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Abstract

We investigate an optimal velocity car-following model forn cars on a circular single-lane road, where reaction-time delay
of drivers is taken into account. The stability of the uniform flow equilibrium is studied analytically, while bifurcating periodic
solutions for different wave numbers are investigated with numerical continuation techniques. This reveals that the periodic
solution with the smallest wave number may be stable, and all other periodic solutions are unstable.

Asn is increased, periodic solutions develop stop- and go-fronts that correspond to rapid deceleration and acceleration between
regions of uniformly flowing and stagnant traffic. In terms of the positions of all cars on the ring these fronts are associated with
traffic jams. All traffic jams form a traffic pattern that evolves under time, due to slow motion of the fronts. The traffic pattern
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orresponding to the stable periodic motion of cars is the only stable one. However, we find that other periodic orbit
nstable only so weakly that they give rise to transient traffic jams that may persist for long times. Eventually, such tra
ither merge with one another or disperse, until the stable traffic pattern is reached.
2005 Elsevier B.V. All rights reserved.
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. Introduction

This article is concerned with the application of
ynamical systems techniques to a well-knowncar-
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following model of highway traffic, called theoptimal
velocity (OV) model. Identical vehicles are modelled
discrete entities that move in continuous time and
dimensional space along a circular single-lane r
The model that we consider here (see Section2 for
details) incorporates the reaction-time delay of dri
and was first posed by Davis[1]. It consists of a syste
of delay differential equations (DDEs) and is a va
tion of the reaction-time model introduced by Ban
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et al.[2], which in turn generalizes their original opti-
mal velocity model[3]. This original work by Bando
et al., along with the work of Nagel and Schreckenberg
[4] (on cellular automata models) and of Kerner and
Konhäuser[5] (on partial differential equation mod-
els) has generated a surge of interest in the nonlinear
behavior of highway traffic. For a comprehensive re-
view, see Helbing[6]. Most studies have investigated
dynamics by using a combination of numerical simu-
lation and simple analytical arguments, such as linear
stability analysis. Only recently have formal dynami-
cal systems techniques been used to classify different
traffic behaviors[7–9]. In terms of including effects of
delay, bifurcations of the basic periodic solution were
determined explicitly for a first-order model in[10].

In this paper we consider the global dynamics of a
second-order OV model with delay, which was probed
by numerical simulation in[1]. In contrast, here and
in [7] we used the package DDE-BIFTOOL[11] to
perform a two-parameter bifurcation analysis of the
model. Due to the demands on CPU time and mem-
ory, the aim of[7] was proof-of-concept only, and the
investigation was restricted to the unrealistic setting
of n = 3 cars. Nevertheless, this methodology enabled
us to calculate efficiently branches of periodic solu-
tions (loosely corresponding to traffic jams) far from
the uniform flow equilibrium, and to classify regions
of parameter space where the equilibrium is stable yet
coexists with other non-trivial stable solutions. In such
bistable regions of parameter space, the choice of ini-
t ted
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which the gradient of the trajectories (i.e., vehicles’ ve-
locities) is small; see alreadyFigs. 11 and 12in Section
9. The key point to note is that, although different traf-
fic jams have similar speeds, and so they may coexist
over intermediately long time scales, ast → ∞ they
have a tendency to merge (Fig. 11(a)). Further, over
sufficiently long time scales, traffic jams may also dis-
perse (Fig. 12(a)). Consequently, for generic choices of
initial data, only a single traffic jam persists ast → ∞.

To understand traffic patterns one needs to consider
the dynamics of a single vehicle as it drives repeat-
edly around the circuit. The velocity plateaus at a high
value, meets astop-front in which the vehicle decel-
erates into a traffic jam, plateaus at a low value, and
then passes through ago-front as it returns to free flow
conditions. Consequently, a traffic jam is sometimes
known asstop-and-go wave, although we should em-
phasize that each traffic jam is strictly speaking a pair of
fronts with similar speeds, separated by a low-velocity
plateau. Since (apart from at merging) the stop-and-go
waves propagate at about the same speed, the motion of
the vehicle is approximately periodic in time because
it encounters the same traffic pattern for each circuit,
albeit shifted according to the wave speed. This obser-
vation motivates the detailed study of perfectly periodic
orbits which we perform first at the linear level (Sec-
tion 4) and then at the fully nonlinear level in terms of
two-parameter bifurcation diagrams (Section5).

In particular, we find regions of parameter space
where a stable periodic solution withk = 1 traffic jams
c nd-
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ial conditions selects which traffic behavior is selec
s timet → ∞.

In this paper the goal is to extend the result
argern, and in particular to draw out the trends wh

ay emerge asn is increased towards numbers t
re more representative of real traffic situations.
resent limit of our computation isn = 17 cars: this i
till restricted but nevertheless begins to display s
f the interesting wave interaction phenomena tha
ay find (by numerical simulation) for largen.
Of particular interest is the interplay between

iodic solutions and traffic patterns. As observed
any other authors, for appropriate parameters an

ial data, traffic organizes into regions of free flow
raffic divided by traffic jams which propagate at ab
he same speed to each other in the opposite dire
o the traffic flow. The question is how such traffic p
erns evolve. The traffic jams correspond to region
oexists with unstable periodic solutions correspo
ng to k > 1 perfectly evenly spaced traffic jams. F
argen/k, we show that the stop-fronts and go-fro
ave a limiting structure. This result indicates that
ave recovered fronts which are close to travelling w
olutions in the case of open boundaries, and w
nly feel the other waves weakly since the numbe
ehicles (∼ n/k) between structures is large. By co
uting Floquet multipliers of periodic orbits we sh

hat periodic solutions fork > 1 may be only weakl
nstable; the unstable eigendirections show tha
echanism of destabilization is via front dynam
oth the Floquet multiplier and mode shape calc

ions that we perform can only be achieved with
erical continuation software such as DDE-BIFTO

12,13].
We find that the largest Floquet multiplierµ has a

caling of |µ| − 1 ∼ exp(−q n/k), q > 0. This indi-
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cates that our periodic solutions correspond to travel-
ling wave solutions when the boundaries are open, but
on the loop interact weakly via their exponential de-
caying tails (in a similar manner to meta-stable front
dynamics for the Allen-Cahn equation; see[14,15]).
We show that eigendirections correspond to relative
front motion: either one stop-and-go pair catching up
another stop-and-go pair (merging of traffic jams), or
the stop-and-go-fronts of a single jam colliding so as
to disperse it.

The paper is organized as follows. In Section2 we
give details of the model. Section3 gives some back-
ground on the stability theory for DDEs with a single
fixed delay, while Section4 contains the linear stabil-
ity analysis of the uniform flow solution. In Section5
we present the two-parameter bifurcation diagrams for
n = 3, 5, 9 cars. The associated branches of periodic
solutions (also forn = 17) are discussed in Section6.
How fronts develop in periodic solutions is shown in
Section7. The Floquet multiplier and eigendirection
calculations can be found in Section8. Merging and
dispersing transient traffic jams are explained in Sec-
tion 9. We conclude in Section10.

2. Model details

The model described here is based on those of[1–3]
and was set up and rescaled in[7]. We consider a system
of n cars on a unidirectional single-lane ring road of
l y
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t

h
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Fig. 1. Optimal velocity function(4) (a), and its derivative (b).

In particular, we definehn = L − ∑n−1
i=1 hi, which re-

duces the number of independent equations of Eqs.(1)
and (2)to 2n − 1.

Eq.(2) expresses that each driver approaches anop-
timal velocity (OV), given byV (h) ≥ 0, with a char-
acteristicrelaxation time of 1/α > 0. Further, drivers
react to their headway via areaction-time delay which
here is rescaled to one. The parameterα > 0 is known
as thesensitivity. Since we want to compare results
for different numbers of carsn, we consider theav-
erage headway h∗ = L/n as a bifurcation parameter.
Increasingh∗ increases the length of the ringL, which
involves scaling all headwayshi accordingly.

To complete the model we specify the OV function
V (h). The remainder of this paper uses the rescaled
form

V (h) =



0 if 0 ≤ h ≤ 1,

v0 (h − 1)3

1 + (h − 1)3
if h > 1,

(4)

first introduced in[7], which is shown together with
its derivative inFig. 1, and which has the following
properties:

1. V (h) is continuously differentiable, nonnegative,
and monotone increasing. So in particular, cars tend
to travel faster as their headway increases. Note that
the smoothness is required for the application of
continuation techniques later in this paper.
engthL. The velocity of theith vehicle is denoted b
i and its distance to the preceding (i + 1)st vehicle
nown as theheadway, is denoted byhi. We thus hav
he kinematic conditions

˙
i(t) = vi+1(t) − vi(t), i = 1, . . . , n, (1)

here dot refers to the derivative with respect to
ime t, and the model is closed by prescribing c
ccelerations in the non-dimensionalized form

˙ i(t) = α(V (hi(t − 1)) − vi(t)), i = 1, . . . , n. (2)

hroughout we identify the (n + 1)st car with the firs
ar, so thaṫhn(t) = v1(t) − vn(t), and the length of th
ing is included in the model via the condition

n

i=1

hi = L. (3)
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2. V (h) → v0 ash → ∞, wherev0 is known as the
target speed, which corresponds to the (high) free-
flow speed of drivers when traffic is sparse.

3. V (h) ≡ 0 forh ∈ [0, 1], so that 1 is the rescaledjam
headway. If a vehicle’s headway becomes less than
1 it should attempt to come to a stop, although in fact
in model(2) its speed may only decay exponentially
to zero.

Note that functions with similar shapes and proper-
ties to(4) were used in[2,3].

3. Delay differential equations with a single
time delay

Eqs.(1) and (2)constitute a system of 2n − 1 in-
dependent delay differential equations (DDEs) with
a single fixed delay that is scaled to 1. We now re-
call some basic facts of the stability theory for DDEs
as needed in later sections; see[16–19] for more de-
tails. In general form, such a system can be written
as

ẋ(t) = f (x(t), x(t − 1), η), (5)

where dot stands for time derivative,x ∈ Rm is the
physical space,f : Rm × Rm × Rl → R

m is differen-
tiable, andη ∈ Rl is a (multi-dimensional) parameter.
(
w
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Eq. (7) has infinitely many roots, thecharacter-
istic exponents λ ∈ C, which have no accumulation
point in C. The equilibriumx∗(t) is stable when all
characteristic exponents are situated in the left half of
the complex plane. If a real characteristic exponent
crosses the imaginary axis then a fold (saddle-node)
bifurcation occurs. (Note that we do not encounter
this bifurcation in Eqs.(1) and (2)). If a pair of
complex conjugate characteristic exponents crosses
the imaginary axis then a Hopf bifurcation occurs.
At the Hopf bifurcation a small-amplitude periodic
solution bifurcates, which may be stable or unstable
(of saddle type), depending on whether the Hopf
bifurcation is supercritical or subcritical.

A periodic solution is of the formxp(t) = xp(t + T ),
whereT ∈ R is the period. To determine the stability
of a periodic solution one considers the variational
equation

ż(t) = Lp(t)z(t) + Rp(t)z(t − 1), (8)

where z(t) = x(t) − xp(t) and the matrix functions
Lp, Rp : R→ R

m×m areT-periodic (and also depend
on the parameterη). By integrating(8)over the periodT
one obtains the Floquet or monodromy operator whose
eigenvalues are theFloquet multipliers. For the case of
a fixed delay considered here the Floquet multipliers
have the origin as their only accumulation point. Note
that there is always the trivial Floquet multiplierµ = 1,
which corresponds to the time-translation symmetry
a
s ial
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p rcle
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t dic
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c ral,
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In the case of Eqs.(1) and (2)m = 2n − 1 andl = 3,
hich corresponds to the parametersh∗,α andv0.) Due

o the delay, initial data must be prescribed in the f
f a continuous function on the interval [−1, 0]. There-

ore, the phase space of(5) is the infinite-dimensiona
paceC([−1, 0],Rm) of continuous functions over th
elay interval with values in the physical spaceRm.

At an equilibrium we havex∗(t) ≡ x∗ ∈ Rm. The
tability nearx∗(t) is given by the linearized system

˙(t) = Ly(t) + Ry(t − 1), (6)

herey(t) = x(t) − x∗(t) and L, R ∈ Rm×m are con
tant matrices (that depend on the parameterη). By

nserting trial solutions in the formy(t) = ceλt with
∈ Cm, λ ∈ C into (6), one obtains the characteris
quation

det(λI − L − Re−λ) = 0. (7)
long the periodic orbit. The periodic solutionxp(t) is
table when all Floquet multipliers (except the triv
ne) are situated inside the unit circle in the com
lane. When Floquet multipliers cross the unit ci
ne encounters a bifurcation. In this paper we only

he case of a fold (saddle-node) bifurcation of perio
olutions, which occurs when a real Floquet multip
rosses the unit circle at +1. Note that, in gene
he Floquet multipliers cannot be written in clos
orm. They must be computed numerically, either
emi-discretization[20] or by full discretization[11].

Our principal tool is the numerical continuati
ackage DDE-BIFTOOL[11,12] which is able to

ollow branches of equilibria and periodic solutio
f DDE systems as parameters are changed. Sta

nformation is computed along solution branch
odimension-one bifurcation points where the sta

ty of solutions changes are detected automatic
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In particular, we may follow the branches of periodic
solutions that are born at Hopf bifurcations and
detect subsequent secondary bifurcations such as fold
(saddle-node) bifurcations. Furthermore, the Floquet
multipliers and the corresponding eigendirections are
available from DDE-BIFTOOL. This allows us to
identify characteristic time scales of repulsion when
the solutions are unstable.

A periodic solution is represented in DDE-
BIFTOOL by a number of mesh points, with a (small)
number of so-called collocation points in between
them. On each mesh interval the solution is represented
by a polynomial, and the number of collocation points
defines its degree. We used an accuracy of 50 mesh
points and 3 collocation points for most calculations,
but increased this to 60 mesh points and 5 collocation
points for the calculation of eigendirections in Section
8.

Overall, DDE-BIFTOOL performs similar func-
tions for DDE systems as the well known package
AUTO [21] performs for ODE systems. In general, the
application of continuation packages such as AUTO
and DDE-BIFTOOL is a much more efficient way of
exploring parameter space than performing mass en-
semble simulation of the initial value problem.

4. Linear stability analysis

The simplest solution of system(1) and (2), the so-
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To find curves of Hopf bifurcations in parameter space
we substituteλ = iω, ω ∈ R, into (12). Separation of
the real and imaginary parts gives

V ′(h∗) = ω

2 cos(ω − kπ/n) sin(kπ/n)
,

α = −ω cot(ω − kπ/n),
(13)

for the set in parameter space where Hopf bifurcations
occur. Herek = 1, . . . , n − 1 is known as the discrete
spatial wave number because the spatial pattern of the
bifurcating periodic solution is described by

Re(ci) = cos

(
2πk

n
i

)
, i = 1, . . . , n. (14)

Eqs.(13) describe curves in the (V ′(h∗), α)-plane.
Each curve belongs to a particular wave numberk and
is parameterized by the frequencyω ∈ (0, kπ/n). How-
ever, we are only interested in the curves fork ≤ n/2
because those fork > n/2 correspond to conjugated
waves, i.e., to the same spatial patterns. Whenn is even,
the Hopf bifurcation curve fork = n/2 starts (ω = 0)
from the point (1/2, 0) but all other Hopf bifurcation
curves, forn even or odd and for anyk, start from
the origin. Further, all curves converge to the vertical
asymptotes

V ′(h∗) = kπ/n

2 sin(kπ/n)
, (15)

whenω → kπ/n; seeFig. 2(a). This means that the
c .
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alleduniform flow equilibrium, is given by

i(t) ≡ h∗ = L

n
, vi(t) ≡ V (h∗), (9)

or i = 1, . . . , n. In other words, equidistant cars mo
ith the same time-independent velocity. To inve
ate the stability of this equilibrium we consider

inearization of(2)

˙ i(t) = −αvi(t) + αV ′(h∗)ri(t − 1), (10)

ith the kinematic condition

˙i(t) = vi+1(t) − vi(t), (11)

or i = 1, . . . , n, whereri(t) = hi(t) − h∗. From this
e obtain the characteristic equation in the form

λ2 + αλ + αV ′(h∗)e−λ)n − (αV ′(h∗)e−λ)n = 0.

(12)
urves are ordered from left to right ask increases
henn → ∞, the first asymptote fork = 1 converge

o V ′(h∗) ≡ 1/2, while the last asymptote fork = n/2
r k = (n − 1)/2 converges toV ′(h∗) ≡ π/4. Further

hek > 1 curves accumulate on thek = 1 curve when
→ ∞. Using the stability criteria presented in[19],
ne may show that the stability boundary for the e

ibrium is always the first (i.e.,k = 1) Hopf bifurcation
urve. This means that the uniform flow equilibrium(9)
s stable to the left of thek = 1 Hopf bifurcation curve
eeFig. 2(a). It may also be shown that the uniform flo
quilibrium remains unstable to the right of thek = 1
urve, and as each of thek > 1 curves is crossed fro

eft to right, an extra pair of complex conjugate cha
eristic exponents crosses into the right-half com
lane.

In Fig. 2 we present stability diagrams forn = 9
ars. There are four nested Hopf bifurcation cu
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Fig. 2. Stability diagrams forn = 9 cars where shading denotes the stable region. Panel (a) shows the sensitivityα vs. the slope of the OV
functionV ′(h∗), where the dashed asymptotes are situated atV ′(h∗) 
 0.5103,V ′(h∗) 
 0.5431,V ′(h∗) 
 0.6046, andV ′(h∗) 
 0.7089. Panels
(b)–(f) show stability diagrams in the (h∗, α)-plane for particular values ofv0 (indicated in each panel), which correspond toV ′

max 
 0.4619,
V ′

max 
 0.5123,V ′
max 
 0.5627,V ′

max 
 0.6367 andV ′
max 
 0.8399, respectively.

corresponding to the four admissible wave numbers
k = 1, 2, 3, 4. This example is sufficient to give an in-
dication of the structure for largen. The Hopf bifurca-
tion curves are shown in the (V ′(h∗), α)-plane inFig.
2(a). The stability boundary, i.e., the curve fork = 1, is
the bold curve. The asymptotes are indicated by verti-
cal dashed lines and the shaded area is the stable region
of the uniform flow equilibrium(9).

Since the first derivative of the OV function(4)has a
turning point (seeFig. 1(b)), the (V ′(h∗), α) stability di-
agram ofFig. 2(a)may be transformed into the (h∗, α)-

plane by a sort of ‘nonlinear left-to-right folding’. Five
qualitatively different configurations are possible and
shown inFig. 2(b)–(f); which situation occurs depends
on the value ofV ′

max = (2 3
√

2/3)v0.
The shaded area again corresponds to the stability

of the uniform flow equilibrium(9) and the curves are
nested in strict order from outside to inside ask in-
creases. WhenV ′

max is to the left of a particular asymp-
tote in the (V ′(h∗), α)-plane, the corresponding curve
in the (h∗, α)-plane is a single curve with a maximum.
On the other hand, whenV ′

max is to the right of this
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asymptote, there are two corresponding curves in the
(h∗, α)-plane and each possesses a vertical asymptote.
Correspondingly, all curves have maxima inFig. 2(b)
becauseV ′

max is to the left of the first (bold) Hopf bifur-
cation curve inFig. 2(a). WhenV ′

maxexceeds theV ′(h∗)
value of the asymptote of a certain stability curve in
the (V ′(h∗), α)-plane, then the corresponding curve in
the (h∗, α)-plane becomes unbounded. Because there
are four Hopf bifurcation curves, this analysis leads to
the additional four possibilities shown inFig. 2(c)–(f).
The left-hand endpoints of the Hopf bifurcation curves
approach (1, 0), while their right-hand endpoints ap-
proach (+∞, 0).

By considering(15)and taking into account the first
derivative of the OV function(4), it can be shown that
whenV ′

max ≥ π/4, that is,v0 ≥ 3π/8 3
√

2, the asymp-
totes converge to particular values ofh∗ asn → ∞;
seeFig. 2(f) for which v0 = 1.0. Moreover, thek > 1
curves accumulate on thek = 1 curves whenn → ∞.

In the absence of reaction-time delay, it may
be shown that the Hopf bifurcation curves are
straight lines in the (V ′(h∗), α)-plane given byα =
2 cos2(kπ/n) V ′(h∗). As a consequence, the stability
diagram in the (h∗, α)-plane is always qualitatively the
same as that inFig. 2(b). Further, for non-zero delay,
the Hopf curves are always nested in strict order in the
(h∗, α)-plane whenV ′

max ≥ π/4 (i.e., v0 ≥ 3π/8 3
√

2).
However, when the delay is zero, such a nesting only
occurs for sufficiently largev0. Thus even at the lin-
ear level, the inclusion of delay leads to new types of
q
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are more representative of real traffic situations. Since
continuation studies with DDE-BIFTOOL are quite in-
tensive in terms of CPU time and memory, the bifur-
cation analysis for large numbers of cars is unfeasi-
ble. We found that the case ofn = 9 cars is a good
compromise—it is sufficiently general to showcase all
phenomena in the bifurcation diagram while still being
small enough to allow for a full bifurcation analysis.
We also considered the maximal case ofn = 17 cars
to check branches of periodic orbits and the scaling of
Floquet multipliers.

In Fig. 3 we present three bifurcation diagrams in
the (h∗, α)-plane forn = 3, 5 and 9. We describe the
common qualitative features of the two-parameter bi-
furcation diagrams and then give particular details for
each of the cases.

Firstly, the linear theory of Section4 gives ex-
plicit curves in the (h∗, α)-plane where the uniform
flow equilibrium loses stability via a Hopf bifurcation
that gives rise to oscillations with wave numberk = 1.
These Hopf bifurcation curves are shown inFig. 3(a)–
(c) as bold solid curves and the shaded areas on both
sides indicate where the uniform flow equilibrium is
stable. Forn > 3 cars there is a further set of admis-
sible wave numbersk = 2, . . . , (n − 1)/2. (To reduce
the number of special cases, we consider only then odd
case.) Linear theory gives explicit curves on which fur-
ther Hopf bifurcations of the (already unstable) uniform
flow equilibrium occur (i.e., other complex conjugate
pairs of characteristic exponents, corresponding to a
m lf
p
t

rict
o the
k for
t s
a
a are
u

ics
o OL
c ub-
c fur-
c le.
I ble
b a-
t it
ualitative dynamics.

. Two-dimensional bifurcation diagrams

The overall goal of this paper is to gain insight i
ow the qualitative behavior of solutions of the D
ystem(1) and (2)depends on the problem param
ers, namely the number of carsn, the average hea
ay h∗, the sensitivityα, and the target speedv0. To
implify matters, we fixv0 = 1.0 in what follows and
ow consider two-parameter bifurcation diagram

he (h∗, α)-plane (sometimes called phase-diagram
he traffic literature). Note that choosing larger val
f v0 does not change the linear stability diagram q

tatively; see Section4.
Our aim is to show the general trends in the qu

ative dynamics asn is increased towards numbers t
ode with wave numberk, cross into the right-ha
lane). These curves are shown inFig. 3(b) and (c)as

hin solid curves.
The Hopf bifurcation curves are nested in st

rder so that thek = 1 curves are the outermost and
= (n − 1)/2 curves are the innermost. Further,

he chosen valuev0 = 1.0, the Hopf bifurcation curve
ll possess vertical asymptotes in the (h∗, α)-plane
s in Fig. 2(f), that is, the unstable domains
nbounded inα.

We now use DDE-BIFTOOL to probe the dynam
f the system at the nonlinear level. DDE-BIFTO
alculates that the Hopf bifurcations are usually s
ritical, i.e., the branches of periodic solutions bi
ating from the uniform flow equilibrium are unstab
f one examines the Floquet multipliers of the unsta
ifurcating branches in the vicinity of the Hopf bifurc

ion point, one finds 2k − 1 multipliers outside the un



284 G. Orosz et al. / Physica D 211 (2005) 277–293

Fig. 3. Two-dimensional bifurcation diagrams in the (h∗, α)-plane
for n = 3 cars (a),n = 5 cars (b), andn = 9 cars (c) for target speed
v0 = 1.0. At points denoted by crosses (×) the Hopf bifurcation is
degenerate. In panel (c) the region of two traffic jams is defined by
the condition max|µ| ≤ 1.01 for the largest Floquet multiplier of
periodic solutions fork = 2.

circle (one real multiplier andk − 1 complex conjugate
pairs); see Section9.

Furthermore, DDE-BIFTOOL shows that each
branch of unstable periodic solutions usually under-
goes a fold bifurcation, where the real unstable Floquet
multiplier crosses the unit circle inwards at 1. Conse-
quently, thek = 1 branch becomes stable at this bifur-
cation, but thek > 1 branches remain unstable as they
still have 2(k − 1) Floquet multipliers outside the unit
circle.

The fold bifurcation curves are shown inFig. 3(a)–
(c) as dashed curves and the curves fork = 1 are em-
phasized in bold. The Hopf bifurcation curve for a par-
ticular k is nested inside the fold bifurcation curve for
the samek, and the fold bifurcation curves themselves
are nested in strict order so that the outermost curves
belong tok = 1 while the innermost curves belong to
k = (n − 1)/2. Further, most of the fold bifurcation
curves have vertical asymptotes meaning that the Hopf
bifurcation remains subcritical even asα → ∞. How-
ever, in some cases the fold bifurcation curves end at a
degenerate Hopf bifurcation point, i.e., at a point where
a Hopf bifurcation changes from subcritical to super-
critical asα is increased: these points are marked by
crosses (×) in Fig. 3(b) and (c). For any givenn, degen-
erate Hopf bifurcation points have only been observed
to occur for the largest possible wave number.

Inside the fold curve fork = 1, there exists a sta-
ble periodic solution. Therefore, in the parameter do-
main sandwiched between the fold and Hopf bifur-
c n
c nd
a e is
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t ata
w ved
a be-
t d
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be-
t
t un-
s lies
f n-
c
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i s of
c

ation curves fork = 1, the stable periodic solutio
oexists with the stable uniform flow equilibrium a
n unstable periodic solution. In other words, ther
istability in this region. When one carries out an

ial value simulation, the precise choice of initial d
ill select which of the two stable solutions is obser
st → ∞. Furthermore, one encounters hysteresis

ween the two solutions whenh∗ is swept back an
orth.

If we enter the parameter domain sandwiched
ween the fold and Hopf bifurcation curves fork > 1,
hen the only change is in the number of coexisting
table solutions, and it is not yet clear what this imp
or the dynamics. Fork1 < k2, there is no general pri
iple as to whether the Hopf bifurcation curve fork1 is
nside/outside the fold bifurcation curve fork2, so there
s a wide range of possibilities for the combination
oexisting unstable solutions.
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To illustrate the power of our approach we now de-
scribe three extra features that we have added in the
two-parameter diagrams ofFig. 3.

1. Collisions: A feature of the periodic solutions that
we have found by continuation is that the headway
may pass through zero, which may be interpreted as
the case of colliding cars. What is more, the head-
way may become negative, which is clearly unphys-
ical. To investigate this behavior, we simply extend
the definition(4) of the OV function byV (h) :≡ 0
for h < 0. The solid grey curve in the lower part
of Fig. 3(a)–(c)indicates where the headway first
becomes zero on thek = 1 stable solution branch.
Consequently, we can say that the model is defi-
nitely unphysical in the shaded domain below this
curve. The grey curve, which connects thek = 1
fold bifurcations curves, appears to converge to a
horizontal line asn increases. Consequently, it ap-
pears that, in the largen limit, there is a criticalα
below which the model is unphysical. However, this
conclusion is only partial: above the grey curve there
are most likely solutions with plausible initial data
which involve collisions as part of their transient
behavior, even though their long-term dynamics is
well behaved.

2. Stopping: Another interesting feature of the solu-
tions found by continuation is that cars may (almost)
come to rest at some point in their period. In fact,
model (2) is such that zero velocity cannot be at-
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though simulations indicate that the generict → ∞
behavior  is  convergent  either  to  the  uniform  flow
equilibrium  or  to the  stable  k = 1  branch,  richer
possibilities  may  be  observed  over  intermediately
long time scales.

6. Branches of periodic solutions

The bifurcation diagrams inFig. 3 can be further
clarified by fixingα (we takeα = 1.0) and considering
one-parameter bifurcation diagrams where only the pa-
rameterh∗ is allowed to vary; seeFig. 4. In effect, we
consider changes in the dynamics on a one-dimensional
horizontal cross-section throughFig. 3(a)–(c). In such
pictures the horizontal axis is the average headwayh∗
and the vertical axis displays a solution norm, which is
in our case the amplitude of the velocity oscillations:

vamp = (max
t

v(t) − min
t

v(t) )/2.                  (16)

For the uniform flow equilibria we have vamp = 0,
while for the periodic solutions that we calculate, the
quantity(16) is the same for each car. This is a direct
consequence of theZn-symmetry

vi(t) = vi+1

(
t − k

n
T

)
  ,       hi(t) = hi+1

(
t − k

n
T

)
,
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tained in finite time (the decay of the velocity is
ponential). We have illustrated this ‘near-stoppi
behavior inFig. 3(a)–(c)by adding a dotted curv
which, when crossed from right to left results in
minimum velocity of the stablek = 1 branch falling
below 0.01. Whenn increases, the dotted curve
pears to converge to the right-handk = 1 fold bifur-
cation curve. Thus, it seems that cars always c
close to stopping ifn is chosen sufficiently large.

. Meta-stable pattern formation: The most impor
tant extra feature, which is discussed in deta
Section9, is the shaded domain in the middle
Fig. 3(c). This shading indicates that the largest F
quet multiplier of the (unstable)k = 2 branch ha
modulus less than 1.01. Consequently, in this
gion, solutions with initial data chosen sufficien
close to thek = 2 unstable periodic solution rema
close to that solution for a long time. Therefore,
f the periodic solutions, whereT is the period. In othe
ords, it is sufficient to plot the profile of, say, the fi
ar; the profiles for all other cars are simply shif
opies.

The one-parameter continuation results are
ented inFig. 4 for n = 3, 5, 9 and 17 cars; pane
a)–(c) correspond to cross-sections throughFig. 3(a)–
c). Here solid curves denote stable solutions whe
ashed curves denote unstable solutions. Hopf bifu

ions of the uniform flow equilibrium are denoted
tars (*), and fold bifurcations of the periodic solut
re denoted by crosses (×). Observe that the unifor
ow equilibrium is stable for large and small valu
f h∗ in accordance withFig. 3. The branches of per
dic solutions connect the subcritical Hopf bifurcat
oints and they are strictly ordered so that the bra

or k = 1 is the outermost andk = (n − 1)/2 is the in-
ermost. The only non-trivial stable solutions are th
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Fig. 4. Branches of solutions as a function of the average headwayh∗ for n = 3 (a),n = 5 (b),n = 9 (c), andn = 17 cars (d); the target speed
is v0 = 1.0 and the sensitivity isα = 1.0. Stable states are represented by solid curves and unstable states by dashed curves. Hopf bifurcations
are depicted as stars (*) and fold bifurcations as crosses (×).

‘at the top’ of thek = 1 branch, between the fold bi-
furcation points.

Images similar toFig. 4can be found in[8] for the
OV model[3] without delay. However, in our case, the
Hopf bifurcations are robustly subcritical due to the
delay, which can be proven using normal-form calcu-
lations[22]. Consequently, the branches for differentk
are much more pronounced and there are wide regions
of bistability (for k = 1) and coexistence (fork > 1).
This bistable behavior fork = 1 was also found in a
first-order delayed model ([10] ; Fig. 2).

Note that there appear to be two types of conver-
gence on the level of the one-parameter bifurcation
diagrams. Firstly,Fig. 4 is partial evidence that, asn
gets larger and larger, the branch for any fixedk > 1
converges, in the pseudonorm defined by(16), to the
k = 1 branch. Consequently, one might conclude that
for k = k∗ > 1 andn/k∗ sufficiently large, thek = k∗
andk = 1 branches have significant structural features
in common. Secondly, as is illustrated inFig. 5, it ap-
pears that, asn is increased (throughn = 3, 5, 9, 17),
thek = 1 branch tends to a limit curve. This limiting

behavior might be indicative of travelling wave dynam-
ics since the system, in the largen limit, does not ‘feel’
(over  intermediate  time  scales)  that  it  is  subject  to
periodic boundary conditions.

Fig. 5. Thek = 1 branches fromFig. 4 of periodic solutions for
n = 3, 5, 9 and 17 cars.
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7. Periodic solutions with fronts

We now consider how the convergence of the one-
parameter bifurcation diagrams manifests itself on the
level of the associated oscillations. InFig. 6we present
the oscillation profile of thek = 1 periodic solution
for n = 17, 9, 5 and 3 cars. The figure is forh∗ = 2.1;
c.f. Fig. 5. Plotted are the velocityv1 and the head-
way h1 of the first car, where we chose the maximum
of v1 to be att = 0. In Fig. 6 all panels are drawn
on the time scale of the period of the oscillation for
n = 17. The dashed vertical lines indicate the period
for n = 9, 5 and 3 in panels (b), (c) and (d), respec-
tively. The profile fork = 1 corresponds to a situation
where the cars have (practically) zero velocity for part
of the period of the oscillation. The figure indicates
that there is a convergence of the profiles withn: the
oscillation develops fronts that connect the region with
(practically) zero velocity to a plateau with an (almost)
constant maximal velocity. Similarly, the headway de-
velops two regions with almost constant (small or large)
headways. We distinguishstop-fronts connecting high
velocity to almost zero velocity, andgo-fronts connect-
ing almost zero velocity to high velocity. Both types of
fronts appear to tend to a limit shape asn is increased;
this is why we plotted all profiles inFig. 6on the same
time-scale.

In Fig. 7we consider how the oscillations for fixed
h∗ = 2.1 and n = 17 depend on the wave number k.
The representation is, as in Fig. 6, meaning that all pan-
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Fig. 6. Oscillation profiles for wave numberk = 1 and forn = 17
(a),n = 9 (b),n = 5 (c), andn = 3 (d) cars; the target speed isv0 =
1.0, the sensitivity isα = 1.0, and the average headway ish∗ = 2.1.
The velocityv1 of the first car (dark grey/blue) is shown to the scale on
the left; the headwayh1 of the first vehicle (light grey/green) is shown
to the scale on the right. All panels are shown on the scale of one
period ofT 
 65.8171 forn = 17; the other periods ofT 
 34.8447
for n = 9, T 
 19.3540 forn = 5, andT 
 11.5445 forn = 3 are
indicated by dashed vertical lines. Notice the convergence of the stop-
fronts and go-fronts, that is, the sections of the orbits that connect
the plateaux approach a fixed profile asn is increased.

has important consequences in terms of transient traffic
jams. Note that identifying the mathematical limit and,
in particular, the exact scaling of the fronts, remains
an interesting challenge beyond the bifurcation study
presented here.
ls are drawn on the time scale of the period of thek = 1
scillation. Ask decreases one notices again that

ronts between different plateaux appear to conv
n profile: the main difference between the cases is
ength of the plateaux. The period of oscillations sa
es
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(18)

or a constantC = C(h∗, α, v0) that depends on all p
ameters; this was checked numerically with the a
ble data.

While the continuation approach taken here lim
to relatively small values,Figs. 6 and 7still clearly

uggest a convergence of thek = 1 solution to som
imiting shape asn → ∞, as well as a convergence
he oscillations for other wave numbers to that fork = 1
sn/k → ∞. As we will see in the next section, th
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Fig. 7. Oscillation profiles forn = 17 and for wave numbersk = 1
(a),k = 2 (b),k = 3 (c), andk = 4 (d); the target speed isv0 = 1.0,
the sensitivity isα = 1.0, and the average headway ish∗ = 2.1. The
velocityv1 of the first car (dark grey/blue) is shown to the scale on the
left; the headwayh1 of the first vehicle (light grey/green) is shown to
the scale on the right. All panels are shown on the scale of one period
ofT 
 65.8171 fork = 1; the other periods ofT 
 32.908 fork = 2,
T 
 21.9379 fork = 3, andT 
 16.4403 fork = 4 are indicated by
dashed vertical lines. Notice the convergence of the stop-fronts and
go-fronts, that is, the sections of the orbits that connect the plateaux
have approximately the same structure for smallk.

8. Floquet multipliers and eigendirections

We now look more closely at the stability properties
of the different periodic solutions. InFig. 8 the mod-
ulus |µ| of the corresponding leading Floquet multi-

pliers are depicted as a function of the headwayh∗
for the representative case ofn = 9 cars for the wave
numbersk = 1, 2, 3, 4. Recall from Section3 that the
infinitely many Floquet multipliers have the origin in
the complex plane as their only accumulation point; all
Floquet multipliers that are not shown inFig. 8 have
modulus less than one for all values ofh∗. The leading
Floquet multipliers in panels (a)–(d) were computed
with DDE-BIFTOOL as part of the stability analysis
along the branches shown inFig. 4(c). To bring out the
features, we use a logarithmic scale along the vertical
axis. For anyk, at the Hopf bifurcation points there are
two Floquet multipliers at 1 and another (k − 1) com-
plex conjugate pairs of Floquet multipliers outside the
unit circle. One multiplier moves outside the unit cir-
cle at the subcritical Hopf bifurcations and then crosses
into the unit circle at the fold bifurcations. Similarly,
the other leading multipliers fork > 1 appear outside
the unit circle at their subcritical Hopf bifurcations, but
then stay outside the unit circle over the entire range of
h∗. In other words,Fig. 8gives a different representa-
tion of the fact that all periodic orbits are unstable for
k > 1. For evenk we observe that one of the complex
pairs of these Floquet multipliers may come together
and produce two real Floquet multipliers. Forn/k large
enough this happens close to the Hopf bifurcation point.

However,Fig. 8(b)also shows that the oscillation for
k = 2 is almost stable around the pointh∗ = 2.1; at this
point the two unstable eigenvalues are actually real and
negative, namelyµ 
 −1.00844 andµ 
 −1.00753.
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y setting a threshold for max|µ| one can quantify th
almost-stability’ of the periodic orbit fork = 2: inside
he shaded region in the middle ofFig. 3(c)we have
hat max|µ| ≤ 1.01. While this bound is somewhat
itrary, we found by numerical simulation that tra

ams corresponding tok = 2 periodic orbits exist in thi
arameter region for long periods of time; see Sec
for more details on the connection between peri
olutions and traffic jams. More generally, there
egion aroundh∗ = 2.1 where the unstable waves
nyk are ‘least unstable’. Our numerical results in
ate that this effect is more pronounced the large
umber of carsn.

The instability of a weakly periodic orbit is ve
mall, but it is not ‘spread evenly’ around the perio
rbit. To show this we present inFig. 9the eigendirec

ion associated with the two unstable Floquet mult
rsµ 
 −1.00844 andµ 
 −1.00753 of the weakl
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Fig. 8. Modulus|µ| of the leading Floquet multipliers as a function of the average headwayh∗ in the case ofn = 9 cars for wave numbersk = 1
(a),k = 2 (b),k = 3 (c), andk = 4 (d). This figure corresponds to the branches of periodic solutions shown inFig. 4(c); we havev0 = 1.0 and
α = 1.0. Hopf and fold bifurcation points are denoted by stars (*) and crosses (×), respectively.

unstable periodic orbit forn = 9 andk = 2. It is com-
puted and represented by DDE-BIFTOOL in the form
of a direction field that shows how a vector changes
along the periodic orbit under the action of the vari-
ational equation[13]. We show the unstable direction
with respect to the velocity profile of the first car. The
Floquet multiplier measures the expansion (which is
practically nonexistent in our case of Floquet multipli-
ers that are almost 1 in magnitude) of a vector as the
flow is followed along the periodic orbit. The data in
Fig. 9 is plotted over two periods, because the most
unstable Floquet multipliers are negative: the vectors

forming the eigendirections close up after two periods.
In Fig. 9only the vectors at the mesh points are shown
together with the envelopes of all vectors.

Both periodic orbits are most unstable near the fronts
between the plateaux. This indicates that any eventual
instability is due to the motion of the fronts. Notice the
difference between the two cases inFig. 9(a) and (b)
in terms of the direction of motion of the stop-fronts.
As we will see in the next section, front dynamics is
responsible for merging or dispersing traffic jams.

We now show that we can extract from the bifur-
cation analysis the asymptotics of the modulus|µ(n,k)|
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Fig. 9. Eigendirections in the form of a direction fields plotted over
twice the period of the periodic solution as projections onto the veloc-
ity v1 of the first car. The envelopes show the corresponding modu-
lated solutions. Panel (a) forµ 
 −1.00844 corresponds to merging
of traffic jams as shown inFig. 11, while panel (b) forµ 
 −1.00753
corresponds to dispersion of one of the traffic jams as depicted in
Fig. 12. The parameters aren = 9, k = 2, v0 = 1.0, α = 1.0, and
h∗ = 2.1.

Table 1
Least-square fitted constants appearing in(19) for the periodic solu-
tions forv0 = 1.0, α = 1.0, andh∗ = 2.1

k = 2 (n = 5, . . . , 17) n = 17 (k = 2, . . . , 7)

q 1.5816± 0.0053 1.5901± 0.0121
ln R 2.3522± 0.0308 2.3616± 0.0601

of the largest Floquet multiplier, as a function ofn and
k. Different waves interact via an overlap of their ex-
ponentially decaying tails. Consequently, we make the
ansatz that there is an exponential relationship of the
form

max|µ(n,k)| − 1 = Re−q(n/k), (19)

when n is large andk is small enough; c.f.[14,15].
Clearly, the constantsq, R > 0 generally depend on
the parameters v0, α and h∗.

We test this ansatz inFig. 10 where we plot
max|µ(n,k)| − 1 on a logarithmic scale as a function
of n/k, wheren varies fork = 2 in panel (a) andk
varies forn = 17 in panel (b). In each panel the line is
the least-square fit through all but the first data point,
which we disregarded as exceptional in terms of the
convergence effect forn/k → ∞ that we are inter-
ested in. The resulting values ofq and lnR for both
cases are shown inTable 1. Together with the good fit
of the lines inFig. 10, this is numerical evidence that
the largest Floquet multiplier scales (for fixed parame-
ters) as given by Eq.(19). Note that the data presented
in Fig. 10constitutes the state of the art of what can
be achieved with the standard DDE-BIFTOOL imple-
mentation on a single workstation.

Fig. 10. The logarithm of the deviation of the modulus of the largest F s
for v0 = 1.0, α = 1.0, andh∗ = 2.1. Panel (a) shows a plot for fixedk = 2
lines are least square fit (omitting the first data point); see alsoTable 1.
loquet multiplier from 1 as a function ofn/k for the periodic solution
and varyingn, and panel (b) for fixedn = 17 and varyingk. The
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9. Traffic jams as long transients

In our model, a traffic jam is a region of the ring
along which the cars are almost stationary (velocity of
less than 0.01 according to our definition). Hence, the
location of traffic jams can best be seen in a plot of the
positionsxi of all cars. As cars enter a traffic jam at the
back and leave it at the front, traffic jam moves with
a certain speed against the direction of traffic along
the ring. An overall traffic pattern consists of a finite
number of traffic jams that all move with their own dif-
ferent (but typically similar) speeds. A traffic jam can
disperse or merge with another traffic jam of a differ-
ent speed when they meet. Hence, there is an evolu-
tion of the traffic pattern until a stable pattern has been
reached.

Of importance is the relationship between a traffic
pattern and the trajectory of an individual car. A sta-
ble traffic pattern corresponds to a stable periodic orbit
for the motion of the cars. Hence, the only stable traf-
fic pattern in our model is that corresponding to stable
k = 1 oscillations. Because the fronts of traffic jams
move only very slowly along the ring, the time it takes
the car to drive around the circuit is close to but slightly
different from the period of the periodic oscillations of
its velocity and headway. Similarly, if the pattern is not
stable, a car almost has the same velocity and headway
profile from round to round. In particular, unstable pe-
riodic orbits are related to unstable traffic patterns. As
we will see now, weakly unstable periodic orbits give
r nts.
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Fig. 11. Plot of the positionsxi of all n = 9 cars (a), and velocity
v1 of the first car (b), when two traffic jams merge. In panel (a), the
trajectory of the first car is emphasized. The motion of the fronts
corresponds to the modulated solution inFig. 9(a). In panel (b), the
additional curve envelopes the maxima of velocities between the
traffic jams. The other parameters arev0 = 1.0, α = 1.0, h∗ = 2.1.

Fig. 12. Plot of the positionsxi of all n = 9 cars (a), and the velocity
v1 of the first car (b), when a traffic jam disperses. In panel (a), the
trajectory of the first car is emphasized. The motion of the fronts
corresponds to the modulated solution inFig. 9(b). In panel (b), the
additional curve envelopes the minima of velocities in the dispersing
traffic jam. The other parameters arev0 = 1.0, α = 1.0, h∗ = 2.1.
ise to traffic jams that can persist as long transie
he motion of the traffic jams is closely related to
otion of the fronts of the almost periodic dynam
f the cars.

When one starts an initial value simulation of
ystem from suitably random initial data, unsta
aves form and will eventually die out. (Specifica
e start from equidistant cars with velocities cho

andomly and uniformly from [0, v0], and integrat
he system with an explicit Euler method with tim
tep 0.02.) As was mentioned in Section8, already fo
= 9 cars we find that waves fork = 2, correspond

ng to two traffic jams along the ring, may survive
onsiderable amounts of time. In other words, we
nstable traffic jams appear as long transients. W

hey eventually disappear this can happen in only
ompeting ways, which are shown inFigs. 11 and 12,
espectively.
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In the case shown inFig. 11 a traffic jam catches
up with another traffic jam and the two then merge;
see the plot of the positions in panel (a). At the same
time, panel (b) shows the velocity profile of the first
car.Fig. 11shows that the go-front of the first and the
stop-front of the second traffic jam ‘move towards one
another’ and then disappear. As a consequence, the
region between the two traffic jams of flowing traffic
(large velocity) disappears. This behavior is indicative
of an unstable eigendirection of the periodic orbit for
k = 2 as shown inFig. 9(a), where the stop-front and
the go-front move in the same direction (along the
periodic orbit). As the two traffic jams move closer
together the maximum speed between them decreases.
The envelope of these maxima diverges more and more
from the maximum velocity elsewhere along the ring.
Thus, the time until complete merging can be defined
as the moment that this envelope reaches zero velocity.
The envelope actually describes the local maximum
of the velocity for all cars; note that the velocities
profiles of the other cars are very similar, but are not
shifted copies, since the dynamics is not perfectly
periodic.

In contrast,Fig. 12shows a situation where the traf-
fic jam ‘survives’ long enough, meaning that it does
not merge with another traffic jam, and then disperses.
This has only a slight influence on the ‘neighboring’
traffic jam, as can be seen from the positions in panel
(a). As is shown in panel (b), the minimum velocity
of cars in this dispersing traffic jam increases, which
i the
s traf-
fi af-
fi with
a t
a nt
m it).
T in-
i ero
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1

del
f tion-
t ly-

sis for increasing numbers of cars brought out conver-
gence effects in two-dimensional and one-dimensional
bifurcation diagrams, as well as of oscillation profiles
corresponding to traffic jams. We also showed that un-
stable oscillations for higher wave numbers are only
very weakly unstable in a certain parameter region, so
that the associated traffic jams can be observed as very
long transients. Such traffic jams finally disappear by
dispersing or by merging with another traffic jam.

We believe that our study shows the value of con-
tinuation methods for the study of traffic models, in
particular, in the presence of a delay. The computation
of periodic orbits and their stability is an important tool
for understanding the evolution of traffic patterns. In-
deed, similar low-dimensional slow dynamics seems
to appear in many other car-following models as well.
Therefore, the continuation techniques used here may
help to discover the underlying low-dimensional dy-
namics in other cases as well.

A limitation is that continuation for DDEs is very
demanding in terms of memory and computation time.
The computations of branches of periodic orbits and
their Floquet multipliers for 17 cars (that is, for a 33-
equation DDE system) are at the limit of what can
be achieved with the present implementation of DDE-
BIFTOOL on a workstation. It would be very inter-
esting to investigate further the observed convergence
phenomena for much larger values ofn, say, for a few
hundred cars . This would be an interesting test case ap-
plication for algorithms for the numerical stability anal-
y ently
b

nal-
y d. In
p the-
m in
t el’
l s, in
t es
t .

A

d
R h of
G and
U earch
s again indicated by the envelope. In this case,
top-front and the go-front of one and the same
c jam slowly ‘move closer together’, so that the tr
c jam eventually disappears. This is associated
n unstable eigendirection of thek = 2 periodic orbi
s inFig. 9(b), where the stop-front and the go-fro
ove in opposite directions (along the periodic orb
he envelope of minima, which also describes the m

ma for all cars, diverges from being practically z
nd complete dispersion is reached when it reache
aximum velocity on the ring.

0. Conclusion and discussion

In this paper we considered a car-following mo
or n cars on a single-lane ring road where the reac
ime delay of drivers is included. A bifurcation ana
sis of a large-scale delay systems that are pres
eing developed[23,24].

A challenging subject for future research is the a
sis of the convergence phenomena that we foun
articular, it appears to be feasible to derive a ma
atical model for the front dynamics of traffic jams

he largen limit. The issue here is that the cars ‘fe
ess and less that they are on a ring. In other word
he largen limit over intermediately long time scal
he periodic boundary condition will not play a role
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