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Abstract

We investigate an optimal velocity car-following model focars on a circular single-lane road, where reaction-time delay
of drivers is taken into account. The stability of the uniform flow equilibrium is studied analytically, while bifurcating periodic
solutions for different wave numbers are investigated with numerical continuation techniques. This reveals that the periodic
solution with the smallest wave number may be stable, and all other periodic solutions are unstable.

Asnisincreased, periodic solutions develop stop- and go-fronts that correspond to rapid deceleration and acceleration between
regions of uniformly flowing and stagnant traffic. In terms of the positions of all cars on the ring these fronts are associated with
traffic jams. All traffic jams form a traffic pattern that evolves under time, due to slow motion of the fronts. The traffic pattern
corresponding to the stable periodic motion of cars is the only stable one. However, we find that other periodic orbits may be
unstable only so weakly that they give rise to transient traffic jams that may persist for long times. Eventually, such traffic jams
either merge with one another or disperse, until the stable traffic pattern is reached.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction following model of highway traffic, called theptimal
velocity (OV) model. Identical vehicles are modelled as
This article is concerned with the application of discrete entities that move in continuous time and one-
dynamical systems techniques to a well-knowin- dimensional space along a circular single-lane road.
The model that we consider here (see Secfidor
~ Coresponding author, details) in_corporates the reaction—time delay of drivers
E-mail addresses: g.orosz@bristol.ac.uk (G. Orosz), and was first posed by Dayis]. It consists of a system
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(R.E. Wilson). tion of the reaction-time model introduced by Bando
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et al.[2], which in turn generalizes their original opti-  which the gradient of the trajectories (i.e., vehicles’ ve-
mal velocity mode[3]. This original work by Bando locities) is small; see alreadiigs. 11 and 1 Section
et al., along with the work of Nagel and Schreckenberg 9. The key point to note is that, although different traf-
[4] (on cellular automata models) and of Kerner and fic jams have similar speeds, and so they may coexist
Konhauser[5] (on partial differential equation mod- over intermediately long time scales, as> oo they
els) has generated a surge of interest in the nonlinearhave a tendency to merg€ig. 11(a). Further, over
behavior of highway traffic. For a comprehensive re- sufficiently long time scales, traffic jams may also dis-
view, see Helbindg6]. Most studies have investigated perse Fig. 12(a). Consequently, for generic choices of
dynamics by using a combination of numerical simu- initial data, only a single traffic jam persiststas> co.
lation and simple analytical arguments, such as linear  To understand traffic patterns one needs to consider
stability analysis. Only recently have formal dynami- the dynamics of a single vehicle as it drives repeat-
cal systems techniques been used to classify differentedly around the circuit. The velocity plateaus at a high
traffic behaviorg7-9]. In terms of including effects of ~ value, meets arop-front in which the vehicle decel-
delay, bifurcations of the basic periodic solution were erates into a traffic jam, plateaus at a low value, and
determined explicitly for a first-order model jh0]. then passes througtea-front as it returns to free flow

In this paper we consider the global dynamics of a conditions. Consequently, a traffic jam is sometimes
second-order OV model with delay, which was probed known asstop-and-go wave, although we should em-
by numerical simulation iffl]. In contrast, here and  phasize that each traffic jam is strictly speaking a pair of
in [7] we used the package DDE-BIFTO(QL1] to fronts with similar speeds, separated by a low-velocity
perform a two-parameter bifurcation analysis of the plateau. Since (apart from at merging) the stop-and-go
model. Due to the demands on CPU time and mem- waves propagate at about the same speed, the motion of
ory, the aim of[7] was proof-of-concept only, and the the vehicle is approximately periodic in time because
investigation was restricted to the unrealistic setting it encounters the same traffic pattern for each circuit,
of n = 3 cars. Nevertheless, this methodology enabled albeit shifted according to the wave speed. This obser-
us to calculate efficiently branches of periodic solu- vation motivates the detailed study of perfectly periodic
tions (loosely corresponding to traffic jams) far from orbits which we perform first at the linear level (Sec-
the uniform flow equilibrium, and to classify regions  tion 4) and then at the fully nonlinear level in terms of
of parameter space where the equilibrium is stable yet two-parameter bifurcation diagrams (Sect&)n
coexists with other non-trivial stable solutions. In such In particular, we find regions of parameter space
bistable regions of parameter space, the choice of ini- where a stable periodic solution with= 1 traffic jams
tial conditions selects which traffic behavior is selected coexists with unstable periodic solutions correspond-
as timer — oo. ing to k > 1 perfectly evenly spaced traffic jams. For

In this paper the goal is to extend the results to largen/k, we show that the stop-fronts and go-fronts
largern, and in particular to draw out the trends which have a limiting structure. This result indicates that we
may emerge as is increased towards numbers that have recovered frontswhich are close totravelling wave
are more representative of real traffic situations. The solutions in the case of open boundaries, and which
present limit of our computation is= 17 cars: this is only feel the other waves weakly since the number of
still restricted but nevertheless begins to display some vehicles ¢ n/k) between structures is large. By com-
of the interesting wave interaction phenomena that one puting Floquet multipliers of periodic orbits we show
may find (by numerical simulation) for large that periodic solutions fok > 1 may be only weakly

Of particular interest is the interplay between pe- unstable; the unstable eigendirections show that the
riodic solutions and traffic patterns. As observed by mechanism of destabilization is via front dynamics.
many other authors, for appropriate parameters and ini- Both the Floquet multiplier and mode shape calcula-
tial data, traffic organizes into regions of free flowing tions that we perform can only be achieved with nu-
traffic divided by traffic jams which propagate at about merical continuation software such as DDE-BIFTOOL
the same speed to each other in the opposite direction[12,13]
to the traffic flow. The question is how such traffic pat- We find that the largest Floquet multipliarhas a
terns evolve. The traffic jams correspond to regions in scaling of |u| — 1 ~ exp(~gn/k), ¢ > 0. This indi-
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cates that our periodic solutions correspond to travel-
ling wave solutions when the boundaries are open, but
on the loop interact weakly via their exponential de-

caying tails (in a similar manner to meta-stable front

dynamics for the Allen-Cahn equation; sge,15).

We show that eigendirections correspond to relative
front motion: either one stop-and-go pair catching up

another stop-and-go pair (merging of traffic jams), or

the stop-and-go-fronts of a single jam colliding so as

to disperse it.

The paper is organized as follows. In Sectibwe
give details of the model. Sectidhgives some back-
ground on the stability theory for DDEs with a single
fixed delay, while Sectiod contains the linear stabil-
ity analysis of the uniform flow solution. In Sectién
we present the two-parameter bifurcation diagrams for
n = 3,5,9 cars. The associated branches of periodic
solutions (also forn = 17) are discussed in Sectién
How fronts develop in periodic solutions is shown in
Section7. The Floquet multiplier and eigendirection
calculations can be found in Secti@ Merging and
dispersing transient traffic jams are explained in Sec-
tion 9. We conclude in SectiohO.

2. Model details

The model described here is based on tho$g-€8]
and was setup and rescalefiih We consider a system
of n cars on a unidirectional single-lane ring road of
lengthL. The velocity of theth vehicle is denoted by
v; and its distance to the precedingt{ 1)st vehicle,
known as théeadway, is denoted by:;. We thus have
the kinematic conditions

hi(r) = visa(r) — vile), (1)

where dot refers to the derivative with respect to the
time ¢, and the model is closed by prescribing cars’
accelerations in the non-dimensionalized form

vi(1) = a(V(hi(t — 1)) — vi(2)), @)

Throughout we identify then(+ 1)st car with the first
car, so that, (r) = v1(r) — v,(¢), and the length of the
ring is included in the model via the condition

i=1

i=1...,n,

i=1...,n.

®3)
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Fig. 1. Optimal velocity functiorf4) (a), and its derivative (b).

In particular, we definé,, = L — Z?:_ll h;, which re-
duces the number of independent equations of @gs.
and (2)to 2n — 1.

Eq.(2) expresses that each driver approachesgpan
timal velocity (OV), given by V (k) > 0, with a char-
acteristicrelaxation time of 1/« > 0. Further, drivers
react to their headway viaraaction-time delay which
here is rescaled to one. The parameter 0 is known
as thesensitivity. Since we want to compare results
for different numbers of cars, we consider the-
erage headway h* = L/n as a bifurcation parameter.
Increasingz™ increases the length of the ridgwhich
involves scaling all headways accordingly.

To complete the model we specify the OV function
V(h). The remainder of this paper uses the rescaled
form

0
o (=17
Y1r (- 1p

fo<h<l1,

V() = (4)

ifh > 1,

first introduced in[7], which is shown together with
its derivative inFig. 1, and which has the following
properties:

1. V(h) is continuously differentiable, nonnegative,
and monotone increasing. So in particular, cars tend
to travel faster as their headway increases. Note that
the smoothness is required for the application of
continuation techniques later in this paper.
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2. V(h) — v° ash — oo, wherei? is known as the
target speed, which corresponds to the (high) free-
flow speed of drivers when traffic is sparse.

3. V(h) = 0forh € [0, 1], so that 1 is the rescalgan
headway. If a vehicle's headway becomes less than
1itshould attempt to come to a stop, although in fact
in model(2) its speed may only decay exponentially
to zero.

Note that functions with similar shapes and proper-
ties to(4) were used if2,3].

3. Delay differential equations with a single
time delay

Egs.(1) and (2)constitute a system ofn2— 1 in-
dependent delay differential equations (DDEs) with
a single fixed delay that is scaled to 1. We now re-
call some basic facts of the stability theory for DDEs
as needed in later sections; §86—19]for more de-
tails. In general form, such a system can be written
as

x(r) = f(x(2), x(t — 1), ), (%)

where dot stands for time derivative,e R" is the
physical spacef : R™ x R” x R — R™ is differen-
tiable, andy € R! is a (multi-dimensional) parameter.
(In the case of Eq41) and (2)m = 2n — 1 andl = 3,
which corresponds to the parametetsa andv®.) Due
to the delay, initial data must be prescribed in the form
of a continuous function on the intervat, O]. There-
fore, the phase space (&) is the infinite-dimensional
spaceC([—1, 0], R™) of continuous functions over the
delay interval with values in the physical spaRé.

At an equilibrium we havex*(r) = x* € R™. The
stability near™(¢) is given by the linearized system

¥(r) = Ly()) + Ry(r — 1), (6)

wherey(t) = x(#) — x*(r) and L R € R™*™ are con-
stant matrices (that depend on the paramegjeBy
inserting trial solutions in the forny(¢) = ce* with

¢ € C™, » € C into (6), one obtains the characteristic
equation

detpl —L —Re*) =0. (1)
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Eqg. (7) has infinitely many roots, theharacter-
istic exponents A € C, which have no accumulation
point in C. The equilibriumx*(¢) is stable when all
characteristic exponents are situated in the left half of
the complex plane. If a real characteristic exponent
crosses the imaginary axis then a fold (saddle-node)
bifurcation occurs. (Note that we do not encounter
this bifurcation in Egs.(1) and (2). If a pair of
complex conjugate characteristic exponents crosses
the imaginary axis then a Hopf bifurcation occurs.
At the Hopf bifurcation a small-amplitude periodic
solution bifurcates, which may be stable or unstable
(of saddle type), depending on whether the Hopf
bifurcation is supercritical or subcritical.

A periodic solution is of the formp () = xp(t + 7),
whereT € R is the period. To determine the stability
of a periodic solution one considers the variational
equation
z(t) = Lp(D)z(r) + Rp(1)z(r — 1), (8)
where z(r) = x(f) — x,(r) and the matrix functions
Lp, Rp : R — R™*" areT-periodic (and also depend
onthe parametey). By integrating8) over the period”
one obtains the Floquet or monodromy operator whose
eigenvalues are th&oquet multipliers. For the case of
a fixed delay considered here the Floquet multipliers
have the origin as their only accumulation point. Note
thatthere is always the trivial Floquet multiplier= 1,
which corresponds to the time-translation symmetry
along the periodic orbit. The periodic solutiep(t) is
stable when all Floquet multipliers (except the trivial
one) are situated inside the unit circle in the complex
plane. When Floquet multipliers cross the unit circle
one encounters a bifurcation. In this paper we only find
the case of a fold (saddle-node) bifurcation of periodic
solutions, which occurs when a real Floquet multiplier
crosses the unit circle at +1. Note that, in general,
the Floguet multipliers cannot be written in closed
form. They must be computed numerically, either by
semi-discretizatiofi20] or by full discretizatior11].

Our principal tool is the numerical continuation
package DDE-BIFTOOL[11,12] which is able to
follow branches of equilibria and periodic solutions
of DDE systems as parameters are changed. Stability
information is computed along solution branches.
Codimension-one bifurcation points where the stabil-
ity of solutions changes are detected automatically.
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In particular, we may follow the branches of periodic To find curves of Hopf bifurcations in parameter space
solutions that are born at Hopf bifurcations and we substitute. = iw, w € R, into (12). Separation of
detect subsequent secondary bifurcations such as foldthe real and imaginary parts gives

(saddle-node) bifurcations. Furthermore, the Floquet
multipliers and the corresponding eigendirections are V'(h*) =
available from DDE-BIFTOOL. This allows us to
identify characteristic time scales of repulsion when

the solutions are unstable. _ for the set in parameter space where Hopf bifurcations
A periodic solution is represented in DDE-  qeeyr Herek = 1,...,n — 1 is known as the discrete

BIFTOOL by a number of mesh points, with a (small) - gn4tial wave number because the spatial pattern of the
number of so-called collocation points in between bifurcating periodic solution is described by

them. On each mesh interval the solution is represented
by a polynomial, and the number of collocation points
defines its degree. We used an accuracy of 50 mesh
points and 3 collocation points for most calculations, ] ]
but increased this to 60 mesh points and 5 collocation _ Eds-(13) describe curves in the/((1), «)-plane.
points for the calculation of eigendirections in Section E&ch curve belongs to a particular wave numbend
8. is parameterized by the frequeneye (O, krz/n). How-
Overall, DDE-BIFTOOL performs similar func-  €Vver, we are only interested in the curveslfoif n/2
tions for DDE systems as the well known package Pecause those far> n/2 correspond to conjugated
AUTO [21] performs for ODE systems. In general, the Waves, i.e.,to the'same spatial patterns. Whisreven,
application of continuation packages such as AUTO the Hopf bifurcation curve fok = n/2 starts ¢ = 0)
and DDE-BIFTOOL is a much more efficient way of ~from the point (¥2, 0) but all other Hopf bifurcation
exploring parameter space than performing mass en-Curves, forn even or odd and for any, start from

w
2 cosfp — kmr/n) sin(km/n)’ (13)
a = —w Cot(w — km/n),

2k
Re(;) = cos(ni> , i=1...,n (14)
n

semble simulation of the initial value problem. the origin. Further, all curves converge to the vertical
asymptotes
km/n
. - . V)= — 15
4. Linear stability analysis (h™) 2singer/n) (15)
The simplest solution of systeft) and (2) the so- whenw — krr/n; seeFig. 2(a) This means that the
calleduniform flow equilibrium, is given by curves are ordered from left to right &sincreases.
I Whenn — oo, the first asymptote for = 1 converges
hi(t) = h* = — vi(1) = V(h"), 9 to V'(h*) = 1/2, while the last asymptote far= n/2
. o ork = (n — 1)/2 converges td&/'(h*) = n/4. Further,
fori =1,...,n.Inother words, equidistant cars move inek > 1 curves accumulate on the= 1 curve when

with the samgltime-infjepen.d'en't velocity. To investi- ,, _, . Using the stability criteria presented it],
gate the stability of this equilibrium we consider the 50 may show that the stability boundary for the equi-

linearization of(2) librium is always the first (i.ek = 1) Hopf bifurcation
(1) = —avi() + aV' ()it — 1), (10) purve.This means that the uniform f!ow eqyilibrilgﬁ)

_ _ _ - is stable to the left of the = 1 Hopf bifurcation curve;
with the kinematic condition seeFig. 2(a) It may also be shown that the uniform flow
SN equilibrium remains unstable to the right of the= 1

(1) = vipa(r) — vi(r), 11 :
rilt) = viaalt) = vi) (1) curve, and as each of tike> 1 curves is crossed from
fori=1,...,n, wherer;(r) = hi(¢t) — h*. From this left to right, an extra pair of complex conjugate charac-
we obtain the characteristic equation in the form teristic exponents crosses into the right-half complex

plane.
In Fig. 2 we present stability diagrams far= 9
(12) cars. There are four nested Hopf bifurcation curves

(A% + ar + aV'(h*)e ™) — (@V'(h¥)e )" = 0.
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Fig. 2. Stability diagrams for = 9 cars where shading denotes the stable region. Panel (a) shows the semnsitiitthe slope of the OV
functionV’(h*), where the dashed asymptotes are situat&d(at) ~ 0.5103,V’(h*) >~ 0.5431,V’(h*) =~ 0.6046, and/’(h*) ~ 0.7089. Panels
(b)—(f) show stability diagrams in thé, «)-plane for particular values af (indicated in each panel), which correspond/g,, ~ 0.4619,
Vinax = 0.5123, V4 = 0.5627, V4 =~ 0.6367 andV;,,, ~ 0.8399, respectively.

corresponding to the four admissible wave numbers plane by a sort of ‘nonlinear left-to-right folding’. Five
k=1, 2,3, 4. This example is sufficient to give an in- qualitatively different configurations are possible and

dication of the structure for large The Hopf bifurca- shown inFig. 2(b)—(fy which situation occurs depends
tion curves are shown in th&/((h*), a)-plane inFig. on the value oW/, = (27/2/3)°.
2(a). The stability boundary, i.e., the curve foe= 1, is The shaded area again corresponds to the stability

the bold curve. The asymptotes are indicated by verti- of the uniform flow equilibrium(9) and the curves are
cal dashed lines and the shaded area is the stable regiomested in strict order from outside to inside lam-

of the uniform flow equilibriun(9). creases. WheW,,,,, is to the left of a particular asymp-
Since the first derivative of the OV functig¢a) has a tote in the ¢/(h*), a)-plane, the corresponding curve
turning point (se€ig. 1(b), the (V' (h*), ) stability di- in the (*, o)-plane is a single curve with a maximum.

agram ofFig. 2(a)may be transformed into thé*, «)- On the other hand, wheW,,, is to the right of this
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asymptote, there are two corresponding curves in the are more representative of real traffic situations. Since
(h*, a)-plane and each possesses a vertical asymptote continuation studies with DDE-BIFTOOL are quite in-

Correspondingly, all curves have maximaHig. 2(b)
becausé/},,is to the left of the first (bold) Hopf bifur-
cation curve irFig. 2(a) WhenV;, ., exceeds th&’ (7*)

tensive in terms of CPU time and memory, the bifur-
cation analysis for large numbers of cars is unfeasi-
ble. We found that the case af=9 cars is a good

value of the asymptote of a certain stability curve in compromise—it is sufficiently general to showcase all
the (V/(1*), @)-plane, then the corresponding curve in  phenomena in the bifurcation diagram while still being
the (:*, @)-plane becomes unbounded. Because there small enough to allow for a full bifurcation analysis.

are four Hopf bifurcation curves, this analysis leads to
the additional four possibilities shown kig. 2(c)—(f)
The left-hand endpoints of the Hopf bifurcation curves
approach (10), while their right-hand endpoints ap-
proach ¢-oo, 0).

By considering15)and taking into account the first
derivative of the OV functior§4), it can be shown that
when V... > /4, that is,® > 37/8¥/2, the asymp-
totes converge to particular values/gf asn — oo;
seeFig. 2(f) for which 1% = 1.0. Moreover, the& > 1
curves accumulate on thie= 1 curves whem — oo.

In the absence of reaction-time delay, it may
be shown that the Hopf bifurcation curves are
straight lines in the Y'(7*), «)-plane given bya =
2 coZ(kn/n) V'(h*). As a consequence, the stability
diagram in thef*, @)-plane is always qualitatively the
same as that ifrig. 2(b). Further, for non-zero delay,
the Hopf curves are always nested in strict order in the
(h*, @)-plane whenV}, ., > 7/4 (i.e.,° > 37/8Y2).
However, when the delay is zero, such a nesting only
occurs for sufficiently large®. Thus even at the lin-
ear level, the inclusion of delay leads to new types of
qualitative dynamics.

5. Two-dimensional bifurcation diagrams

The overall goal of this paper is to gain insight into
how the qualitative behavior of solutions of the DDE
system(1) and (2)depends on the problem parame-
ters, namely the number of catsthe average head-
way h*, the sensitivitye, and the target speed. To
simplify matters, we fix° = 1.0 in what follows and
now consider two-parameter bifurcation diagrams in
the (+*, @)-plane (sometimes called phase-diagrams in
the traffic literature). Note that choosing larger values
of 19 does not change the linear stability diagram qual-
itatively; see Sectiod.

Our aim is to show the general trends in the quali-
tative dynamics ag is increased towards numbers that

We also considered the maximal casenct 17 cars
to check branches of periodic orbits and the scaling of
Floquet multipliers.

In Fig. 3we present three bifurcation diagrams in
the (:*, @)-plane forn = 3, 5 and 9. We describe the
common qualitative features of the two-parameter bi-
furcation diagrams and then give particular details for
each of the cases.

Firstly, the linear theory of Sectiod gives ex-
plicit curves in the k*, «)-plane where the uniform
flow equilibrium loses stability via a Hopf bifurcation
that gives rise to oscillations with wave numiiet 1.
These Hopf bifurcation curves are showrfig. 3(a)—

(c) as bold solid curves and the shaded areas on both
sides indicate where the uniform flow equilibrium is
stable. Fom > 3 cars there is a further set of admis-
sible wave numbers = 2, ..., (n — 1)/2. (To reduce
the number of special cases, we consider only:thed
case.) Linear theory gives explicit curves on which fur-
ther Hopf bifurcations of the (already unstable) uniform
flow equilibrium occur (i.e., other complex conjugate
pairs of characteristic exponents, corresponding to a
mode with wave numbek, cross into the right-half
plane). These curves are showrFig. 3(b) and (chs

thin solid curves.

The Hopf bifurcation curves are nested in strict
order so thatthe = 1 curves are the outermost and the
k = (n — 1)/2 curves are the innermost. Further, for
the chosen value® = 1.0, the Hopf bifurcation curves
all possess vertical asymptotes in the',(@)-plane
as in Fig. 2(f), that is, the unstable domains are
unbounded inw.

We now use DDE-BIFTOOL to probe the dynamics
of the system at the nonlinear level. DDE-BIFTOOL
calculates that the Hopf bifurcations are usually sub-
critical, i.e., the branches of periodic solutions bifur-
cating from the uniform flow equilibrium are unstable.
If one examines the Floquet multipliers of the unstable
bifurcating branches in the vicinity of the Hopf bifurca-
tion point, one finds 2 — 1 multipliers outside the unit
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Fig. 3. Two-dimensional bifurcation diagrams in the («)-plane
forn = 3 cars (a)n = 5 cars (b), an@ = 9 cars (c) for target speed
v0 = 1.0. At points denoted by crosses ) the Hopf bifurcation is
degenerate. In panel (c) the region of two traffic jams is defined by
the condition maxu| < 1.01 for the largest Floquet multiplier of
periodic solutions fok = 2.
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circle (one real multiplier ankl — 1 complex conjugate
pairs); see Sectiod.

Furthermore, DDE-BIFTOOL shows that each
branch of unstable periodic solutions usually under-
goes a fold bifurcation, where the real unstable Floquet
multiplier crosses the unit circle inwards at 1. Conse-
quently, thek = 1 branch becomes stable at this bifur-
cation, but thet > 1 branches remain unstable as they
still have 2¢ — 1) Floguet multipliers outside the unit
circle.

The fold bifurcation curves are shownhig. 3(a)—

(c) as dashed curves and the curvesifet 1 are em-
phasized in bold. The Hopf bifurcation curve for a par-
ticular k is nested inside the fold bifurcation curve for
the samé, and the fold bifurcation curves themselves
are nested in strict order so that the outermost curves
belong tok = 1 while the innermost curves belong to

k = (n — 1)/2. Further, most of the fold bifurcation
curves have vertical asymptotes meaning that the Hopf
bifurcation remains subcritical even @s- co. How-
ever, in some cases the fold bifurcation curves end at a
degenerate Hopf bifurcation point, i.e., at a point where
a Hopf bifurcation changes from subcritical to super-
critical asa is increased: these points are marked by
crossesx) in Fig. 3(b) and (c)For any givem, degen-
erate Hopf bifurcation points have only been observed
to occur for the largest possible wave number.

Inside the fold curve fok = 1, there exists a sta-
ble periodic solution. Therefore, in the parameter do-
main sandwiched between the fold and Hopf bifur-
cation curves folk = 1, the stable periodic solution
coexists with the stable uniform flow equilibrium and
an unstable periodic solution. In other words, there is
bistability in this region. When one carries out an ini-
tial value simulation, the precise choice of initial data
will select which of the two stable solutions is observed
ast — oo. Furthermore, one encounters hysteresis be-
tween the two solutions whel* is swept back and

forth.

If we enter the parameter domain sandwiched be-
tween the fold and Hopf bifurcation curves fore- 1,
then the only change is in the number of coexisting un-
stable solutions, and itis not yet clear what this implies
for the dynamics. Fakty < ko, there is no general prin-
ciple as to whether the Hopf bifurcation curve faris
inside/outside the fold bifurcation curve for, so there
is a wide range of possibilities for the combinations of
coexisting unstable solutions.
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To illustrate the power of our approach we now de-
scribe three extra features that we have added in the
two-parameter diagrams &fg. 3.

1. Collisions: A feature of the periodic solutions that
we have found by continuation is that the headway
may pass through zero, which may be interpreted as
the case of colliding cars. What is more, the head-
way may become negative, which is clearly unphys-
ical. To investigate this behavior, we simply extend
the definition(4) of the OV function byV (k) :=0
for h < 0. The solid grey curve in the lower part
of Fig. 3(a)—(c)indicates where the headway first
becomes zero on the= 1 stable solution branch.
Consequently, we can say that the model is defi-
nitely unphysical in the shaded domain below this
curve. The grey curve, which connects the- 1
fold bifurcations curves, appears to converge to a
horizontal line as: increases. Consequently, it ap-
pears that, in the large limit, there is a criticak
below which the model is unphysical. However, this
conclusionis only partial: above the grey curve there
are most likely solutions with plausible initial data
which involve collisions as part of their transient
behavior, even though their long-term dynamics is
well behaved.

. Stopping: Another interesting feature of the solu-
tions found by continuationis that cars may (almost)
come to rest at some point in their period. In fact,
model (2) is such that zero velocity cannot be at-
tained in finite time (the decay of the velocity is ex-
ponential). We have illustrated this ‘near-stopping’
behavior inFig. 3(a)—(c)by adding a dotted curve
which, when crossed from right to left results in the
minimum velocity of the stable = 1 branch falling
below 0.01. Whem increases, the dotted curve ap-
pears to converge to the right-haihe- 1 fold bifur-
cation curve. Thus, it seems that cars always come
close to stopping if: is chosen sufficiently large.

. Meta-stable pattern formation: The most impor-
tant extra feature, which is discussed in detail in
Section9, is the shaded domain in the middle of
Fig. 3(c) This shading indicates that the largest Flo-
quet multiplier of the (unstableé) = 2 branch has
modulus less than 1.01. Consequently, in this re-
gion, solutions with initial data chosen sufficiently
close to thé& = 2 unstable periodic solution remain
close to that solution for a long time. Therefore, al-
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thoughsimulationgndicatethatthegeneric — oo
behavior is convergent either to the uniform flow
equilibrium or to thestablek = 1 branch,richer
possibilitiesmay be observedover intermediately
long timescales.

6. Branches of periodic solutions

The bifurcation diagrams ifig. 3 can be further
clarified by fixinge (we takex = 1.0) and considering
one-parameter bifurcation diagrams where only the pa-
rameteri* is allowed to vary; se€ig. 4. In effect, we
consider changes inthe dynamics on a one-dimensional
horizontal cross-section througfig. 3(a)—(c) In such
pictures the horizontal axis is the average headiay
and the vertical axis displays a solution norm, which is
in our case the amplitude of the velocity oscillations:
Vamp = (mtaxv(t) — mtinv(t) )2. (16)
For the uniform flow equilibria we have vamp= 0,
while for the periodic solutions that we calculate, the
guantity(16) is the same for each car. This is a direct
consequence of thg,-symmetry

vi(1) = vita (l‘—kT> o k(@) =hiy (t—kT>,
n n
(17)

of the periodic solutions, whefis the period. In other
words, it is sufficient to plot the profile of, say, the first
car; the profiles for all other cars are simply shifted
copies.

The one-parameter continuation results are pre-
sented inFig. 4 for n = 3, 5, 9 and 17 cars; panels
(a)—(c) correspond to cross-sections throkgh 3(a)—

(c). Here solid curves denote stable solutions whereas
dashed curves denote unstable solutions. Hopf bifurca-
tions of the uniform flow equilibrium are denoted by
stars (*), and fold bifurcations of the periodic solution
are denoted by crosseg). Observe that the uniform
flow equilibrium is stable for large and small values
of »* in accordance witlrig. 3. The branches of peri-
odic solutions connect the subcritical Hopf bifurcation
points and they are strictly ordered so that the branch
for k = 1is the outermost and= (n — 1)/2 is the in-
nermost. The only non-trivial stable solutions are those
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Fig. 4. Branches of solutions as a function of the average headivey n = 3 (a),n = 5 (b),n = 9 (¢), andn = 17 cars (d); the target speed
is v0 = 1.0 and the sensitivity i& = 1.0. Stable states are represented by solid curves and unstable states by dashed curves. Hopf bifurcations

are depicted as stars (*) and fold bifurcations as crossgs (

‘at the top’ of thek = 1 branch, between the fold bi-

furcation points.

Images similar td-ig. 4 can be found irj8] for the

OV model[3] without delay. However, in our case, the
Hopf bifurcations are robustly subcritical due to the
delay, which can be proven using normal-form calcu-
lations[22]. Consequently, the branches for differént
are much more pronounced and there are wide regions  ,

of bistability (for k = 1) and coexistence (far > 1).

This bistable behavior fok = 1 was also found in a

first-order delayed mode]X0] ; Fig. 2).

Note that there appear to be two types of conver-
gence on the level of the one-parameter bifurcation

diagrams. FirstlyFig. 4 is partial evidence that, as
gets larger and larger, the branch for any fixed 1
converges, in the pseudonorm defined(bg), to the

k = 1 branch. Consequently, one might conclude that

fork = k* > 1 andn/k* sufficiently large, thé& = k*

andk = 1 branches have significant structural features

in common. Secondly, as is illustratedkig. 5, it ap-
pears that, as is increased (through = 3,5, 9, 17),

thek = 1 branch tends to a limit curve. This limiting

behavior might be indicative of travelling wave dynam-
ics since the system, in the largémit, does not ‘feel’
(over intermediatetime scales)that it is subjectto
periodic boundary conditions.

0.5

0.3f

0.2f

0.1

Fig. 5. Thek = 1 branches fronfig. 4 of periodic solutions for
n=3,5,9and 17 cars.



G. Orosz et al. / Physica D 211 (2005) 277-293 287

7. Periodic solutions with fronts 1 . . ‘ 5

V1 (@) n=17 hy
We now consider how the convergence of the one-

parameter bifurcation diagrams manifests itself on the o5} h1 12.5

level of the associated oscillations.Hig. 6we present 1

the oscillation profile of the&t = 1 periodic solution

forn =17, 9, 5 and 3 cars. The figure is fot = 2.1; 0 — ‘ 0

0 20 40 60 ¢

c.f. Fig. 5 Plotted are the velocity; and the head-

way k1 of the first car, where we chose the maximum
of vq to be attr = 0. In Fig. 6 all panels are drawn

on the time scale of the period of the oscillation for
n = 17. The dashed vertical lines indicate the period
forn =9, 5 and 3 in panels (b), (c) and (d), respec-
tively. The profile fork = 1 corresponds to a situation

where the cars have (practically) zero velocity for part
of the period of the oscillation. The figure indicates
that there is a convergence of the profiles witlthe 1 © N =5 ‘ i 5
oscillation develops fronts that connect the region with
(practically) zero velocity to a plateau with an (almost)

constant maximal velocity. Similarly, the headway de- 957 | | hy X1 128
velops two regions with almost constant (small or large) : : ¥ :
headways. We distinguistrop-fronts connecting high | I |
velocity to almost zero velocity, ang-fronts connect- 0. 20 0 S0 °
ing almost zero velocity to high velocity. Both types of

fronts appear to tend to a limit shaperais increased,; L (d) ‘ ' ! . .

this is why we plotted all profiles iRig. 6on the same :

\Nn=3 ‘ C s i

time-scale.

In Fig. 7we consider how the oscillations for fixed =
h* = 2.1 andn = 17 dependon the wave numberk. :
Therepresentatiors, asin Fig. 6, meaninghatall pan- I
elsare drawn onthe time scale of the period ofthe 1 %0 : 20 40 60 ¢
oscillation. Ask decreases one notices again that the
fronts between different plateaux appear to converge Fig. 6. Oscillation profiles for wave numbgr= 1 and forn = 17
in profile: the main difference between the cases is the (8).n = 9 (b),n = 5(c), andh = 3 (d) cars; the target speeci® =

length of the plateaux. The period of oscillations satis- 1:0: the sensitivity is = 1.0, and the average headwayis= 2.1.
fies The velocityv; of the firstcar (dark grey/blue) is shown to the scale on

the left; the headwaly; of the first vehicle (light grey/green) is shown

n to the scale on the right. All panels are shown on the scale of one
T~C % (18) period of T ~ 65.8171 forn — 17; the other periods df ~ 34.8447
forn =9, T ~ 19.3540 forn = 5, andT ~ 11.5445 forn = 3 are
indicated by dashed vertical lines. Notice the convergence of the stop-
fronts and go-fronts, that is, the sections of the orbits that connect
the plateaux approach a fixed profilergis increased.

for a constant = C(h*, o, 1°) that depends on all pa-
rameters; this was checked numerically with the avail-
able data.

While the continuation approach taken here limits
n to relatively small valuesrigs. 6 and till clearly has important consequences in terms of transient traffic
suggest a convergence of the= 1 solution to some  jams. Note that identifying the mathematical limit and,
limiting shape aa — oo, as well as a convergence of in particular, the exact scaling of the fronts, remains
the oscillations for other wave numbers to thatfes 1 an interesting challenge beyond the bifurcation study
asn/k — oco. As we will see in the next section, this presented here.
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Fig. 7. Oscillation profiles for = 17 and for wave numbeis= 1

(@),k = 2 (b),k = 3(c), andk = 4 (d); the target speedif = 1.0,

the sensitivity isx = 1.0, and the average headway:is= 2.1. The
velocityv; of the first car (dark grey/blue) is shown to the scale on the
left; the headway; of the first vehicle (light grey/green) is shown to
the scale on the right. All panels are shown on the scale of one period
of T ~ 65.8171 fork = 1;the other periods df ~ 32.908 fork = 2,

T ~ 219379 fork = 3, andT’ ~ 16.4403 fork = 4 are indicated by
dashed vertical lines. Notice the convergence of the stop-fronts and
go-fronts, that is, the sections of the orbits that connect the plateaux
have approximately the same structure for srall

8. Floquet multipliers and eigendirections

We now look more closely at the stability properties
of the different periodic solutions. IRig. 8 the mod-
ulus || of the corresponding leading Floquet multi-

G. Orosz et al. / Physica D 211 (2005) 277-293

pliers are depicted as a function of the headway
for the representative caseof= 9 cars for the wave
numberst = 1, 2, 3, 4. Recall from Sectio that the
infinitely many Floquet multipliers have the origin in
the complex plane as their only accumulation point; all
Floquet multipliers that are not shown kig. 8 have
modulus less than one for all valuesidt The leading
Floquet multipliers in panels (a)—(d) were computed
with DDE-BIFTOOL as part of the stability analysis
along the branches shownkiig. 4(c) To bring out the
features, we use a logarithmic scale along the vertical
axis. For any, at the Hopf bifurcation points there are
two Floquet multipliers at 1 and anothér-¢ 1) com-
plex conjugate pairs of Floquet multipliers outside the
unit circle. One multiplier moves outside the unit cir-
cle at the subcritical Hopf bifurcations and then crosses
into the unit circle at the fold bifurcations. Similarly,
the other leading multipliers for > 1 appear outside
the unit circle at their subcritical Hopf bifurcations, but
then stay outside the unit circle over the entire range of
h*. In other wordsFig. 8 gives a different representa-
tion of the fact that all periodic orbits are unstable for
k > 1. For evenk we observe that one of the complex
pairs of these Floquet multipliers may come together
and produce two real Floquet multipliers. Fgik large
enough this happens close to the Hopf bifurcation point.

HoweverFig. 8(b)also shows that the oscillation for
k = 2isalmost stable around the polrit= 2.1; at this
point the two unstable eigenvalues are actually real and
negative, namely. >~ —1.00844 andu ~ —1.00753.

By setting a threshold for max | one can quantify the
‘almost-stability’ of the periodic orbit fok = 2: inside

the shaded region in the middle Big. 3(c)we have
that maxu| < 1.01. While this bound is somewhat ar-
bitrary, we found by numerical simulation that traffic
jams corresponding to= 2 periodic orbits exist in this
parameter region for long periods of time; see Section
9 for more details on the connection between periodic
solutions and traffic jams. More generally, there is a
region around:* = 2.1 where the unstable waves for
anyk are ‘least unstable’. Our numerical results indi-
cate that this effect is more pronounced the larger the
number of cars.

The instability of a weakly periodic orbit is very
small, but it is not ‘spread evenly’ around the periodic
orbit. To show this we present ig. 9the eigendirec-
tion associated with the two unstable Floquet multipli-
erspu ~ —1.00844 andu ~ —1.00753 of the weakly
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Fig. 8. Modulug | of the leading Floquet multipliers as a function of the average headivaythe case of = 9 cars for wave numbeks= 1
(@),k = 2 (b),k = 3 (c), andk = 4 (d). This figure corresponds to the branches of periodic solutions shaiig.id(c} we haver® = 1.0 and
o = 1.0. Hopf and fold bifurcation points are denoted by stars (*) and crossgsdspectively.

unstable periodic orbit for = 9 andk = 2. Itis com- forming the eigendirections close up after two periods.
puted and represented by DDE-BIFTOOL in the form In Fig. 9only the vectors at the mesh points are shown
of a direction field that shows how a vector changes together with the envelopes of all vectors.

along the periodic orbit under the action of the vari- Both periodic orbits are most unstable near the fronts
ational equatiori13]. We show the unstable direction between the plateaux. This indicates that any eventual
with respect to the velocity profile of the first car. The instability is due to the motion of the fronts. Notice the
Floquet multiplier measures the expansion (which is difference between the two casesHig. 9(a) and (b)
practically nonexistent in our case of Floquet multipli- in terms of the direction of motion of the stop-fronts.
ers that are almost 1 in magnitude) of a vector as the As we will see in the next section, front dynamics is
flow is followed along the periodic orbit. The data in  responsible for merging or dispersing traffic jams.

Fig. 9is plotted over two periods, because the most  We now show that we can extract from the bifur-
unstable Floquet multipliers are negative: the vectors cation analysis the asymptotics of the moduju&-*)|
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Fig. 9. Eigendirections in the form of a direction fields plotted over
twice the period of the periodic solution as projections onto the veloc-
ity vy of the first car. The envelopes show the corresponding modu-
lated solutions. Panel (a) for ~ —1.00844 corresponds to merging

of traffic jams as shown iRig. 11, while panel (b) fop. ~ —1.00753
corresponds to dispersion of one of the traffic jams as depicted in
Fig. 12 The parameters are= 9, k = 2, ° = 1.0, « = 1.0, and

h* =21
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Table 1
Least-square fitted constants appearin@.B) for the periodic solu-
tions forv® = 1.0, = 1.0, andi* = 2.1

k=2 (@=5,...,17) n=17 k=2....7)
q 1.58164 0.0053 15901+ 0.0121
In R 2.3522-+ 0.0308 23616+ 0.0601

of the largest Floquet multiplier, as a functionodnd

k. Different waves interact via an overlap of their ex-
ponentially decaying tails. Consequently, we make the
ansatz that there is an exponential relationship of the
form

max|uF| — 1 = Re~1("/K), (19)
whenn is large andk is small enough; c.f[14,15]
Clearly, the constantg, R > 0 generally depend on
theparameters®, « and #.

We test this ansatz irFig. 10 where we plot
max|.%| — 1 on a logarithmic scale as a function
of n/k, wheren varies fork = 2 in panel (a) and
varies forn = 17 in panel (b). In each panel the line is
the least-square fit through all but the first data point,
which we disregarded as exceptional in terms of the
convergence effect fon/k — oo that we are inter-
ested in. The resulting values gfand InR for both
cases are shown ifable 1 Together with the good fit
of the lines inFig. 1Q this is numerical evidence that
the largest Floquet multiplier scales (for fixed parame-
ters) as given by Eq19). Note that the data presented
in Fig. 10 constitutes the state of the art of what can
be achieved with the standard DDE-BIFTOOL imple-
mentation on a single workstation.

(a) (b)

s -2
-4 = -4t

A =
6 & -6 =

= =
-8l g -8l

£ E
-10f = (=
-12 —12 . i

0 2 4 6 8 po 100 2 4 6 8 17/ 10

Fig. 10. The logarithm of the deviation of the modulus of the largest Floquet multiplier from 1 as a functigh fidr the periodic solutions
for v = 1.0, = 1.0, andh* = 2.1. Panel (a) shows a plot for fixdd= 2 and varying:, and panel (b) for fixea = 17 and varying. The

lines are least square fit (omitting the first data point); seebte 1
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9. Traffic jams as long transients

o
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In our model, a traffic jam is a region of the ring 1
along which the cars are almost stationary (velocity of
less than 0.01 according to our definition). Hence, the
location of traffic jams can best be seen in a plot of the
positionsx; of all cars. As cars enter a traffic jam at the
back and leave it at the front, traffic jam moves with (@)
a certain speed against the direction of traffic along 1
the ring. An overall traffic pattern consists of a finite U1oAs.
number of traffic jams that all move with their own dif-
ferent (but typically similar) speeds. A traffic jam can
disperse or merge with another traffic jam of a differ-
ent speed when they meet. Hence, there is an evolu- %2r
tion of the traffic pattern until a stable pattern has been o L\
reached. )

Of importance is the relationship between a traffic

O W O WO

0.6

0.4}

850 900 950 1000 1050 1100 ¢ 1150

pattern and the trajectory of an individual car. A sta- Fig. 11. Plot of the positions; of all » = 9 cars (a), and velocity
vq of the first car (b), when two traffic jams merge. In panel (a), the

ble traffic pf';lttern corresponds to a stable periodic orbit trajectory of the first car is emphasized. The motion of the fronts
for the motion of the cars. Hence, the only stable traf- corresponds to the modulated solutiorFig. 9a). In panel (b), the
fic pattern in our model is that corresponding to stable additional curve envelopes the maxima of velocities between the
k = 1 oscillations. Because the fronts of traffic jams traffic jams. The other parameters afe= 1.0, = 1.0, * = 2.1.
move only very slowly along the ring, the time it takes
the car to drive around the circuit is close to but slightly
different from the period of the periodic oscillations of
its velocity and headway. Similarly, if the pattern is not
stable, a car almost has the same velocity and headway
profile from round to round. In particular, unstable pe-
riodic orbits are related to unstable traffic patterns. As
we will see now, weakly unstable periodic orbits give "
rise to traffic jams that can persist as long transients.
The motion of the traffic jams is closely related to the 3
motion of the fronts of the almost periodic dynamics
of the cars. @)
When one starts an initial value simulation of the

i 45
12

fa h fr—|
850 900 950 1000 1050 1100 1150 ; 1200

system from suitably random initial data, unstable “68

waves form and will eventually die out. (Specifically, i

we start from equidistant cars with velocities chosen 06

randomly and uniformly from [0v°], and integrate 0.4

the system with an explicit Euler method with time o2}

step 002.) As was mentioned in Secti@already for 5 \

n = 9 cars we find that waves fdr= 2, correspond-  (p) 85 900 950 1000 1050 1100 1150 ; 1200

ing to two traffic jams along the ring, may survive for

considerable amounts of time. In other words, weakly Fig.12. Plotofthe positions of alln = 9 cars (a), and the velocity
unstable traffic jams appear as Iong transients. When 't of the first car (b), when a traffic jam disperses. In panel (a), the

thev eventuallv disappear this can happen in onlv two trajectory of the first car is emphasized. The motion of the fronts
y y Pp PP y corresponds to the modulated solutiorFig. 9(b) In panel (b), the

compet!ng ways, which are shownfings. 11 and 12 additional curve envelopes the minima of velocities in the dispersing
respectively. traffic jam. The other parameters afe= 1.0, @ = 1.0, h* = 2.1.
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In the case shown ifig. 11 a traffic jam catches sis for increasing numbers of cars brought out conver-
up with another traffic jam and the two then merge; gence effects in two-dimensional and one-dimensional
see the plot of the positions in panel (a). At the same bifurcation diagrams, as well as of oscillation profiles
time, panel (b) shows the velocity profile of the first corresponding to traffic jams. We also showed that un-
car.Fig. 11shows that the go-front of the first and the stable oscillations for higher wave numbers are only
stop-front of the second traffic jam ‘move towards one very weakly unstable in a certain parameter region, so
another’ and then disappear. As a consequence, thethat the associated traffic jams can be observed as very
region between the two traffic jams of flowing traffic long transients. Such traffic jams finally disappear by
(large velocity) disappears. This behavior is indicative dispersing or by merging with another traffic jam.
of an unstable eigendirection of the periodic orbit for We believe that our study shows the value of con-
k = 2 as shown irFig. 9(a) where the stop-front and tinuation methods for the study of traffic models, in
the go-front move in the same direction (along the particular, in the presence of a delay. The computation
periodic orbit). As the two traffic jams move closer of periodic orbits and their stability is an important tool
together the maximum speed between them decreasesfor understanding the evolution of traffic patterns. In-
The envelope of these maxima diverges more and moredeed, similar low-dimensional slow dynamics seems
from the maximum velocity elsewhere along the ring. to appear in many other car-following models as well.
Thus, the time until complete merging can be defined Therefore, the continuation techniques used here may
as the moment that this envelope reaches zero velocity.help to discover the underlying low-dimensional dy-
The envelope actually describes the local maximum namics in other cases as well.
of the velocity for all cars; note that the velocities A limitation is that continuation for DDEs is very
profiles of the other cars are very similar, but are not demanding in terms of memory and computation time.
shifted copies, since the dynamics is not perfectly The computations of branches of periodic orbits and
periodic. their Floquetmultipliersfor 17 cars(thatis, for a 33-

In contrastFig. 12shows a situation where the traf- equation DDE system) are at the limit of what can
fic jam ‘survives’ long enough, meaning that it does be achieved with the present implementation of DDE-
not merge with another traffic jam, and then disperses. BIFTOOL on a workstation. It would be very inter-
This has only a slight influence on the ‘neighboring’ esting to investigate further the observed convergence
traffic jam, as can be seen from the positions in panel phenomena for much larger valuesgfay, for a few
(a). As is shown in panel (b), the minimum velocity hundred cars . This would be an interesting test case ap-
of cars in this dispersing traffic jam increases, which plication for algorithms for the numerical stability anal-
is again indicated by the envelope. In this case, the ysis of a large-scale delay systems that are presently
stop-front and the go-front of one and the same traf- being developefl3,24]
fic jam slowly ‘move closer together’, so that the traf- A challenging subject for future research is the anal-
fic jam eventually disappears. This is associated with ysis of the convergence phenomena that we found. In
an unstable eigendirection of tihe= 2 periodic orbit particular, it appears to be feasible to derive a mathe-
as inFig. 9(b) where the stop-front and the go-front matical model for the front dynamics of traffic jams in
move in opposite directions (along the periodic orbit). the largen limit. The issue here is that the cars ‘feel’
The envelope of minima, which also describes the min- less and less that they are on a ring. In other words, in
ima for all cars, diverges from being practically zero the largen limit over intermediately long time scales
and complete dispersion is reached when it reaches thethe periodic boundary condition will not play a role.
maximum velocity on the ring.
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