ q− h+ − h∗

h+ − h− + q+ h∗ − h−

h+ − h− := qs&g, (6.8)

which is a good approximation except close to the fold points. Notice that the
wave speed (6.5) gives the gradients of the equilibrium curve q∗ = Q(r∗) at the
Hopf points (rHi , qHi), i = 1, 2, while the wave speed (6.6) gives the gradient of the
line connecting points (r+, q+) and (r−, q−). Clearly, this line does not coincide
with qs&g (in contrast to the suggestion in figure 1e). In the FD in figure 4c, the
bistable regimes are located at r+ < r∗ < rH2 and rH1 < r∗ < r−. Notice that h− <
hstop ⇔ r− > rstop, that is, during oscillations, higher densities can be observed
than suggested by the equilibrium FD. This corresponds to the fact that drivers
intend to stop at the distance hstop, but can only achieve this at the distance h−
owing to their inertia and reaction time.

As mentioned above, if the reaction times were omitted, the Hopf bifurcations
are usually supercritical (or weakly subcritical), which would result in (rH2, qH2) ≈
(r+, q+) and (rH1, qH1) ≈ (r−, q−) and would also yield cHi

wave ≈ cs&g
wave; see (6.5),

(6.6). In this case, the extended bistable regions would disappear, oscillation
would appear only for rH2 � r∗ � rH1 and the corresponding FD would be similar
to figure 3d. That is, no overlapping region between equilibria and oscillations
could be observed, which contradicts the empirical findings in figure 1a.

When measuring ‘Eulerian density’ and ‘Eulerian flux’ at a cross section, one
may record density–flux combinations along the stable part of the equilibrium
branch in figure 4c or in the area enclosed by the stable orbit in figure 4f ; recall
that the shape of this orbit practically does not change for r+ < r∗ < r−. The
enclosed area may be filled owing to transients, that is, owing to transitions
between the equilibrium and the stop-and-go oscillations. Figure 4h depicts the
flux–density data collected at x = xdet (that is upstream from the localized
perturbation) during the time interval t ∈ [0, tdet] for different values of the
equilibrium density r∗ < rH1 and different perturbation sizes. Similar to empirical
studies, we recorded the velocity of vehicles when passing the detector and the
time elapsed between passings, and, from these, we calculated the flux and density.
As expected, the data points either lie in the vicinity of the equilibrium branch
or are enclosed by the stable orbit. The rest of the enclosed domain is rarely
observed when recording Eulerian data (e.g. one never records zero flux), but is
accessible when collecting Lagrangian data. The recorded data correspond well
to the empirical data shown in figure 1a and, what is more, we now have a clear
dynamical explanation for its qualitative features.

In the single-lane models studied above, traffic jams may be triggered by
sufficiently large irregularities in driver behaviour, which may be due to lack
of concentration, aggressive or timid driving, uphill segments or any other
unexpected manoeuvres of neighbouring vehicles. However, for multi-lane traffic
(that may include on- and off-ramps), the lanes are also coupled to each other
by the lane changes, so the motion of vehicles in one lane may also trigger traffic
jams in the neighbouring lane. That is, the excitable dynamics, which is rooted
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in the nonlinear longitudinal dynamics of single-lane traffic, may become more
pronounced for multi-lane configurations. Moreover, in many cases, stop-and-
go jams emanate from bottlenecks, regions of the highway where the maximum
flux is reduced, e.g. by road works or lane closure (Kerner 2008). Apart from
triggering stop-and-go waves, the bottleneck usually results in a standing wave,
that is, a localized jam forms at the bottleneck. The dynamical interaction
between these standing and travelling waves may lead to intricate patterns such
as those shown in Gasser & Werner (2010), where the results are presented from
both microscopic and macroscopic perspectives. Indeed, the above dynamical
principles need to be respected when one wishes to eliminate congestion by
controlling traffic.

7. Traffic control

Traffic control existed even before automobiles appeared, in particular in big
cities. For example, archaeological evidence has been found for traffic planning
in the ancient Roman city of Pompeii (Powell & Poehler 2008), while the first
traffic signal was installed two millennia later in 1868 in the city of London,
UK (Mueller 1970). However, the importance of control has been increasing
with the growing number of motor vehicles. Besides using traffic lights, one may
introduce ramp metering and bridge/tunnel tolls to increase the efficiency of
road networks (Varaiya 2008). To review all possibilities of traffic management is
far beyond the scope of this introductory paper, so here we rather focus on the
state-of-the-art scientific methods that may help to improve the efficiency of the
current infrastructure.

When designing flow control algorithms, it is beneficial to view traffic at
the macroscopic level (Luspay et al. 2010). On highways, the goal is to keep
the traffic near the free-flow condition by controlling the in- and outflow on
the on- and off-ramps and by assigning the velocity with the help of variable
message signs (Carlson et al. 2010). When implementing such control strategies,
usually the equilibrium FD in figure 3a is used and the system is kept on the
left-hand side of the maximum (Kurzhanskiy & Varaiya 2010). On the other
hand, one may use non-equilibrium FDs, like those in figure 4c,h, and try to
keep the system on the equilibrium branch even in the overlapping region—this
would allow higher flux, that is, higher efficiency. One can also investigate the
macroscopic dynamics of urban networks where flow control is mostly managed
by pre-programmed or adaptive traffic lights. For example, using the FD in figure
3a for road sections between traffic lights, one may determine ‘integrated’ FDs for
the whole network and study the effects of different route planning and signalling
strategies (Daganzo & Geroliminis 2008; Helbing 2009; Mazloumian et al. 2010).

Emerging information technologies may also be exploited for controlling traffic
at the microscopic level. In particular, ACC devices consist of a radar that
measures the distance and velocity difference from the driver in front, an on-board
computer that calculates the required action (braking or acceleration) according
to a driving rule like model (3.10) and actuators that carry out the required
actions. Originally, such systems were designed to increase the driver’s comfort
(Swaroop et al. 1994; Ioannou & Xu 1994) and the design is based on linear
systems theory. When designing the next generation of controllers, one needs to
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consider nonlinearities (that are primarily imposed by the nonlinearities of the
speed–headway functions such as those in figure 3a,b), and also the effects of time
delays (Kesting & Treiber 2008; Orosz et al. 2010).

Even though some vehicles are already equipped with such devices, one cannot
expect that all cars will have ACCs in the foreseeable future. For this reason, it
is important to design controllers with characteristics similar to human drivers
and to study situations where human-driven and autonomous vehicles are mixed.
Recent results show that even small percentages of ACC-driven vehicles may be
beneficial for avoiding congestion (Zhang & Ioannou 2006; Kesting et al. 2010).
It is expected that microscopic control strategies will enter highways first, but
later they may become very important in city traffic as well.

The last DARPA Grand Challenge vindicated that even completely
autonomous driving was possible in complex urban environments (Campbell
et al. 2010). During this competition, vehicles had to obey traffic rules and had
to interact with each other and with human-driven vehicles by giving way at
intersections and executing overtaking manoeuvres. That is, much more complex
situations had to be handled than simple car-following, but vehicles had much
more time to process information than in a real traffic situation. ‘Speeding up’
such autonomous solutions is one of the greatest future challenges in the field.
The final goal is indeed to integrate the microscopic and macroscopic control
strategies to create intelligent traffic systems of high efficiency.

We gratefully acknowledge the valuable advice and support of Freeman Dyson, FRS. G.O. would
like to thank Francesco Bullo, Jeff Moehlis and Róbert Vértesi for helpful discussions and useful
comments. We wish to express our appreciation for the assistance received from Suzanne Abbott
while compiling this Theme Issue.

Appendix A. Stability of dynamic car-following models without delay

Here, we provide some technical details about the stability analysis of equation
(5.1) in the special case t = s = k = 0 in order to demonstrate the different
approaches listed in §5. Substituting h̃n(t) = x̃ n+1(t) − x̃ n(t) and ˙̃xn(t) = ṽn(t)
into equation (5.1), one obtains

¨̃xn(t) + (G + H ) ˙̃xn(t) + Fx̃n(t) = G ˙̃xn+1(t) + Fx̃n+1(t). (A 1)

Assuming x̃ n(t) = Re(A elt+iqn), 0 < q < 2p, leads to the equation

l2 + (G + H )l + F = (Gl + F)eiq, (A 2)

while, using the trial solution x̃ n(t) = Anelt , the characteristic equation

(l2 + (G + H )l + F)N = (Gl + F)N (A 3)

is obtained. Taking the N th root of equation (A 3) results in equation (A 2) with

q = 2kp

N
, k = 1, . . . , N − 1. (A 4)
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Now, by substituting
l = iu, u ∈ R

+, (A 5)

into equation (A 2), separating the real and imaginary parts and eliminating u,
one may determine that stability changes (Hopf bifurcations) occur for

F = 1
2
(2G + H )

[
(2G + H ) tan2

(
kp

N

)
+ H

]
, (A 6)

with frequency

u = (2G + H ) tan
(

kp

N

)
. (A 7)

Note that (for zero delays) only the boundaries k ≤ N /2 appear in the physically
realistic F , G, H > 0 parameter regime. It can also be shown that, crossing such a
boundary from smaller to larger F , the complex conjugate pair of characteristic
roots ±iu crosses the imaginary axis from left to right, i.e. the system becomes
‘more unstable’. Consequently, the stability loss occurs for the lowest wavenumber
k = 1, and, for N → ∞, the stability condition becomes

F < 1
2(2G + H )H , (A 8)

with frequency u → 0.
On the other hand, one may simply take the Laplace transform of equation

(A 1) and obtain

cn(l) = T (l)cn+1(l) and T (l) = Gl + F
l2 + (G + H )l + F

, (A 9)

where cn(l) is the Laplace transform of x̃ n(t) and T (l) is the transfer function.
Here, one may study the stability of the controller: the poles of T (l) have to be
on the left half complex plane that is ensured by F , G, H > 0. On the other hand,
to obtain string stability (decay of perturbations from vehicle to vehicle as going
along the chain), the inequality |T (iu)| < 1 needs to be satisfied for all u ∈ R

+,
that is,

F < 1
2(2G + H )H + 1

2u2 (A 10)

for all u ∈ R
+. The right-hand side of (A 10) is minimal for u → 0, yielding

(A 8) as a condition for string stability. Notice that substituting the dispersion
relation (A 7) into (A 6) results in (A 10), showing that the different approaches
are equivalent.
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