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Stability of Systems with Stochastic Delays
and Applications to Genetic Regulatory Networks*
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Abstract. The dynamics of systems with stochastically varying time delays are investigated in this paper. It
is shown that the mean dynamics can be used to derive necessary conditions for the stability of
equilibria of the stochastic system. Moreover, the second moment dynamics can be used to derive
sufficient conditions for almost sure stability of equilibria. The results are summarized using stability
charts that are obtained via semidiscretization. The theoretical methods are applied to simple gene
regulatory networks where it is demonstrated that stochasticity in the delay can improve the stability
of steady protein production.
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1. Introduction. Time delays are a well-known source of instability in dynamical systems
and can make control design a challenging task. When the delays are assumed to be constant
or distributed, there are well-established methods to analyze stability and bifurcations of
equilibria and periodic orbits [7, 9, 19, 24, 45, 46]. When the delays depend on time or on the
state of the system, stability analysis becomes more difficult and may require averaging or
numerical techniques [18, 20, 37]. However, in some cases delays vary stochastically in time,
making it very challenging to characterize stability. In this paper, we target the problem of
stability analysis of systems with stochastically changing delays. Stochastic delays arise in
networked control systems [5], connected vehicles [43], and gene regulatory networks [15, 21].
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When investigating dynamics under stochastic delay variations, key factors include the
stochastic process describing the time evolution of the delay and the type of stability in-
vestigated. In early works, random delays modeled by continuous-time Markov chains were
incorporated into delay differential equations (DDEs) [22, 29] and Lyapunov stability theo-
rems were used to obtain sufficient conditions of stability. This approach has been extended
to nonlinear systems [25] and has also been applied to discrete-time systems where the cor-
responding matrix inequalities again give sufficient stability conditions [12, 41, 55]. These
conditions are typically quite conservative, which makes it difficult to evaluate the effect of
the delays on the dynamics. Similarly, taking the worst case scenario (e.g., largest delay) can
lead to unnecessary conservativeness or may simply give erroneous results. Even ensuring
stability for each value of the delay does not necessarily give the stability of the stochastic
system [13].

Work has also been done comparing stability conditions for different types of stability
(Lyapunov stability, moment stability, almost sure stability) for a continuous-time linear sys-
tem under specific delay variations [51]. In this paper we expand these ideas to a broader
class of delay processes, while focusing on moment stability, almost sure stability, and the re-
lationship between these. We use a technique called semidiscretization [19] to classify different
stability losses and to derive stability charts.

To demonstrate the power of the developed mathematical tools, we apply them to simple
gene regulatory networks where a protein represses its own production. Traditional mass-
action kinetic models are based on instantaneous reactions and model the time evolution
of protein concentrations by ordinary differential equations (ODEs), which can be used to
characterize the dynamics about equilibria and periodic solutions [6]. However, the protein
production process is comprised of a sequence of biochemical reactions and, thus, a fully
mature protein only becomes available after some time delay. Consequently, a more accurate
way to describe the dynamics of genetic regulatory networks is to use DDEs, which still allows
one to investigate stability and bifurcations [28, 38]. For instance, it has been shown that delay
may lead to oscillations in models with negative delayed feedback in synthetic gene networks
[35, 47, 49].

The intracellular environment is inherently noisy [36], and stochasticity is often incor-
porated into modeling equations by simply adding Gaussian noise. Such studies have been
extended to gene networks modeled with delays [48]. However, the biochemical processes that
are lumped together by the delay are also stochastic in nature, which results in stochastic delay
variations [15, 21]. We analyze corresponding effects and produce stability charts for equi-
libria on the plane of gain parameters for different distributions of the stochastic delay. The
stability results are also validated using numerical simulations of the linearized and nonlinear
models.

2. Continuous-time systems with stochastic delay. In this paper we consider systems of
the form

(2.1) X(t) = f(x(®), x(t — 7(1))) ,

where the dot denotes the derivative with respect to time ¢, xy € R, f: R” x R® — R", and
the delay 7 € R varies in time stochastically. More precisely we assume that the delay follows
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Figure 2.1. A sample realization of the time evolution of the delay with J = 3 possible delay values. The
delay remains constant for a holding time T, while At denotes the discretization step.

a stationary stochastic process with probability distribution w(c), 0 € [Tmin, Tmax)- Thus, the
initial condition is given by x(t) = xo(t), ¢ € [~Tmax, 0]. Due to the stochasticity in the
delay, the vector x(t) also follows a stochastic process.

Linearizing (2.1) about an equilibrium x(¢) = x. results in the system

(2.2) #(t) = az(t) + ba(t — (),

where z(t) = x(t) — x«, @ = O1f(Xs, Xx), D = D2f (Xs, Xx) € R™™ and 0y and 0o represent
derivatives with respect to the first and second variables, respectively. In this paper, we
analyze the equations describing the first and second moments of the linear system (2.2).
Note that equations describing the first and second moments of the nonlinear system (2.1)
may differ from these in a general case.

We consider a class of delay processes where the delay trajectories are piecewise constant
functions of time. Namely, we assume that the delay 7(¢) may only take J possible discrete
values from the set {7y, 7,...,7s} with P[7(t) = 7;] = w;, where P denotes probability.
Without loss of generality we can consider 7 < 75 < --- < 7. In this case, the corresponding
probability density function (pdf) consists of Dirac deltas, that is,

J
(2.3) w(o) =Y w;d(c—15),
j=1

where f:;i" w(o)do = Z}le w; = 1. From here on, we use the term pdf and delay distribution
interchangeably. Note that one can approximate continuous delay distributions by increasing
the density of the Dirac deltas. Also we assume that the delay stays constant for a holding
time T' before potentially taking on a new value, as demonstrated by the sample realization
in Figure 2.1 for J = 3 different delay values. Since the probability distribution in (2.3) is
not changing with time, the delays assumed across the holding intervals are independent and
identically distributed (IID). In this paper, we focus on stability analysis of systems in the
form of (2.2) with stated assumptions on the delay, while linear approximations and numerical
simulations are used to investigate nonlinear phenomena in nonlinear systems of type (2.1).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



STOCHASTIC DELAYS AND GENETIC NETWORKS 1847

Taking the expected value, denoted by E, of system (2.2) we obtain
(2.4) —E[z(t)] = aE[z(t)] + b ZIP’[T(t) = 75| Ela(t — 15)|7(t) = 75] .

If the holding time 7' is smaller than the minimum delay, i.e., T < 71, then z(t — 7;) is
independent of 7(¢) due to the IID nature of the delay sequence. Thus, introducing the
notation z = E[z], we obtain

J
(2.5) B(t)=az(t)+b Y w;E(t—T).
j=1

Generalizing this for any stationary stochastic delay process where the autocorrelation of the
delay becomes zero after T and T < Ty, yields the general form

(2.6) #(t) = ai(t) + b / " (o) £t — o) do

Tmin

The distributed delay systems (2.5) and (2.6) describe the dynamics of the mean, and they
can be analyzed using standard stability and bifurcation analysis tools [9, 45, 46]. The mean
dynamics can provide some information about the effect of stochastic delays, as they explicitly
contain the delay distribution. However, to characterize the stochastic dynamics one needs to
analyze higher moments.

In order to analyze the higher moments of the continuous-time system (2.2), we discretize
it by dividing the holding intervals of length T" into ¢ € N subintervals of length At = T'/¢;
see Figure 2.1. Then, using a time discretization technique, called semidiscretization [19], we
construct a discrete-time map as a discretization of (2.2) which allows us to obtain conditions
for the stability of the mean and the second moment. Then we demonstrate the convergence
of the corresponding spectra and stability charts when At — 0.

To apply semidiscretization we assume that the delayed term in (2.2) stays constant in
the time interval ¢ € [iAt, (i + 1)At), that is,

(2.7) z(t) = az(t) + ba(iAt — r(i)At), t € [iAt, (i + 1)At),
where 7(i) € ZT takes the values {r1,...,r;} withr; =[], j=1,...,J, for i =0,1,2,....
In other words, the delay values are rounded off by the mesh size At. Since (2.7) is a linear

differential equation with constant forcing, it can be solved in the time interval ¢ € [iAt, (i +
1)At) yielding

(2.8) Z(i+1)=az(i)+Bz(i —r()),

where

At
(2.9) a = At 8= (/ ea(At_t)dt> b,
0
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and we have used the notation #(i) = #(iAt). We remark that if a=! exists, then the second
formula results in 8 = (eaAt — I) a~'b, where I is the n-dimensional identity matrix.

Let us define the augmented vector X (i) = [ 7 (i) #T(i—1) --- #5(i—ry)]T e RO+,
where T denotes the transpose. Then (2.8) can be written in the compact form

(2.10) X(i+1)=G()X(4),

where the matrix G(i) follows a stochastic process and takes the values

I 00 - 0 0
01 O 0 O
00 0 -~ I 0]

with probability w; for j =1,...,J.

The first block row in matrix G; corresponds to the delay 7; in (2.8), and therefore it
changes when the delay changes such that the block 3 is in the (r; + 1)th block-column. Note
that given that the delay holding time 7" = (At, the matrix G, is kept constant for £ time
steps before changing. Thus defining Y (k) = X (kf), k =0,1,2,..., the system (2.10) can be
written as

(2.12) Y(k+1)=A(k)Y(k),
where A (k) takes values
(2.13) Aj — (Gj)z e R(TJ+1)nX(TJ+1)n7

and P[A(k) = A;] is wj, j = 1,...,J. Since the delays of different holding intervals are IID,
the matrices A (k) are IID and A(k) is independent of Y (k).

3. Stability conditions. In this section, we establish conditions for stability of the sto-
chastic dynamical system (2.12), which is the discretization of system (2.2). We focus on
almost sure stability, which is obtained by calculating second moment stability. Let us start
with some definitions.

Definition 3.1. We say that a random sequence {X(k) € R"}}>0 converges to 0 almost
surely ifIP’[Ve >0, || X(k)|| > € happens only finitely often] = 1. If sequences generated by a
stochastic dynamical system converge to 0 almost surely, then the trivial solution X (k) =0 is
almost surely asymptotically stable.

Note that almost sure convergence is also called convergence with probability one.

Definition 3.2. We say that a random sequence {X (k) € R} converges to 0 in the mean
if limg 00 E[X (k)] = 0 and converges to 0 in the second moment if limy,_, E[X (k)X T (k)] =
0. If sequences generated by a stochastic dynamical system converge to 0 in the mean or in
the second moment, then the trivial solution X (k) = 0 is asymptotically stable in the mean
or in the second moment, respectively.
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It can be shown that stability in the second moment implies stability in the mean, but in
general, there is no relationship between second moment stability and almost sure stability.
However, in the special case described by system (2.12) where A (k) are IID, stability in the
second moment does imply almost sure stability; see [26]. We also remark that for vector
valued sequences, defining moments higher than 2 is not trivial and they are rarely used in
the literature; see [43].

We begin by characterizing the dynamics of the mean E[Y (k)] for (2.12). As explained
below, the stability of the mean provides a necessary condition for the stability of the stochastic
system; that is, if the mean is unstable, then the system is unstable. Therefore, the stability
region for the mean in the parameter space contains the true stable region. We will then
derive the dynamics of the second moment E[Y (k)Y (k)] to provide sufficient conditions for
almost sure stability.

Since A (k) is IID, it is independent of Y (k). Thus, taking the expected value of both
sides of (2.12), we obtain

E[Y(k+1)] = E[A(K)Y (k)] = E[A(K)]E[Y (k)]

j=1
J
= (Z ijj>E[Y(k')]
j=1
Using the notation
(3.2) Y (k) := E[Y (k)] € ROVFI?

we can write the discretized mean dynamics (3.1) in the form
(3.3) Y(k+1)=AY(k),

where

(3.4) A=Y wiAj = w(G)

J=1 Jj=1

and A € ROvFUnx(rutn, of (2.13). Thus, limy_o Y (k) = 0 if and only if p(A) < 1, where
p(.) denotes the spectral radius. This is in fact a necessary condition for the stability of the
stochastic system (2.12), which is the discretization of the continuous-time system (2.2).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1850 GOMEZ, SADEGHPOUR, BENNETT, OROSZ, AND MURRAY

To analyze the second moment of (2.12), we proceed as follows:

E[Y(k+1)Y"(k+1)] =E[Ak)Y (k)Y (k)AT (k)]

J
=" wAJE[Y (k)Y (k)] AT,

where in the last step we used the independence of Y (k) and A(k). Now we rewrite (3.5) as
the time evolution of a vector. For a matrix H = [ hy hg -+ hy, | € R™™ where h; € R"
denotes the ith column vector, let us define the operator

h1
ho
(3.6) vec(H)=| | | e R".
hom
Using (3.6), let us define the vector
(3.7) }:/(k‘) = Vec(]E [Y(k)YT(k)]) c R(rs+1)%n? ’

and also note that for matrices A, B, and C for which the matrix product ABC is defined,
the equality

(3.8) vec(ABC) = (C' ® A)vec(B)

holds, where ® denotes the Kronecker product. Using (3.7) and (3.8), (3.5) can be rewritten
as

(3.9) Y(k+1)=AY(k),
where
_ J J
(3.10) A= Z wiA; @ A; = Z W ((}j)Z & (Gj)z,
j=1 j=1

and A € RO7+D*n*x(rs+1)°n%. ¢f (2.13). Thus from (3.9), limy_ee Y (k) = 0 if and only if

p(A) < 1. Moreover, condition p(f&) < 1 implies almost sure stability of the stochastic
system (2.12), which is the discretization of the continuous-time system (2.2). We remark

that if J = 1, conditions p(A) < 1and p(A) < 1 reduce to the asymptotic stability condition
of a deterministic system with one single delay.
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Remark 1. We provided stability conditions for the mean and the second moment of the
map (2.12) that is a discretization of the continuous-time system (2.2). For the case of a
deterministic delay, the semidiscretization method preserves asymptotic stability; i.e., if the
original continuous-time system is stable, the discretized system is stable as well given that
the time step At is small enough. Moreover, when At approaches zero, the stable parameter
domain of the discretized system approaches the stable parameter domain of the continuous-
time system; see [16, 17]. In the case of stochastic delay, our conjecture is that the stable
parameter domain of the discretized system (2.12) converges to that of the continuous-time
system (2.2) as At — 0. The convergence proof may be constructed based on the fact that
in the stochastic system the delay remains constant in each holding interval [kT, (k + 1)T),
k = 0,1,2,..., allowing one to apply the same arguments as in [16]. In this paper, we
demonstrate the convergence through the spectral radius of matrices A in (3.4) and A in
(3.10) and corresponding stability charts.

3.1. Convergence of spectra and stability charts—an illustrative example. We consider
a simple example in order to illustrate the stability analysis established in the previous section.
By calculating the spectra of matrices (3.4) and (3.10) we draw stability charts. We also show
that the spectral radius and the stability charts converge to a limit as the discretization step
At decreases. Consider the scalar example x € R in which case system (2.2) simplifies to

(3.11) #(t) = az(t) + ba(t — (1),

where a and b are scalars. Assume that the delay may take the values 1 = 0.2, 75 = 0.3, and
73 = 0.4 (J = 3) with equal probability, i.e., w1 = wes = w3z = 1/3, and set the holding time
to T'= 0.1. We draw stability charts in the plane of parameters a and b for different values
of At. Note that here the matrix (2.11) simplifies to

a 0 154 0
1P 0 0 -~ 0 O
01 0 0 0
(312) G—] = O 0 1 O 0 c R(TS‘Fl)X(T‘S‘Fl),
00 0 1 0]
where r3 = |13/At| and
b
(3.13) a=e, p=(e"—1)—;

cf. (2.9).
For comparison, first we consider stability analysis of the continuous-time mean dynamics

3
(3.14) B(t) =aZ(t)+b Y wT(t 1))
j=1
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(cf. (2.5), which holds since T < 71). When using the trial solution Z(t) = ke, k, s € C, we
obtain the characteristic equation

3
(3.15) sfabewje_STf =0.
j=1

Here, two different kinds of stability losses may occur: (i) a real eigenvalue crosses the imagi-
nary axis at 0 (referred to as fold stability loss) corresponding to the boundary

(3.16) b= —a;

(ii) a pair of complex conjugate eigenvalues crosses the imaginary axis at +iw (referred to as
Hopf stability loss) corresponding to the stability boundary

w 23)‘:1 wj cos(wTj)
a =

(3.17) Z?:1 wj sin(wty)
—w
e
> i1 wj sin(wry)

The boundaries (3.16) and (3.17) are obtained by substituting s = 0 and s = iw into the
characteristic equation (3.15). The parameter w is varied continuously to obtain the Hopf
stability bound (3.17). The stability curves corresponding to (3.16) and (3.17) are plotted as
dashed black curves in Figure 3.1.

In order to evaluate the stability of the discretized mean dynamics, given by (3.3) and
(3.4), we consider the characteristic equation

(3.18) det (:I-A) =0,

where I is the (r3 + 1)-dimensional identity matrix. This equation has r3 + 1 = |73/At| + 1
solutions for the eigenvalues z. To investigate stability bounds in the (a,b) parameter space,
we note that there can be three different kinds of stability losses defined by the movement of
eigenvalues across the unit circle: (i) a real eigenvalue crosses the unit circle at 1; (ii) a real
eigenvalue crosses the unit circle at —1; (iii) a pair of complex conjugate eigenvalues crosses
the unit circle at et'?, ¢ € (0, 7). We refer to these as fold, flip, and Hopf stability losses,
respectively, based on the nomenclature of the corresponding bifurcations of nonlinear systems.
(A Hopf bifurcation for discrete-time systems is often called a Neimark—Sacker bifurcation.)
To obtain the corresponding stability curves in cases (i) and (ii), we substitute z = 1 and
z = —1 into the characteristic equation (3.18) and solve for b as a function of a. This may
not be obtained analytically, so we use numerical continuation to obtain the solution; see [44].
First we fix a, then consider an initial guess for b, and then correct it by using the Newton—
Raphson method. Next we use this solution as an initial guess for a nearby value of a. This
way we can continue the solution while varying a. In case (iii), we substitute z = e'® into the
characteristic equation (3.18), separate the real and imaginary parts, and solve the equations
for @ and b as a function of ¢. Again, we use numerical continuation to trace the curves in
the (a, b)-plane while varying ¢.
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Left column: Stability charts for system (3.11) with delay distribution w(c) = 36(c — 0.2) +

%6(0 - 0.3) + %6(0 — 0.4) and the holding time T = 0.1 for different values of the discretization step At
as indicated on the left. Blue curves are the stability boundaries for the mean, while the red curves are the

stability boundaries for the second moment.

The dashed black curves are stability boundaries for the mean

in the continuous limit. Light gray shading indicates mean stability, and dark gray shading indicates second
moment stability. Middle column: Eigenvalues for the discretized mean dynamics (matriz A) corresponding to
point P located at (a,b) = (—1,—6.5). Right column: Eigenvalues for the second moment dynamics (matriz A)
at point P. Stable eigenvalues are plotted as green, while unstable eigenvalues are plotted as red. Construction
of matrices A and A, along with calculation of their eigenvalues were done in MATLAB (see the supplement
(M103196-01.zip [local/web 12.2KB]) for script files).
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Figure 3.2. The spectral radii of the matrices A and A as functions of 1/At shown in panels (a) and
(b), respectively. The horizontal dashed red line in (a) shows the value of |e**2T | where s1,2 are the leading
characteristic roots of (3.15).

The corresponding curves are plotted on the (a,b) parameter plane in the left column of
Figure 3.1 for different values of At as indicated. The dashed blue curve corresponds to fold
stability loss, the solid blue curve corresponds to Hopf stability loss, and the equilibrium is
mean stable in all shaded domains. The corresponding angular frequency w = ¢/T increases
along the Hopf curve when moving away from the dashed blue curve. Notice that as At
decreases the boundary moves, but it converges to the dashed black curve. The convergence
can be further observed by looking at the eigenvalues in the second column of Figure 3.1
corresponding to the point P located at (a,b) = (—1, —6.5). Indeed the number of eigenvalues
increases, but the leading eigenvalues converge with decreasing At, while more and more
eigenvalues appear in the vicinity of the origin. To better visualize the convergence of the
leading eigenvalues we plot the spectral radius of A as a function of 1/At in Figure 3.2(a).
We also calculate the leading eigenvalues of the continuous-time mean dynamics (3.14) from
the characteristic equation (3.15) using the package DDEbiftool [8] for point P; these are
519 = —0.037102£15.781085. Then the corresponding leading eigenvalues of A shall converge
to 212 = €121 as At — 0 and consequently p(A) converges to |e*1:27| = 0.996297, which is
shown in Figure 3.2(a) as a dashed horizontal red line. Note that while the parameters o and
B depend on At in matrix G in (3.12), the size of the matrix G is also proportional to 1/At.
Therefore, we see discontinuities in the spectral radius of A as At changes. We also remark
that no flip instability can appear in the continuous-time system (3.14). If it were to appear
in the corresponding discretized system, then the corresponding curve would have moved to
infinity when taking the limit At — 0. We remark further that in the case T" > 7 we still
observe that the leading eigenvalues converge to a limit as At — 0, but the mean dynamics
are no longer described by system (3.14) in the continuous limit.

To evaluate the stability of the second moment, we use (3.9) and (3.10) and study the
characteristic equation

(3.19) det (:I-A) =0,

where I is the (5 + 1)2-dimensional identity matrix. Here we have (r3 + 1)2 = (|73/At] + 1)2
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solutions for the eigenvalues z. Again, one may investigate the three possible stability losses,
but it turns out that only the fold type occurs in this case. The corresponding curves are
plotted as red curves in the (a,b)-plane in the left column of Figure 3.1, where the second
moment stable region is indicated by dark gray shading. The eigenvalues of matrix A at
point P are plotted in the right column, showing convergence of the leading eigenvalues with
decreasing At. The corresponding spectral radius is plotted in Figure 3.2(b). Due to our
hardware limitations, the smallest value of At for which we could compute p(A) was 0.005
since the size of A grows with 1/ At?. More details about the computational limitations of the
method are given in section 4.1. In this case, while we do not have an equation to describe
the continuous-time second moment dynamics, we still observe that the spectral radius of A

converges to a limit.

4. Stochastic delays in a gene regulatory network. To illustrate the methods above we
analyze the stability of genetic circuits where a protein regulates its own production. The two
major processes involved are called transcription and translation [6]. During transcription,
a gene (a section of the DNA) is copied into messenger RNA (mRNA) one nucleotide at a
time by an enzyme called RNA polymerase. Then during translation, ribosomes “read” the
genetic code from the messenger RNA to sequentially assemble proteins from amino acids.
That is, transcription and translation involve sequential biochemical reactions [2]. Although
each individual reaction generally happens on a fast time-scale, the large number of reactions
required and their sequential nature can result in significant delays [52]. Further processes,
such as protein folding and modification, can also impact the time it takes to produce a fully
mature protein [39, 40]. Proteins can regulate (activate or repress) the production of other
proteins by binding to the promoter region of the corresponding genes. Here we study the
case where a protein represses its own production, as shown by the diagram in Figure 4.1.
It has been shown that this single feedback system may produce oscillatory behavior and
that time delays play a crucial role in the dynamics [47]. We construct two different models:
a simpler model where the mRNA dynamics are neglected and another one where they are
included. These examples allow us to highlight nontrivial dynamics caused by the stochastic
delay variations.

We begin by describing how delays arise in protein production. We model the sequential
biochemical reactions involved in protein production by the chain of reactions

Py -5 Py,

P 2Py,
(4.1)

cN
Py_1 — Pn,

where P; denotes the number of molecules in the ith state of the process and N is the number
of reactions in the chain. For example, one may consider Py as the transcription initiation
state and Py as the fully mature protein. The parameter ¢; is the reaction rate of the ith
reaction, and the probability of reaction ¢ happening during the time interval [¢, ¢ + dt] is
proportional to the firing rate ¢; and the number of proteins P;_; in the (i — 1)th state.
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Figure 4.1. An autoregulatory gene network. The target gene codes for the protein Lacl that represses its
own production by blocking the RNA polymerase from binding.
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Figure 4.2. (a) A normalized histogram of the delay obtained with running a Gillespie simulation for
system (4.1) with N = 50 reactions and ¢ = 5 reactions per second using the initial condition Py = 10000,
P, =0 fori=1,...,N. The black curve shows the Erlang distribution (4.2) for the same parameters with
mean E = N/c = 10[s] and variance V.= N/c* = 2[s?]. (b) Discretization of the Erlang distribution using
Dirac deltas separated by At = 1]s].

In Appendix A we assume that the time elapsed between reactions is independent and
exponentially distributed and we consider the simplification ¢; = ¢ for ¢ = 1,..., N and the
initial condition Py =1, P, =0for i =1,..., N. Then we show that the stochastic delay, i.e.,
the total time elapsed between the first reaction and the last reaction in system (4.1), follows
the Erlang distribution

CNO'N_ 1e—ca

(4.2) we(o) = TN

see also [11]. Numerically, we find that (4.2) still describes the delay distribution well for
different initial conditions. To demonstrate this we consider N = 50 reactions, ¢ = 5 reactions
per second, and the initial condition Py = 10000, P, = 0 for ¢ = 1,..., N, and we simulate
the reactions using a Gillespie algorithm [14]. The corresponding normalized histogram of the
delay is overlaid with the distribution (4.2) in Figure 4.2(a). We remark that in this case we
still measure the delay as the time difference between the first reaction and the Nth reaction
rather than tracing individual molecules in the simulation.
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To characterize the Erlang distribution (4.2) we calculate its mean

o
N
(4.3) E = / we(o)odo = —
0 C
and variance
oo
N
(4.4) V= / we(0) (0 — E)?do = — -
0 C
Notice that the relative variance
1% 1
4. = —_— = —

is inversely proportional to the number of reactions /N but does not depend on the transcription
rate c; see [1].

4.1. Single gene autoregulatory network. After characterizing the stochastic delay aris-
ing from sequential reactions we analyze the autorepressor depicted in Figure 4.1. Neglecting
the mRNA dynamics, we consider the one-dimensional model

K

1+ (p(t— (1)) /pn)°

where p denotes the concentration of fully matured proteins. The linear term on the right-
hand side accounts for the protein degradation, while the nonlinear term represents the protein
production. Here, v denotes the degradation rate, s is the maximum production rate, and
pn is the protein concentration corresponding to half repression. The nonlinearity is in the
form of a Hill function where the power 2 in the denominator represents repression strength.
This model has been studied in the literature [6, 47] with constant delay 7(¢) = 7 and can
be shown to admit one of two behaviors: asymptotic convergence to a positive equilibrium or
convergence to a limit cycle [33] depending on the parameters v, k, and py. Here, we assume
that the delay follows a stationary stochastic process with Erlang distribution (4.2) and show
that this system demonstrates similar behavior in the stochastic sense. More details about the
reactions involved in system (4.6) can be found in Appendix B, where the parameters v, s,
and py, are related to reaction rates using mass action kinetics. For the stability charts shown
in the following section we set p, = 100 proteins per cell and vary v and k while assuming
v > 0and k > 0.

The model (4.6) has a unique equilibrium p(¢) = p., where p, is the real solution of the
cubic equation

(4.6) pt) = —yp(t) +

2
KD
(4.7) P2 + D ps — Th =0.

To study the stability of this equilibrium, we define the perturbation z(¢) = p(t) — p. and
linearize the system (4.6) about the equilibrium. This yields

(4.8) #(t) = az(t) + ba(t — (1),
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with

a= =7,
(P} + p?)?

Indeed, (4.8) has the same form as (3.11), but here the delay follows the Erlang distribution
(4.2) instead of the uniform distribution used in section 3.1.

As mentioned above, if the autocorrelation of the delay becomes zero after T and T < Tyin,
then we can use (2.6) to obtain the continuous-time mean dynamics. While 7;,, = 0 for
the Erlang distribution, for the examples considered in this section the distribution is very
close to zero for o < E — 3v/V; see Figure 4.2(a) as an example and also Appendix A for
some quantitative details. Thus, we assume 7' < E — 3v/V and apply (2.6) with continuous
distribution (4.2). Using the trial solution Z(t) = ke®t, k,s € C, we obtain the characteristic
equation

N

(4.10) s—a—bm—O,
which has finitely many (i.e., NV +1) solutions for the eigenvalues s. It can be shown that when
the Erlang distribution is perturbed with perturbation size €, additional spectra appear in the
neighborhood of these eigenvalues such that the size of the neighborhood is proportional to
e. Additional eigenvalues may also appear to the left of a vertical line located at Res= —1/¢;
see [10].

Again we check for two types of stability losses. Substituting s = 0 into (4.10) still results
in b = —a, but when using (4.7) and (4.9) no feasible solutions can be found in the (v, k)
parameter plane. On the other hand, when substituting s = iw into (4.10) we obtain the
stability boundary

_ wecos(N)
~ sin(N)
(4.11) N
po =¥ (1490
~ sin(N6) 2 ’
where

(4.12) 0 = tan~! (";) .

Now using (4.7) and (4.9) one may obtain

v =—a,

(4.13) a2< b >3/2’

R= =20 2a — b

b

which do result in a stability curve in the positive quadrant in the (v, x)-plane; see the black
dashed curves in Figure 4.3.
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Figure 4.3. Stability charts for system (4.8), (4.9) when the delay follows the Erlang distribution (4.2) for
different values of the mean delay E = N/c and relative variance R = 1/N. The holding time is set to T = 1[s]
and At = 1[s]. The same notation is used as in the left column of Figure 3.1.

In order to apply the stability analysis developed in section 3, the delay distribution must
have finite support. To achieve this we truncate and discretize the Erlang distribution we(o)
given in (4.2). Again, noticing that the distribution is close to zero when o is more than three
standard deviations away from the mean, we set weights at o; = E — 3v/V + (i — 1)At to be

At e\0; if [ E S )
(4.14) iy = | Atweloi) i o — E WV
0 if |o;—E|>3VV

for i = 1,2,... such that @w; # 0 only for i = ¢, ..., Q. Finally, we normalize the distribution
by

Wyt j—1
(4.15) e

Ek:q UN)k

for j=1,...,J, where J = @Q — g+ 1. Figure 4.2(b) depicts the discretization of the Erlang
distribution shown in Figure 4.2(a) with At =1 [s].

Once the delay distribution w is characterized for system (4.8), (4.9), we may construct
the discretized systems (3.3), (3.4) for the mean and (3.9), (3.10) for the second moment to
analyze their stability using the characteristic equations (3.18) and (3.19), respectively. The
results are shown in Figure 4.3 in the (v, k) parameter plane where the same notation is used
as in the left column of Figure 3.1. We vary the mean E and the relative variance R, as
indicated, in order to understand the effects of changing the probability distribution of the
delay. Note that the delay distribution used in Figure 4.3(g) corresponds to the case shown
in Figure 4.2(b). We kept At constant for all the plots in Figure 4.3 so that the effect of
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changing the delay values is reflected accurately. When we discretize the continuous delay
distribution (4.2), we use the same time step as the time discretization step At¢. In all the
panels in Figure 4.3, we set At = 1[s] and also T = 1]s].

As explained above, the mean loses stability only via Hopf stability loss where the angular
frequency w increases along the stability boundary from left to right (blue curves obtained by
the semidiscretization and the black dashed curves obtained through (4.10)—(4.13)). For the
second moment, only fold stability loss occurs and the corresponding red curves are obtained
by the semidiscretization. In general, the stability regions shrink when increasing the mean
delay F = N/c and when decreasing relative variance R = 1/N. Also, when decreasing R
the difference between mean stability and second moment stability decreases, as indicated by
the size of the light gray area. This corresponds to the fact that as the delay distribution
is getting narrower, the dynamics get closer to the dynamics of a system with a single delay
7 = E. Moreover, notice that the size of the dark gray domain, where the second moment
is stable, increases with R indicating that the stochasticity in the delay may stabilize the
system. Similar results relating to noise induced stability have been shown in other works
(3, 4, 27, 32].

We remark that our stability analysis may require large computational effort when calcu-
lating the largest eigenvalues of the matrix A in (3.10). This may cause problems, especially
if both large and small delays exist in the system. In particular, At should be smaller than
the minimum delay 7, in the system so that [ 73 | > 1. Otherwise all the delays that are
smaller than At will be neglected in the analysis. On the other hand, if Timax > Tmin, the size
of matrix A, which is proportional to (| ™2x])?, gets unmanageably large. In panels (b)—(d)
and (f)—(h), At = 1[s] is small enough. Consequently, the blue curves obtained by the semidis-
cretization approximate well the black dashed curves obtained using the continuous-time mean
dynamics (4.11)—(4.13). On the other hand, for the wide distributions used in Figures 4.3(a),
(e), At = 1[s] is not small enough. In particular, in case (a), we have T = E — 3vV ~ 0.26.
Therefore, ideally At should be smaller than 0.26.

In order to demonstrate the time evolution of the linear system (4.8), (4.9) and the original
nonlinear system (4.6), we use numerical simulation that is based on semidiscretization; i.e.,
we assume the delayed term stays constant in the time interval [iAt, (i + 1)At]. Since in (4.6)
the delayed term is contained in the only nonlinearity, the resulting ODE can still be solved
analytically in each interval. The Erlang distribution is also discretized as in (4.14)—(4.15).
We set E = 10 [s] and R = 0.02 and choose three points marked with A (y = 1.5, kK = 600), B
(v =2.5, Kk =600), and C (v = 3.5, k = 600) in different regions in Figure 4.3(g). The initial
condition is set to x(t) = 0.1ps in the linear system (4.8) (that corresponds to p(t) = 1.1p.
in the nonlinear system (4.6)) along the time domain ¢ € [—7,0] where p, is the equilibrium
obtained from (4.7).

The results are summarized in Figure 4.4, where the black curve indicates the mean and
the red curves bound the mean plus and minus the standard deviation computed from 1000
simulations. A sample realization is shown by a gray curve in each panel. Figures 4.4(a)—(c)
show the results for the linear system (4.8), (4.9). In case A, the equilibrium is unstable and
both the mean and the standard deviation diverge. In case B, the mean converges to zero
while the standard deviation diverges. In case C, both the mean and the standard deviation
converge to zero, corresponding to almost sure stability of the equilibrium. The corresponding
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Figure 4.4. (a)—(c) Numerical simulations of the linear model (4.8), (4.9) for points A (v, k) = (1.5,600),
B (v,k) = (2.5,600), and C (v,k) = (3.5,600) marked in Figure 4.3(g). (d)—(f) Corresponding simulation
results of the nonlinear model (4.6). In each panel (a)—(f), the black trajectory indicates the mean, while the
red trajectories enclose mean £ standard deviation for 1000 runs and the gray curve shows a sample realization.
Stmulations of the linear and nonlinear model were generated using MATLAB scripts found in the supplement
(M103196_01.zip [local/web 12.2KB]).

Nonlinear system

simulation results for the nonlinear system (4.6) are displayed in Figures 4.4(d)—(f). The
results are qualitatively similar to the linear ones, except that in cases A and B the standard
deviation does not go to infinity but saturates due to the saturating nonlinear terms. The
corresponding nonlinear oscillations shown by the gray sample trajectories resemble those
found for a deterministic system with distributed delay in [33]. For example, by doing fast
Fourier transform (FFT) analysis, the main frequency of the nonlinear oscillations is found
to be close to the Hopf frequency at which the continuous-time mean dynamics lose stability.
Note that in case C, almost sure stability of the equilibrium is ensured by our analysis at the
linear level only, but the nonlinear system also demonstrates almost sure stability.

4.2. A single gene autoregulatory network with mRNA dynamics and dual delayed
feedback. We now consider a model where we incorporate mRNA dynamics, resulting in
a nonscalar example. Additionally, we assume that the system has two distinct regulatory
pathways with distinct signaling delays [31, 50].

In particular, we consider the model

(4.16) ) = = O T @)

p(t) = = p(t) + ap (),
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where m is the concentration of mRNA in the transcriptional initiation phase, p is the con-
centration of fully matured protein, and v,, and -y, are mRNA and protein degradation rates,
respectively. The nonlinear term in the first equation in (4.16) incorporates the feedback due
to self-repression where the delay 7(t) still represents the total delay in the feedback loop and
Oy, is the maximum mRNA production rate. According to the second equation in (4.16), the
protein production is assumed to be proportional to the mRNA concentration with rate a,.
Assuming that mRNA dynamics are fast relative to the protein dynamics, i.e., assuming that
the first equation in (4.16) approaches steady state quickly, the model (4.16) can be reduced
to (4.6) with K = apay,/vm, as shown in Appendix B.

As mentioned above, we assume two distinct signaling pathways. Thus, the delay 7(¢) will
have a bimodal distribution where each mode resembles an Erlang distribution. To simplify
the model we consider a bimodal distribution with two distinct delay values 71 and 79, that
is, the pdf

(4.17) w(o) =ud(oc—11)+ (1 —u)d(c — 1),

where 0 < u < 1 represents the likelihood of the protein being produced through pathway
1 and it can be tuned through a combination of relative plasmid copy numbers, promoter
strengths, and ribosome binding strengths. The steady state protein concentration is the real
solution of the cubic equation

2
[e7% 8%
(4.18) P8+ pip, — 2m@Ph _ g,

YmVp
i.e., the equilibrium point of (4.16) is the same as that of (4.6) since kK = amap/ym. The steady
state mRNA concentration is m, = (v,/a,)p«. Defining the perturbation z = [ —m. p—p.],
we linearize (4.16) around the steady state obtaining the form (2.2) with matrices

— —2r D} Px
(4.19) a:[ Ym0 ] b= |0 @wr |.
Qp  —p 0 0

Figures 4.5(a)—(c) show stability plots for different values of the parameter u of the distri-
bution (4.17). The delay holding time is assumed to be "= 5 [s], and a time step of At = 1]s]
is used for the semidiscretization. Figures 4.5(a)—(b) show the second moment stable region
(the dark gray shaded area) for u = 1 and u = 0, respectively. The values u = 1 and u = 0
correspond to the deterministic systems with delays 7 = 10 and 7 = 20, respectively. Figure
4.5(c) shows the stable region for the stochastic system with v = 0.75.

We mark point Q at (7yp, ) = (0.5,70) in the parameter space, which pertains to insta-
bility of system (4.16) for the single delay feedback with 7 = 10 [s] and 7 = 20 [s]. However, our
stability analysis predicts a stable system for u = 0.75 where the delay stochastically varies
between these two values. Figures 4.5(d)—(f) show the simulations of the nonlinear model
(4.16) where the protein concentration is shown as a function of time for the parameter values
associated with point Q. In panels (d) and (e), the simulations with a single deterministic
delay 7 = 10 and 7 = 20 are shown, respectively. In these cases, the equilibrium point is
unstable and we see oscillations in the protein concentration. Panel (f) shows the simulation
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Figure 4.5. Top panels: stability boundaries for the linearized system (2.2), (4.19) with 71 = 10[s] and
T2 = 20[s] and probability distribution w1 = u, wa = 1 —wu for (a) u = 1, (b) u = 0, and (¢) u = 0.75.
Bottom panels: simulation results of the nonlinear model (4.16) for parameter values associated with point Q:
(Yp, m) = (0.5,70). A sample trajectory of proteins as a function of time for (d) u =1, (e) u =0, and (f)
u = 0.75 (see the supplement (M103196_01.zip [local/web 12.2KB]) for corresponding MATLAB scripts). Note
that panels (d) and (e) correspond to the deterministic systems with the single delay T = 10[s] and 7 = 20[s],
respectively.
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Figure 4.6. (a) The spectral radius 0f1:& versus the probability distribution u. (b) The spectral radius ofli
versus the holding time T'.

when the delay varies stochastically between the two values with v = 0.75 and holding time
T = 5[s]. In this case, the equilibrium becomes stable. We used the semidiscretization to
simulate the continuous-time nonlinear system (4.16) with the parameters ~,,, = 0.25 [1] and
ap =1 [%], pn = 100 proteins per cell, and initial conditions m(§) = 1.1m., p(§) = 0.2p, for
—Tmax < § < 0. B

Figure 4.6(a) shows the spectral radius of matrix A as a function of the distribution
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parameter u. Notice that as u decreases from 1 to 0 the spectral radius initially decreases
(that is, the stable regime grows) but then begins to increase again (the stable regime shrinks
again). In the parameter regime 0.59 < u < 0.88 the stochastic system is stable. Figure
4.6(b) shows the spectral radius of matrix A as a function of the holding time 7. It is seen
that system (4.16) can be destabilized by increasing the delay holding time 7. This may be
explained noting that for large T values the system dwells in an unstable system pertaining
to each delay value. The dynamics are only stabilized by the switching events between the
two unstable systems.

5. Conclusion and discussion. DDEs with stochastic delay were investigated in this pa-
per. In particular, we derived stability conditions for equilibria by analyzing the mean and the
second moment dynamics. We showed that if the delay follows a stationary stochastic process
with autocorrelation becoming zero fast enough, then the mean dynamics are described by a
distributed delay system that can be analyzed to obtain necessary conditions for the stability
of the stochastic system. We also used the notion of second moment stability to ensure almost
sure stability. We applied the semidiscretization technique and demonstrated convergence of
spectra and stability charts when decreasing the size of the discretization time step.

The theoretical tools were applied to simple autoregulatory gene networks where stochas-
tic delays appear due to sequential biochemical reactions. We showed that the resultant delay
distribution is well approximated by an Erlang distribution. We first investigated an autoreg-
ulatory gene circuit described by a scalar model. We found that increasing the stochasticity
in the delay (characterized by the relative variance of the distribution) increased the size of
the almost sure stable region indicating that stochasticity in the delay may stabilize unstable
equilibria. Our findings were justified using numerical simulations of the linearized and full
nonlinear system. We also investigated the autoregulatory circuit taking into account mRNA
dynamics which yielded a model with a higher dimension where we included a bimodal delay
distribution. We found that even if both the regulatory delays are individually destabilizing,
the stochastic combination of these two delays can make the system stable. Furthermore, we
found that the longer the dwelling times, the more unstable the network became. We plan to
use the developed tools to analyze the dynamics of more complicated synthetic and natural
gene regulatory networks.

While we were able to derive mean dynamics in the continuous limit (when the autocorre-
lation of the delay became zero faster than the shortest delay), such a limit was not found for
the second moment dynamics analytically but left for future research. Moreover, we remark
that the stochastic delay system studied in this paper can also be viewed as a hybrid system
where switching between various DDEs happen in a stochastic fashion. Work has been done
on the stability analysis of hybrid systems with constant time delays [30, 34, 53, 54] or with
deterministically time-varying delays [42]; however, modeling stochastic delay systems such
as ours is less explored in the hybrid systems literature.

Appendix A. Erlang distribution. In this appendix we provide some details about the
derivation and properties of the Erlang distribution used in the main part of the paper.
Consider the chain of reactions shown in (4.1), assuming that ¢; = co = --- = ¢y = ¢. That

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



STOCHASTIC DELAYS AND GENETIC NETWORKS 1865
is,
Py -5 Py,

P -5 Py,
(A1)

Py_1 — Py,

where P; represents the number of molecules of species 7 and we define the time delay 7 as the
time it takes for a molecule to go through this chain of reactions. Let us assume the initial
conditions to be such that at time ¢t = 0 we have Pp =1 and P, =0,7=1,...,N — 1. The
reactions are assumed to happen sequentially such that the first reaction happens at time 1,
the second reaction happens at time ¢ + to, and so forth. The last reaction happens at time
Zévzl tr, which is equal to the delay 7. Then the state vector changes as

0 t1 t1 + o Zév:ﬁk:T
[Py ] (1] (0] (0] (0]
P 0 1 0 0
(A.2) P, 0 0 1 0
_PN_ _0_ _O_ _0_ | 1]

In chemical reaction networks, a fundamental assumption is to model reaction occurrence
times as arrivals of a Poisson process [6]. Therefore, the time elapsed between reactions is
an exponential random variable. The rate at which reaction ¢ occurs is determined by the
propensity cP;_1, and thus ¢; is an exponential random variable with rate cP;_1. Based on
the state vectors shown in (A.2), the times t;, i = 1,..., N, are exponential random variables
with identical rate c. Furthermore, we assume that they are independent. That is, the time
delay 7 = Zivzl ti is the sum of N independent, exponentially distributed random variables.
To find the pdf of 7 we start with introducing the notation ¢ := 2522 tr. Thus the cumulative
distribution function becomes

[e.9]
(A.3) FN(t):JP’[7'<t]:IP’[t1+f<t]:/ Plti+1 < t|ty =u| ce”du.
0
Moreover,
. 0 if >t
(A.4) Pty +E<t|ti=u] ={ ) o=t
Plt<t—ulti=u]=Plt<t—u] if u<t,

where we used independence of t; and t. Also, Fy_1(t —u) = P[t < t — u] since £ is the sum of
N — 1 independent, exponentially distributed random variables. Substituting this into (A.3)
and (A.4) we obtain the recursive rule

(A.5) Fy(t) = /Ot ce “Fy_1(t —u)du.
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Taking the derivative of both sides with respect to time ¢, we obtain a similar relationship
between the probability density functions

t
(A.6) wy(t) = / ce” “wn_1(t —u)du,
0
where wy(t) = %Fk(t), k=1,...,N.

Now we show by induction that the pdf wy(t) follows the Erlang distribution (4.2). For
N =1 we have

t
(A.7) Fi(t)=Plt1 <t] = / ce du=1—-e" = w(t)= %Fl(t) =ce .
0
Assume wy_1(t) is Erlang. Thus using (A.6), we have
t CNfl(t _ u)N72efc(t7u) NgN—1g—ct
A. = e =
(A.8) wn(t) /0 ce N —9) du I

which completes the proof.

In the method proposed in the paper, we discretize the Erlang distribution such that we
neglect the delays less than F — ny/V and larger than E + nv/V, where E denotes the mean
and V denotes the variance. We choose n = 3 for the examples shown in the paper. Here, we
discuss this approximation and investigate other values of n.

The cumulative distribution function of the Erlang distribution (4.2) is

T N-1 cr k
(A.9) Fu(r) = /0 we(o)do =1-e 3 ¢ k!)

k=0

Therefore, the probability of the delay falling between E — ny/V and E 4+ nVV is
(A.10) Pl — E| <nVV| = F(E+nVV) — Fo(E —nVV).

Substituting £ = N/c (cf. (4.3)) and V'V = v/N/c (cf. (4.4)) into (A.10) and assuming
E —nVV > 0, we can show by some algebraic manipulations that

N-1 N-1
- n N—FTL\/N k —(N=n N — n\/ﬁ k
(A11) Pllr—E| < nv/V] = —e~ (VW) §° <k!)+e (N-n/A) 3 (k‘)
k=0 k=0
IfE—nJV < 0, we have
N-1 &
(A12) P[jr - E| < nVV] = Fo(E + nV/V) — Fa(0) = 1 — ¢~ (NV4nV/R) <N+Z'\/N>
k=0 '

Note that (A.11) or (A.12) only depend on N and n, and Table A.1 shows the corresponding
numerical values for different values of N and n. This shows that the probability of falling
outside the domain [E — nV,E + n\/V] is less than 1% for n = 3.
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Table A.1
P[|r — E| < nvV/V] for different n and N values.

n=1 n=2 n=3 n=4 n=>5
N =10 | 0.69120 0.95851 0.99328 0.99899 0.99987
N =20 | 0.68683 0.95688 0.99506 0.99946 0.99995
N =50 | 0.68432 0.95553 0.99635 0.99974 0.99999
N =100 | 0.68350 0.95503 0.99682 0.99984 0.99999

Appendix B. Mass-action kinetics of the autoregulatory network. Here, we use mass-
action kinetics to provide some details regarding the origin of parameters such as degradation
and production rates that appear in the autoregulatory network models (4.6) and (4.16). We
first take mRNA dynamics into account to derive model (4.16). Then we show how one can
simplify (4.16) to (4.6) using quasi-steady state approximations (QSSAs). We assume that
the proteins produced through transcription and translation form dimers which bind to the
promoter site of the gene and repress their own transcription by blocking the RNA polymerase
from binding.

The set of reactions we consider is

oy
P+Pk:D,

T4
G—FD‘:\Gd,

T—

G % G+ My,
My - My,

(B.1) My - M,
M2,
M- M+ Py,

Py -5 Py,

é
PN—>P,
P2,

where P represents the number of fully mature proteins (often called transcription factors),
M represents the number of mRNA transcripts, D is the number of dimers, G is the number
of genes without dimers bound to them, and G4 is the number of genes with dimers bound.
Finally, the symbols M;, i = 0,...,N, and P;, i = 0, ..., N, are the numbers of molecules of
mRNA and protein in the intermediate stages of synthesis in the transcription and translation
processes, respectively. The variables k4 and k_ are the associative and dissociative rate
constants for dimerization, while r and r_ are the reaction rates for binding and unbinding
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of a dimer to the promoter site. The initiation of the transcription that occurs when an RNA
polymerase binds to a gene with an unoccupied promoter site occurs with reaction rate v.
For each reaction in the following sequence the reaction rate is set to ¢ (transcription rate).
The initiation of the translation occurs at rate 7, and each reaction in the following sequence
happens with rate ¢. The symbols 7, and 7, represent the mRNA and protein degradation
rates, respectively. We remark that further details may be considered regarding the binding
of the RNA polymerase [23] but are omitted here for simplicity.

Using the generalized mass-action kinetics for (B.1), we arrive at the following set of
ODEs:

dd

a:k+p2—k—d—r+gd+r—gd,

dg

= T+9dtr-ga,

dmyg

—— =vg—cm

dt g 05

dmi .

=cm;_1 —cm; for i=1,...,N,

(B.2) dt

dm

E:—me—chNa

—dpo:ﬁm—ép

dt 0>

dp; -

%zépi,l—épi for i=1,...,N,

d -

d*];:—vpp+6pﬁ—2k+p2+2k7d,

where the lowercase letters denote the corresponding concentrations and the plasmid copy
number g + gq is assumed to be constant. Notice that the set of linear equations for m;,
i=1,...,N,and p;, i =1,..., N, can be solved analytically to obtain my(t) and py(t) as a
function of mg(t) and po(t), respectively. In particular, considering zero initial conditions we
have

t
(B.3) m;(t) = / ce”Wm, i (u) du
0
for i =1,..., N. Substituting the solution
t
(B.4) m(t) = / ce "W mg(u) du
0

into the formula of my(t) gives
(B.5)

t t v t
ma(t) = / ce ™ m (v) dv = / / e Wi (u) dudo = / oe “my(t —o)do,
0 0 Jo 0

where we changed the order of integration and defined the new variable ¢ = t — u to obtain
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the result. Similarly, we can obtain

t 3.2 .—co
(B.6) ms(t) = / %mg(t—o) do.
0 .

Repeating the integration in the same manner we arrive at

00 cNo.Nflefco 00
(B.7) mN(t):/O (N_l)!mo(t—a)da:/o we(o) mo(t — o) do |

where we (o) is the Erlang distribution (4.2) and we extended the integration limit to infinity
since we consider mg(t) = 0 for ¢ < 0. Similarly, for pg(t) we have

00 &N ;N—1,—¢0 oo
B8 = [ - )ar= [ - )ar,

where w,(c) is the Erlang distribution with order N and rate & Using (B.7) and (B.8), we
can reduce (B.2) to

dd
E:k+p2—k—d—7’+9d+7’—gd7
dg
az—r+gd+r—gd,
dmo—yg cm
a7
(B.9) dm o0
:7mm+c/ we(o) mo(t — o) dor,
dt 0
0 _ 5 ¢
dt bo
dp L 9
af—fypp—kc We (o) po(t — o) do — 2ky p* +2k_d.
0

This may be further reduced by using quasi—steady state approximations and singular pertur-
bation methods. In particular, assuming that the kinetics of dimerization, promoter binding,
transcription initiation, and translation initiation happen on a fast time-scale, the correspond-
ing equations can be assumed to reach equilibrium quickly, allowing us to replace d(t), g(t),
mo(t), and po(t) with their respective steady state values yielding

t—o)/p)”

p(t) = —ypp(t) + /000 We(o) apm(t —o)do,

do,

m(t) = —vymm(t) + Oowea
. (t) = — “/0 ) o

with constants oy, = v(g + g4), ph = A/ :;]Z;, and oy = V.
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Note that equations (B.10) are the mean dynamics of the autoregulatory network, as they
are obtained through mass-action kinetics. Thus we may assume a single delay ¢ for the
transcription and a single delay & for the translation to obtain

Qm

m(t) = —ymm(t )
(B.11) == ()+1+(p(t—5)/ph)2

p(t) = —ypp(t) + apm(t — 7).
We can further simplify (B.11) by using the change of variables 72(t) = m(t — &). This allows

us to absorb the two delays into one single delay 7 = & + & and change (B.11) to

Qm

m(t) = =Y (t) + ;
(B.12) 0= = mtt) 1+ (p(t —7)/pn)’

p(t) = =7 p(t) + ap1in(t),
which is the same as (4.16).

Finally, assuming that the mRNA dynamics are fast and replacing m(t) in the second
equation in (B.12) with its steady state value we arrive at

K

B.13 ) = ~—p )
(B.13) O = =)+ s

where K = a0/ Ym, which is the same as (4.6).
We remark that one may also obtain (B.13) by neglecting the mRNA dynamics in (B.1)
and following the steps above yielding

(B.14) pt) = =y, p(t) + /0°° we (o) o K o) do
-0 h

for the mean protein dynamics.
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