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1. INTRODUCTION

Research on cooperative adaptive cruise control (CACC) has
been receiving increasing attention due to the great potentials of
wireless vehicle-to-vehicle (V2V) communication in improving
traffic efficiency; see Milanes et al. (2014); Zhao et al. (2014);
Ploeg et al. (2014). CACC refers to a platoon of vehicles where
all vehicles react to the motion of the vehicle immediately
ahead based on information obtained by range sensors (e.g.,
radar) while also monitoring the motion of the designated lead-
ing vehicle via V2V communication. However, implementing
CACC in real traffic is difficult since it requires that radar-
equipped vehicles follow each other, which rarely occurs in the
real world due to the low penetration of such vehicles. More-
over, the requirement that each vehicle should communicate
with the leader limits the length of platoon due to the effective
communication range.

To relax the constraints above, connected cruise control (CCC)
was proposed by Zhang and Orosz (2013); Orosz (2014), which
utilizes information broadcasted by multiple vehicles ahead.
CCC requires no prescribed leader and allow the incorporation
of vehicles that are not equipped with range sensors and/or
communication devices. Mixing CCC vehicles into traffic flow
leads to connected vehicle systems (CVSs) that are imple-
mentable in practice while the enhanced flexibility increases the
design complexity. Zhang and Orosz (2015a) and Ge and Orosz
(2014) studied the dynamics the CVSs by using the linearized
model so that the results were only valid in the vicinity of the
equilibrium. Zhang and Orosz (2015b) investigated nonlinear
dynamics of a class of delayed CVSs where all vehicles only
monitor the motion of the vehicle immediately ahead. In this
paper, we extend the analysis to CVSs where CCC vehicles
monitor multiple vehicles ahead. Stability conditions are de-
rived based on the Lyapunov-Krasovskii theory. We also study
the frequency response of CVSs to evaluate their robustness
against disturbances arising from vehicles ahead.

� This work was supported by the National Science Foundation (Award Num-
ber 1351456).

2. CONNECTED CRUISE CONTROL

In Fig. 1, the CCC vehicle i (red) monitors the position sj and
the velocity vj of vehicles j = p, . . . , i − 1. The symbol lj
denotes the length of vehicle j. The long links can only be
realized by wireless communication and the delay σ ≈ 0.2–0.4
[s] arises due to intermittency and packet drops; see Qin et al.
(2014). The short link can be realized using communication
with ξ = σ, through human perception with human reaction
time ξ ≈ 0.5–2 [s] (Johansson and Rumar (1971)), or by range
sensors (e.g., radar) with sensing delay ξ ≈ 0.1–0.2 [s].

In this paper, we neglect the air-drag and the rolling resistance
in the physics-based model presented in Orosz (2014). Then,
the acceleration of vehicle i is determined by the controller:

ṡi(t) = vi(t) ,

v̇i(t) = α1

(
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)
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(
vj(t− σ)− vi(t− σ)

)
,

(1)

where the constants αi−j and βi−j are control gains along the
links of “length” i− j; see Fig. 1. The quantity

hi,j(t) =
1

i− j

(
sj(t)− si(t)−

i−1∑
k=j

lk

)
(2)

denotes the average distance between vehicles i and j. Such
averaging is used to make the equilibrium independent of
the network size. Moreover, V (h) denotes the range policy
function that gives the desired speed as a function of h. Here,
we use the nonlinear range policy function

V (h) =




0 , if h ≤ hst ,
vmax

2

[
1− cos

(
π

h− hst

hgo − hst

)]
, if hst < h < hgo ,

vmax , if h ≥ hgo ,
(3)

Proceedings of the 12th IFAC Workshop on Time Delay Systems
June 28-30, 2015. Ann Arbor, MI, USA

Copyright © IFAC 2015 370

Connected Vehicle Systems
with Nonlinear Dynamics and Time Delays

Linjun Zhang and Gábor Orosz
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the acceleration of vehicle i is determined by the controller:

ṡi(t) = vi(t) ,

v̇i(t) = α1

(
V
(
hi,i−1(t− ξ)

)
− vi(t− ξ)

)

+ β1

(
vi−1(t− ξ)− vi(t− ξ)

)

+
i−2∑
j=p

αi−j

(
Vi

(
hi,j(t− σ)

)
− vi(t− σ)

)

+
i−2∑
j=p

αi−j

(
vj(t− σ)− vi(t− σ)

)
,

(1)

where the constants αi−j and βi−j are control gains along the
links of “length” i− j; see Fig. 1. The quantity

hi,j(t) =
1

i− j

(
sj(t)− si(t)−

i−1∑
k=j

lk

)
(2)

denotes the average distance between vehicles i and j. Such
averaging is used to make the equilibrium independent of
the network size. Moreover, V (h) denotes the range policy
function that gives the desired speed as a function of h. Here,
we use the nonlinear range policy function

V (h) =





0 , if h ≤ hst ,
vmax

2

[
1− cos

(
π

h− hst

hgo − hst

)]
, if hst < h < hgo ,

vmax , if h ≥ hgo ,
(3)
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1. INTRODUCTION

Research on cooperative adaptive cruise control (CACC) has
been receiving increasing attention due to the great potentials of
wireless vehicle-to-vehicle (V2V) communication in improving
traffic efficiency; see Milanes et al. (2014); Zhao et al. (2014);
Ploeg et al. (2014). CACC refers to a platoon of vehicles where
all vehicles react to the motion of the vehicle immediately
ahead based on information obtained by range sensors (e.g.,
radar) while also monitoring the motion of the designated lead-
ing vehicle via V2V communication. However, implementing
CACC in real traffic is difficult since it requires that radar-
equipped vehicles follow each other, which rarely occurs in the
real world due to the low penetration of such vehicles. More-
over, the requirement that each vehicle should communicate
with the leader limits the length of platoon due to the effective
communication range.

To relax the constraints above, connected cruise control (CCC)
was proposed by Zhang and Orosz (2013); Orosz (2014), which
utilizes information broadcasted by multiple vehicles ahead.
CCC requires no prescribed leader and allow the incorporation
of vehicles that are not equipped with range sensors and/or
communication devices. Mixing CCC vehicles into traffic flow
leads to connected vehicle systems (CVSs) that are imple-
mentable in practice while the enhanced flexibility increases the
design complexity. Zhang and Orosz (2015a) and Ge and Orosz
(2014) studied the dynamics the CVSs by using the linearized
model so that the results were only valid in the vicinity of the
equilibrium. Zhang and Orosz (2015b) investigated nonlinear
dynamics of a class of delayed CVSs where all vehicles only
monitor the motion of the vehicle immediately ahead. In this
paper, we extend the analysis to CVSs where CCC vehicles
monitor multiple vehicles ahead. Stability conditions are de-
rived based on the Lyapunov-Krasovskii theory. We also study
the frequency response of CVSs to evaluate their robustness
against disturbances arising from vehicles ahead.

� This work was supported by the National Science Foundation (Award Num-
ber 1351456).

2. CONNECTED CRUISE CONTROL

In Fig. 1, the CCC vehicle i (red) monitors the position sj and
the velocity vj of vehicles j = p, . . . , i − 1. The symbol lj
denotes the length of vehicle j. The long links can only be
realized by wireless communication and the delay σ ≈ 0.2–0.4
[s] arises due to intermittency and packet drops; see Qin et al.
(2014). The short link can be realized using communication
with ξ = σ, through human perception with human reaction
time ξ ≈ 0.5–2 [s] (Johansson and Rumar (1971)), or by range
sensors (e.g., radar) with sensing delay ξ ≈ 0.1–0.2 [s].

In this paper, we neglect the air-drag and the rolling resistance
in the physics-based model presented in Orosz (2014). Then,
the acceleration of vehicle i is determined by the controller:

ṡi(t) = vi(t) ,

v̇i(t) = α1

(
V
(
hi,i−1(t− ξ)

)
− vi(t− ξ)

)

+ β1

(
vi−1(t− ξ)− vi(t− ξ)

)

+
i−2∑
j=p

αi−j

(
Vi

(
hi,j(t− σ)

)
− vi(t− σ)

)

+
i−2∑
j=p

αi−j

(
vj(t− σ)− vi(t− σ)

)
,

(1)

where the constants αi−j and βi−j are control gains along the
links of “length” i− j; see Fig. 1. The quantity

hi,j(t) =
1

i− j

(
sj(t)− si(t)−

i−1∑
k=j

lk

)
(2)

denotes the average distance between vehicles i and j. Such
averaging is used to make the equilibrium independent of
the network size. Moreover, V (h) denotes the range policy
function that gives the desired speed as a function of h. Here,
we use the nonlinear range policy function

V (h) =





0 , if h ≤ hst ,
vmax

2

[
1− cos

(
π

h− hst

hgo − hst

)]
, if hst < h < hgo ,

vmax , if h ≥ hgo ,
(3)
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over, the requirement that each vehicle should communicate
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denotes the length of vehicle j. The long links can only be
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the acceleration of vehicle i is determined by the controller:
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where the constants αi−j and βi−j are control gains along the
links of “length” i− j; see Fig. 1. The quantity
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denotes the average distance between vehicles i and j. Such
averaging is used to make the equilibrium independent of
the network size. Moreover, V (h) denotes the range policy
function that gives the desired speed as a function of h. Here,
we use the nonlinear range policy function

V (h) =
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Fig. 1. A CCC vehicle (red) monitors the motion of multiple
vehicles ahead. The short link (blue) can be realized by
human perception, range sensors, or communication, thus
the delay ξ can be human reaction time, sensing delay, or
communication delay, respectively. Long links (red) can
only be realized via wireless communication with delay
σ. Symbols sj , lj , and vj denote the position, length, and
velocity of vehicle j, respectively, while αi−j , βi−j are
control gains for the link of “length” i− j.

which indicates that the vehicle tends to stop for small distances
and aims to maintain the preset maximum speed vmax for large
distances. In the middle, the desired velocity monotonically
increases with the distance. The nonlinearity in (3) ensures
the smooth change of acceleration at h = hst and h = hgo

and hence improves the driving comfort. According to the data
collected in real traffic (Orosz et al. (2010)), parameters in (3)
are set to be hst = 5 [m], hgo = 35 [m], vmax = 30 [m/s].

We remark that the CCC framework (1) guarantees the exis-
tence of a unique uniform flow equilibrium

s∗i (t) = v∗t− ih∗ −
i−1∑
k=0

lk , vi(t) ≡ v∗ = V (h∗) , (4)

for all i, which is independent of network size, connectivity
structures, information delays, and control gains. The constant
h∗ denotes the equilibrium distance between any pair of consec-
utive vehicles while the constant v∗ is the equilibrium velocity.

3. STABILITY OF CONNECTED VEHICLE SYSTEMS

To evaluate the stability, we use the perturbations
s̃i(t) = si(t)− s∗i (t) , ṽi(t) = vi(t)− v∗ (5)

about the equilibrium (4). To characterize the performance
of CVSs, we evaluate plant stability and head-to-tail string
stability. A vehicle i is said to be plant stable if it approaches the
equilibrium in absence of perturbations from vehicles ahead.
That is, if s̃j(t) ≡ 0, ṽj(t) ≡ 0 for j = 0, . . . , i− 1, then

s̃i(t) → 0 , ṽi(t) → 0 , as t → ∞ . (6)
A vehicle network is said to be plant stable if all following
vehicles approach the equilibrium when the leading vehicle
moves at a constant speed. We remark that, for linear time-
invariant systems where the stability can be guaranteed glob-
ally, the plant stability of all following vehicles is a necessary
and sufficient condition for the plant stability of the vehicle
network. However, for nonlinear systems, plant stability of all
vehicles is only a necessary condition for the plant stability of
the network.

When certain vehicles cause disturbances, these disturbances
propagate upstream along the network. For an (n + 1)-vehicle
network where the head and the tail vehicles are indexed by 0
and n, respectively, the head-to-tail string stability requires that,
in steady state, the vehicle n attenuates the disturbances arising
from vehicle 0, i.e.,

‖ṽns‖ ≤ ‖ṽ0‖ , (7)

where the subscript “s” denotes the steady state. Indeed, the def-
inition of head-to-tail string stability is particularly useful for
vehicle networks containing human-driven vehicles, of which
the dynamics cannot be designed and hence may amplify dis-
turbances. The magnitude of disturbances can be evaluated by
L2 norm (Ploeg et al. (2014)), which characterizes the “energy”
of the disturbance signal. Since in practice the peak value of the
disturbance may be more relevant, we use the L∞ norm that is
defined by ‖ṽ‖∞ = supt>0 |ṽ(t)|.
Substituting (5) into (1) yields
˙̃si(t) = ṽi(t) ,

˙̃vi(t) = α1

(
V (hi,i−1(t− ξ))− V (h∗)− ṽi(t− ξ)

)

+ β1

(
ṽi−1(t− ξ)− ṽi(t− ξ)

)

+
i−2∑
j=p

αi−j

(
V (hi,j(t− σ))− V (h∗)− ṽi(t− σ)

)

+
i−2∑
j=p

βi−j

(
ṽj(t− σ)− ṽi(t− σ)

)
.

(8)

We assume that the distance between each pair of consecutive
vehicles is always bounded, that is, hk,k−1 ∈ D ⊆ R+ for
k = 1, 2, . . .. It follows that h∗ ∈ D and hi,j ∈ D for
all i, j = 1, 2, . . .; cf. (2). Since the function V (h) in (3) is
continuously differentiable for all h, based on the mean value
theorem, there exist variables ψi,j ∈ D, such that

V (hi,j(t−ξ))−V (h∗) =
V ′(ψi,j)

i− j
(s̃j(t−ξ)−s̃i(t−ξ)) , (9)

cf. (2), where the prime denotes the derivative with respect to
the headway h. We remark that, ψi,j depends on hi,j(t − ξ)
and h∗ but it does not depend on time t explicitly, and ψi,j

is always bounded by the compact domain D. Since V ′(h) is
continuous with respect to h (cf. 3), V ′(ψi,j) is also bounded
for ∀ψi,j ∈ D.

Defining x̃i(t) = [s̃i(t) , ṽi(t)]
T, substituting (9) into (8), and

writing the result into matrix form, we obtain
˙̃xi(t) = A0x̃i(t) +Aξ,i(Ψi)x̃i(t− ξ) +Aσ,i(Ψi)x̃i(t− σ)

+B1(Ψi)x̃i−1(t− ξ) +

i−2∑
j=p

Bi−j(Ψi)x̃j(t− σ) ,

(10)

where Ψi =
[
ψi,i−1, . . . , ψi,p

]
and other matrices are given by

A0 =

[
0 1
0 0

]
, Aξ,i(Ψi) =

[
0 0

−ϕ1(ψi,i−1) −κ1

]
,

Aσ,i(Ψi) =

[
0 0

−
∑i−2

k=p
ϕi−k(ψi,k) −

∑i−2

k=p
κi−k

]
,

Bi−k(Ψi) =

[
0 0

ϕi−k(ψi,k) βi−k

]
,

(11)

for j = p, . . . , i− 1 and

ϕi−j(ψi,j) =
αi−jV

′(ψi,j)

i− j
, κi−j = αi−j + βi−j . (12)

Note that (10) is equivalent to (1) as no approximation is used
during the derivation. To save space, we will not spell out the
argument ψi,j in ϕi,j(ψi,j) and the argument Ψi in Aξ,i(Ψi),
Aσ,i(Ψi), and Bi−k(Ψi) in the rest of this paper.
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3.1 Plant Stability

First, we define two matrices that will be used in the plant
stability conditions

Ai = A0 +Aξ,i +Aσ,i , Ad,i = Aξ,i +Aσ,i , (13)
cf. (11). Then, for cases ξ = σ and ξ �= σ, sufficient
stability conditions are presented in Theorem 1 and Theorem 2,
respectively.
Theorem 1. When ξ = σ, vehicle i is plant stable if for all
hi,j ∈ D (j = i−1, . . . , p) there exist positive definite matrices
P,Q,W such that

Ω =




G

σ
AT

0 WAd,i −PAd,i

AT
d,iWA0

σAT
d,iWAd,i −Q

σ
02×2

−AT
d,iP 02×2 −W


 (14)

is negative definite over the domain Di−p, where
G = Ai

TP + PAi +Q+ σAT
0 WA0 . (15)

Note that the domain Di−p include all possible values of Ψi.
Theorem 2. When ξ �= σ, vehicle i is plant stable if for all
hi,j ∈ D (j = i−1, . . . , p) there exist positive definite matrices
P,Q1, Q2,W1,W2 and an appropriate matrix R such that

Ξ1 =




H2

σ

AT
0 H1Aξ,i

σ

AT
0 H1Aσ,i

σ
−PAd,i

AT
ξ,iH1A0

σ

AT
ξ,iH1Aξ,i −Q1

σ

AT
ξ,iH1Aσ,i

σ
02×2

AT
σ,iH1A0

σ

AT
σ,iH1Aξ,i

σ

AT
σ,iH1Aσ,i −Q2

σ
02×2

−AT
d,iP 02×2 02×2 −W1




,

Ξ2 =

[
−R −sgn(ξ − σ)PAσ,i

−sgn(ξ − σ)AT
σ,iP −W2

]

(16)

are negative definite over the domain Di−p, where
H1 = σW1 + |ξ − σ|W2 ,

H2 = PAi +AT
i P +Q1 +Q2 +AT

0 H1A0 + |ξ − σ|R .
(17)

Theorem 1 was proved in Zhang and Orosz (2015b) while
the proof of Theorem 2 is given in Appendix A. Recall that
the matrices Aξ,i and Aσ,i depend on the state; cf. (9) and
(11). But the explicit expressions of ψi,j are not needed.
When applying these two theorems, we begin with discretizing
the domain Di−p, and then solve the linear matrix inequal-
ities (LMIs) numerically for P,Q,W in Theorem 1 or for
P,Q1, Q2,W1,W2, R in Theorem 2 by using LMI package in
Matlab. We remark that there may exist multiple solutions but
we stop the calculation when a solution is found.

3.2 Head-to-Tail String Stability

To evaluate head-to-tail string stability, we investigate the
steady-state response of the corresponding nonlinear delayed
network under periodic disturbance. A sufficient condition for
the existence of periodic steady-state response is provided in
the following theorem.
Theorem 3. Suppose that the disturbance imposed on the head
vehicle is T -periodic. If Theorem 1 and Theorem 2 hold for
cases ξ = σ and ξ �= σ, respectively, then the vehicle network
has T -periodic steady-state response, i.e.,

x̃is(t+ T ) = x̃is(t) , i = 1, 2, . . . (18)
where the subscript “s” represents the steady state.

The proof of Theorem 3 is given in Appendix B. Theorem 3
implies that a periodic excitation leads to a periodic steady-
state response with the same period. Here, we investigate the
frequency response of CVSs by imposing the sinusoidal distur-
bance

s̃0(t) =
vamp

ω
sin(ωt) , ṽ0(t) = vamp cos(ωt) (19)

on the head vehicle 0; cf. (5), where vamp , ω ∈ R+ denote the
amplitude and the frequency of the disturbance, respectively.
Since s̃0(t) and ṽ0(t) are periodic with period T = 2π/ω, ac-
cording to Theorem 3, the steady-state response of this vehicle
network has the same period. However, due to the nonlinear
dynamics, the steady states are not purely sinusoidal but may
be expressed by using the Fourier series.

Considering (7) and (19), a vehicle network is head-to-tail
string stable for amplitude vamp if the head-to-tail amplification
ratio satisfies

Φn,0(ω, vamp) = ‖ṽns‖/‖ṽ0‖ < 1 (20)

for all ω > 0. This condition is different from those used for
linear networks, where the amplification ratio only depends on
the disturbance frequency ω; see Zhang and Orosz (2013).

To apply condition (20), the steady-state velocity of the tail
vehicle needs to be determined. However, the analytical expres-
sions may not be obtained in a closed form due to nonlinearities
and delays. Thus, we seek for the approximations by using
the third-order Taylor expansion of (1) about the uniform flow
equilibrium (4), which yields

˙̃si(t) = ṽi(t) ,

˙̃vi(t) = −ϕ∗
1s̃i(t− ξ)− κ1ṽi(t− ξ)

+ ϕ∗
1s̃i−1(t− ξ) + β1ṽi−1(t− ξ)

+ α1

3∑
q=2

εq
(
s̃i−1(t− ξ)− s̃i(t− ξ)

)q

+

i−2∑
j=p

[
− ϕ∗

i−j s̃i(t− σ)− κi−j ṽi(t− σ)

+ ϕ∗
i−j s̃j(t− σ) + βi−j ṽj(t− σ)

+ αi−j

3∑
q=2

εq

( s̃j(t− σ)− s̃i(t− σ)

i− j

)q
]
,

(21)

where ϕ∗
i−j = ϕi−j(h

∗) and κi−j are given in (12), and

εq = 1
q!

dqV (h∗)
dhq for q = 2, 3.

The solutions of (21) can be expressed as s̃i(t, ε2, ε3) and
ṽi(t, ε2, ε3), and the first order Taylor expansion about ε2 and
ε3 yields

s̃i(t, ε2, ε3) = s̃i,1(t) + ε2s̃i,2(t) + ε3s̃i,3(t) ,

ṽi(t, ε2, ε3) = ṽi,1(t) + ε2ṽi,2(t) + ε3ṽi,3(t) .
(22)

Indeed, according to (19), we have

s̃0,1(t) =
vamp

ω
sin(ωt) , ṽ0,1(t) = vamp cos(ωt) , (23)

while s̃0,2(t) = s̃0,3(t) = 0 and ṽ0,2(t) = ṽ0,3(t) = 0.
Substituting (22) into (21) and matching the coefficients of ε2
and ε3 gives

IFAC TDS 2015
June 28-30, 2015. Ann Arbor, MI, USA

372



 Linjun Zhang et al. / IFAC-PapersOnLine 48-12 (2015) 370–375 373

3.1 Plant Stability

First, we define two matrices that will be used in the plant
stability conditions

Ai = A0 +Aξ,i +Aσ,i , Ad,i = Aξ,i +Aσ,i , (13)
cf. (11). Then, for cases ξ = σ and ξ �= σ, sufficient
stability conditions are presented in Theorem 1 and Theorem 2,
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Theorem 1. When ξ = σ, vehicle i is plant stable if for all
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hi,j ∈ D (j = i−1, . . . , p) there exist positive definite matrices
P,Q1, Q2,W1,W2 and an appropriate matrix R such that

Ξ1 =




H2

σ

AT
0 H1Aξ,i

σ

AT
0 H1Aσ,i

σ
−PAd,i

AT
ξ,iH1A0

σ

AT
ξ,iH1Aξ,i −Q1

σ

AT
ξ,iH1Aσ,i

σ
02×2

AT
σ,iH1A0

σ

AT
σ,iH1Aξ,i

σ

AT
σ,iH1Aσ,i −Q2

σ
02×2

−AT
d,iP 02×2 02×2 −W1




,

Ξ2 =

[
−R −sgn(ξ − σ)PAσ,i

−sgn(ξ − σ)AT
σ,iP −W2

]

(16)

are negative definite over the domain Di−p, where
H1 = σW1 + |ξ − σ|W2 ,

H2 = PAi +AT
i P +Q1 +Q2 +AT

0 H1A0 + |ξ − σ|R .
(17)

Theorem 1 was proved in Zhang and Orosz (2015b) while
the proof of Theorem 2 is given in Appendix A. Recall that
the matrices Aξ,i and Aσ,i depend on the state; cf. (9) and
(11). But the explicit expressions of ψi,j are not needed.
When applying these two theorems, we begin with discretizing
the domain Di−p, and then solve the linear matrix inequal-
ities (LMIs) numerically for P,Q,W in Theorem 1 or for
P,Q1, Q2,W1,W2, R in Theorem 2 by using LMI package in
Matlab. We remark that there may exist multiple solutions but
we stop the calculation when a solution is found.

3.2 Head-to-Tail String Stability

To evaluate head-to-tail string stability, we investigate the
steady-state response of the corresponding nonlinear delayed
network under periodic disturbance. A sufficient condition for
the existence of periodic steady-state response is provided in
the following theorem.
Theorem 3. Suppose that the disturbance imposed on the head
vehicle is T -periodic. If Theorem 1 and Theorem 2 hold for
cases ξ = σ and ξ �= σ, respectively, then the vehicle network
has T -periodic steady-state response, i.e.,

x̃is(t+ T ) = x̃is(t) , i = 1, 2, . . . (18)
where the subscript “s” represents the steady state.

The proof of Theorem 3 is given in Appendix B. Theorem 3
implies that a periodic excitation leads to a periodic steady-
state response with the same period. Here, we investigate the
frequency response of CVSs by imposing the sinusoidal distur-
bance

s̃0(t) =
vamp

ω
sin(ωt) , ṽ0(t) = vamp cos(ωt) (19)

on the head vehicle 0; cf. (5), where vamp , ω ∈ R+ denote the
amplitude and the frequency of the disturbance, respectively.
Since s̃0(t) and ṽ0(t) are periodic with period T = 2π/ω, ac-
cording to Theorem 3, the steady-state response of this vehicle
network has the same period. However, due to the nonlinear
dynamics, the steady states are not purely sinusoidal but may
be expressed by using the Fourier series.

Considering (7) and (19), a vehicle network is head-to-tail
string stable for amplitude vamp if the head-to-tail amplification
ratio satisfies

Φn,0(ω, vamp) = ‖ṽns‖/‖ṽ0‖ < 1 (20)

for all ω > 0. This condition is different from those used for
linear networks, where the amplification ratio only depends on
the disturbance frequency ω; see Zhang and Orosz (2013).

To apply condition (20), the steady-state velocity of the tail
vehicle needs to be determined. However, the analytical expres-
sions may not be obtained in a closed form due to nonlinearities
and delays. Thus, we seek for the approximations by using
the third-order Taylor expansion of (1) about the uniform flow
equilibrium (4), which yields

˙̃si(t) = ṽi(t) ,

˙̃vi(t) = −ϕ∗
1s̃i(t− ξ)− κ1ṽi(t− ξ)

+ ϕ∗
1s̃i−1(t− ξ) + β1ṽi−1(t− ξ)

+ α1

3∑
q=2

εq
(
s̃i−1(t− ξ)− s̃i(t− ξ)

)q

+

i−2∑
j=p

[
− ϕ∗

i−j s̃i(t− σ)− κi−j ṽi(t− σ)

+ ϕ∗
i−j s̃j(t− σ) + βi−j ṽj(t− σ)

+ αi−j

3∑
q=2

εq

( s̃j(t− σ)− s̃i(t− σ)

i− j

)q
]
,

(21)

where ϕ∗
i−j = ϕi−j(h

∗) and κi−j are given in (12), and

εq = 1
q!

dqV (h∗)
dhq for q = 2, 3.

The solutions of (21) can be expressed as s̃i(t, ε2, ε3) and
ṽi(t, ε2, ε3), and the first order Taylor expansion about ε2 and
ε3 yields

s̃i(t, ε2, ε3) = s̃i,1(t) + ε2s̃i,2(t) + ε3s̃i,3(t) ,

ṽi(t, ε2, ε3) = ṽi,1(t) + ε2ṽi,2(t) + ε3ṽi,3(t) .
(22)

Indeed, according to (19), we have

s̃0,1(t) =
vamp

ω
sin(ωt) , ṽ0,1(t) = vamp cos(ωt) , (23)

while s̃0,2(t) = s̃0,3(t) = 0 and ṽ0,2(t) = ṽ0,3(t) = 0.
Substituting (22) into (21) and matching the coefficients of ε2
and ε3 gives
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˙̃si,q(t) = ṽi,q(t) ,

˙̃vi,q(t) = −ϕ∗
1s̃i,q(t− ξ)− κ1ṽi,q(t− ξ)

+ ϕ∗
1s̃i−1,q(t− ξ) + β1ṽi−1,q(t− ξ)

+ α1λq

(
s̃i−1,1(t− ξ)− s̃i,1(t− ξ)

)q

+

i−2∑
j=p

[
− ϕ∗

i−j s̃i,q(t− σ)− κi−j ṽi,q(t− σ)

+ ϕ∗
i−j s̃j,q(t− σ) + βi−j ṽj,q(t− σ)

+

i−2∑
j=p

αi−jλq

( s̃j,1(t− σ)− s̃i,1(t− σ)

i− j

)q
]
,

(24)
where i = 1, 2, . . ., q = 1, 2, 3, λ1 = 0 and λ2 = λ3 = 1.

For q = 1, (24) becomes a linear time-invariant (LTI) system
with excitation arising only from s̃0,1(t) and ṽ0,1(t); cf. (23).
Thus, the steady states of (24) for q = 1 can be expressed by

s̃is,1(t) = ai,1 cos(ωt) + bi,1 sin(ωt) ,

ṽis,1(t) = ci,1 cos(ωt) + di,1 sin(ωt) ,
(25)

where ai,1, bi,1, ci,1, di,1 are constant coefficients to be deter-
mined. For compactness, we collect them in the vector

zi,1 = [ ai,1 bi,1 ci,1 di,1 ]
T
. (26)

Substituting (25) into (24) for q = 1 and matching coefficients
of cos(ωt) and sin(ωt), we obtain

zi,1 =
(
C(ω)

)−1
Di,1 , (27)

where

C(ω) =

[
ωE −I2

C2,1(ω) C2,2(ω)

]
,

Di,1 = B∗
1 ⊗ F (ωξ)zi−1,1 +

i−2∑
j=p

B∗
i−j ⊗ F (ωσ)zj,1 .

(28)

Here, the operation ⊗ denotes the Kronecker product, I2 de-
notes the 2-dimensional identity matrix, B∗

i−j = Bi−j(h
∗) is

given in (11), and

E =

[
0 1
−1 0

]
, F (θ) =

[
cos θ − sin θ
sin θ cos θ

]
,

C2,1(ω) = ϕ1F (ωξ) +

i−2∑
j=p

ϕi−jF (ωσ) ,

C2,2(ω) = ωE + κ1F (ωξ) +

i−2∑
j=p

κi−jF (ωσ) .

(29)

When considering (24) for q = 2 and q = 3, the whole
network can be seen as a LTI system with external excitations
only arising from s̃2j,1 and s̃3j,1 for j = p, . . . , i, respectively.
According to (25), s̃2j,1 only contains the frequency 2ω while
s̃3j,1 contains frequencies ω and 3ω. Thus, the corresponding
steady states can be written in the form

s̃is,2(t) = ai,2 cos(2ωt) + bi,2 sin(2ωt) ,

ṽis,2(t) = ci,2 cos(2ωt) + di,2 sin(2ωt) ,

s̃is,3(t) = ai,3,1 cos(ωt) + bi,3,1 sin(ωt)

+ ai,3,3 cos(3ωt) + bi,3,3 sin(3ωt) ,

ṽis,3(t) = ci,3,1 cos(ωt) + di,3,1 sin(ωt)

+ ci,3,3 cos(3ωt) + di,3,3 sin(3ωt) .

(30)

We define coefficient vectors

zi,2 = [ ai,2 bi,2 ci,2 di,2 ]
T
,

zi,3,k = [ ai,3,k bi,3,k ci,3,k di,3,k ]
T
, k = 1, 3 ,

(31)

cf. (26). Substituting (30) into (24) for q = 2 and q = 3, one
can obtain the coefficients

zi,2 =
(
C(2ω)

)−1
Di,2 ,

zi,3,k =
(
C(kω)

)−1
Di,3,k , k = 1, 3 ,

(32)

where the matrix C is defined in (28,29) and

Di,2 = B∗
1 ⊗ F (2ωξ)zi−1,2 +

i−2∑
j=p

B∗
i−j ⊗ F (2ωσ)zj,2

+ α1M(2ωξ)Ji−1 +

i−2∑
j=p

αi−j

(i− j)2
M(2ωσ)Jj ,

Di,3,k = B∗
1 ⊗ F (kωξ)zi−1,3,k +

i−2∑
j=p

B∗
i−j ⊗ F (kωσ)zj,3,k

+ α1M(kωξ)Ki−1,k +

i−2∑
j=p

αi−j

(i− j)3
M(kωσ)Kj,k ,

(33)
for k = 1, 3, and

M(θ) =

[
O2 O2

O2 F (θ)

]
,

Jj =




0
0(

(aj,1 − ai,1)
2 − (bj,1 − bi,1)

2
)/

2
(aj,1 − ai,1)(bj,1 − bi,1)


 ,

Kj,1 =




0
0(

3(aj,1 − ai,1)
3 + 3(aj,1 − ai,1)(bj,1 − bi,1)

2
)/

4(
3(aj,1 − ai,1)

2(bj,1 − bi,1) + 3(bj,1 − bi,1)
3
)/

4


 ,

Kj,3 =




0
0(

(aj,1 − ai,1)
3 − 3(aj,1 − ai,1)(bj,1 − bi,1)

2
)/

4(
3(aj,1 − ai,1)

2(bj,1 − bi,1)− (bj,1 − bi,1)
3
)/

4


 ,

(34)
and O2 denotes the 2-dimensional zero matrix.

According to (22), we can approximate the steady states s̃is(t)
and ṽis(t) by using the solutions (25) and (30) for all i =
1, . . . , n. Then, one can use the condition (20) to evaluate the
head-to-tail string stability of a vehicle network.

4. CASE STUDY AND SIMULATIONS

In this section, we investigate the dynamics of a 31-vehicle
network where every other vehicle monitors the second nearest
vehicle using communication, as shown in Fig. 2. We assume
that all vehicles are driven by human drivers with reaction time
τ = 0.5 [s] and the control gains α1 = 0.3 [1/s], β1 = 0.5 [1/s].
We also assume the communication delay σ = 0.2 [s]. Then,
we design α2 and β2 to achieve plant stability for CCC vehicles
and to guarantee head-to-tail string stability. For plant stability,
we use Theorem 2 and consider D = {h : 13 ≤ h ≤ 27 [m]}
that corresponds to the velocity range 4.96 � v � 25.04 [m/s].
We remark that the plant stable domain decreases when the
area of D enlarges. However, since Theorem 2 is a sufficient
condition, the obtained control gains may also result in plant
stability for a domain larger than D. To test head-to-tail string
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Fig. 2. Connected vehicle system with next-nearest neighbor
interactions. Symbols τ and σ denote the human reaction
time and communication delay, respectively.

Fig. 3. Stability diagram for a 31-vehicle network with configu-
ration shown in Fig. 2. The right panel is a zoomed region
of the left panel. The plant stable domain and the string
stable domain are shaded by light gray and dark gray, re-
spectively. Solid red and solid blue curves denote the plant
stability and string stability boundaries, respectively. The
dashed counterparts are the stability boundaries obtained
based on the linearized model.

stability, we use the condition (20) with v∗ = 22.5 [m/s] and
vamp = 6 [m/s]; cf. (19). The corresponding stability diagram
is shown in the (β2, α2)-plane in Fig. 3, where the plant stable
domain and the string stable domain are shaded by light gray
and dark gray, respectively. The solid red and the solid blue
curves denote the plant stability boundary and string stability
boundary, respectively, while the dashed red and the dashed
blue curves are the boundaries obtained by Zhang and Orosz
(2015a) based on the linearized model.

To demonstrate the system performance, we use the control
gains corresponding to the points A–C shown in the right
panel of Fig. 3. Simulations shown in Fig. 4(a)–(c) indicate
that the system is plant stable for these three cases. Point A
(α2 = β2 = 0) represents the case when the communication
is not utilized, and this point is outside the linear and nonlinear
string stable domains. Correspondingly, Fig. 4(a) demonstrates
that the disturbance arising from the head vehicle is amplified
when reaching the tail vehicle and leads to stop-and-go motion.
Point B is inside the linear string stable domain but outside
the nonlinear one, and Fig. 4(b) shows that the disturbance
is amplified; see the zoomed region. Point C is inside the
nonlinear string stable domain and thus the disturbances are
attenuated as shown in Fig. 4(c); see the zoomed region. All
simulations show that the steady state of the tail vehicle is
periodic with the same period as the head vehicle, although
the oscillations are not sinusoidal. In Fig. 4(d), for case B
we compare the linear estimation (dashed red) obtained in
Zhang and Orosz (2015a) and nonlinear estimation (dashed
blue) obtained by using the method given in Section 3.2, where
the numerical simulation (solid black) of the tail vehicle is given
as benchmark. It shows that the nonlinear estimation is more
accurate than the linear estimation, especially close at the peak
value, which corresponds to the L∞ norm of the signal.
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Fig. 4. Simulations for points A–C in Fig. 3 are shown in
panels (a)–(c), respectively, where the velocities of head
vehicle and tail vehicle are plotted by the magenta and
the black curves, respectively. Panel (d) demonstrates the
comparison of the linear estimation (red dashed) and the
nonlinear estimation (blue dashed) with the numerical
simulation (black solid) of the tail vehicle for case B.

5. CONCLUSION

In this paper, we investigated the dynamics of nonlinear con-
nected vehicle systems in presence of information delays. Suf-
ficient conditions for plant stability and head-to-tail string sta-
bility were derived based on Lyapunov-Krasovskii theory and
then visualized in stability diagrams for choosing control gains.
Numerical simulations indicated that the stable domains de-
rived in this paper are more accurate than the ones obtained
by using linearized models. In our CCC design, we neglected
some physical effects such as air drag and rolling resistance.
In the future, we will investigate the design of CCC based on
physics-based vehicle models.
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Fig. 2. Connected vehicle system with next-nearest neighbor
interactions. Symbols τ and σ denote the human reaction
time and communication delay, respectively.

Fig. 3. Stability diagram for a 31-vehicle network with configu-
ration shown in Fig. 2. The right panel is a zoomed region
of the left panel. The plant stable domain and the string
stable domain are shaded by light gray and dark gray, re-
spectively. Solid red and solid blue curves denote the plant
stability and string stability boundaries, respectively. The
dashed counterparts are the stability boundaries obtained
based on the linearized model.

stability, we use the condition (20) with v∗ = 22.5 [m/s] and
vamp = 6 [m/s]; cf. (19). The corresponding stability diagram
is shown in the (β2, α2)-plane in Fig. 3, where the plant stable
domain and the string stable domain are shaded by light gray
and dark gray, respectively. The solid red and the solid blue
curves denote the plant stability boundary and string stability
boundary, respectively, while the dashed red and the dashed
blue curves are the boundaries obtained by Zhang and Orosz
(2015a) based on the linearized model.

To demonstrate the system performance, we use the control
gains corresponding to the points A–C shown in the right
panel of Fig. 3. Simulations shown in Fig. 4(a)–(c) indicate
that the system is plant stable for these three cases. Point A
(α2 = β2 = 0) represents the case when the communication
is not utilized, and this point is outside the linear and nonlinear
string stable domains. Correspondingly, Fig. 4(a) demonstrates
that the disturbance arising from the head vehicle is amplified
when reaching the tail vehicle and leads to stop-and-go motion.
Point B is inside the linear string stable domain but outside
the nonlinear one, and Fig. 4(b) shows that the disturbance
is amplified; see the zoomed region. Point C is inside the
nonlinear string stable domain and thus the disturbances are
attenuated as shown in Fig. 4(c); see the zoomed region. All
simulations show that the steady state of the tail vehicle is
periodic with the same period as the head vehicle, although
the oscillations are not sinusoidal. In Fig. 4(d), for case B
we compare the linear estimation (dashed red) obtained in
Zhang and Orosz (2015a) and nonlinear estimation (dashed
blue) obtained by using the method given in Section 3.2, where
the numerical simulation (solid black) of the tail vehicle is given
as benchmark. It shows that the nonlinear estimation is more
accurate than the linear estimation, especially close at the peak
value, which corresponds to the L∞ norm of the signal.
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Fig. 4. Simulations for points A–C in Fig. 3 are shown in
panels (a)–(c), respectively, where the velocities of head
vehicle and tail vehicle are plotted by the magenta and
the black curves, respectively. Panel (d) demonstrates the
comparison of the linear estimation (red dashed) and the
nonlinear estimation (blue dashed) with the numerical
simulation (black solid) of the tail vehicle for case B.

5. CONCLUSION

In this paper, we investigated the dynamics of nonlinear con-
nected vehicle systems in presence of information delays. Suf-
ficient conditions for plant stability and head-to-tail string sta-
bility were derived based on Lyapunov-Krasovskii theory and
then visualized in stability diagrams for choosing control gains.
Numerical simulations indicated that the stable domains de-
rived in this paper are more accurate than the ones obtained
by using linearized models. In our CCC design, we neglected
some physical effects such as air drag and rolling resistance.
In the future, we will investigate the design of CCC based on
physics-based vehicle models.
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Appendix A. PROOF OF THEOREM 2

When analyzing plant stability, we neglect the disturbances
from other vehicles, i.e., x̃j(t) ≡ 0 for j = p, . . . , i − 1 in
(10), leading to

˙̃xi(t) = A0x̃i(t) +Aξ,ix̃i(t− ξ) +Aσ,ix̃i(t− σ) . (A.1)

Using Newton-Leibniz formula

x̃i(t− ξ) = x̃i(t)−
∫ t

t−ξ

˙̃xi(ρ) dρ (A.2)

in (A.1) results in

˙̃xi(t) = Aix̃i(t)−Ad,i

∫ t

t−σ

˙̃xi(ρ) dρ−Aξ,i

∫ t−σ

t−ξ

˙̃xi(ρ) dρ .

(A.3)

To investigate the stability of the equilibrium (4) for ξ �= σ, we
use the functional

L = x̃T
i (t)Px̃i(t) +

∫ t

t−ξ

x̃T
i (ρ)Q1x̃i(ρ) dρ

+

∫ t

t−σ

x̃T
i (ρ)Q2x̃i(ρ) dρ+

∫ 0

−σ

∫ t

t+θ

˙̃xT
i (ρ)W1

˙̃xi(ρ) dρdθ

+ sgn(ξ − σ)

∫ −σ

−ξ

∫ t

t+θ

˙̃xT
i (ρ)W2

˙̃xi(ρ) dρdθ ,

(A.4)
where the constant matrices P,Q1, Q2,W1,W2 are all positive
definite so that L is positive definite as well.

Differentiating (A.4) with respect to time, substituting (A.1)
and (A.3) into the result, and adding

0 = |ξ − σ|xT
i (t)Rxi(t)− sgn(ξ − σ)

∫ t−σ

t−ξ

xT
i (t)Rxi(t) dρ

(A.5)
to the resulting equation, we obtain

L̇ = X̃T
i (t)ΦX̃i(t)− 2x̃T

i (t)PAd,i

∫ t

t−σ

˙̃xi(ρ) dρ

− 2x̃T
i (t)PAξ,i

∫ t−σ

t−ξ

˙̃xi(ρ) dρ−
∫ t

t−σ

˙̃xT
i (ρ)W1

˙̃xi(ρ) dρ

− sgn(ξ − σ)

∫ t−σ

t−ξ

x̃T
i (ρ)W2

˙̃xi(ρ) dρ .

(A.6)

Here, X̃T
i (t) = [x̃T

i (t), x̃
T
i (t− ξ), x̃T

i (t− σ)] and

Φ =




H2 AT
0 H1Aξ,i AT

0 H1Aσ,i

AT
ξ,iH1A0 AT

ξ,iH1Aξ,i −Q1 AT
ξ,iH1Aσ,i

AT
σ,iH1A0 AT

σ,iH1Aξ,i AT
σ,iH1Aσ,i −Q2


 ,

(A.7)
where H1 and H2 are given in (17). Substituting the identity

X̃T
i (t)ΦX̃i(t) =

1

σ

∫ t

t−σ

X̃T
i (t)ΦX̃i(t) dρ (A.8)

into (A.6) leads to

L̇ =

∫ t

t−σ

χ̃T
i (t, ρ)Ξ1χ̃i(t, ρ) dρ+

∫ t−σ

t−ξ

φ̃T
i (t, ρ)Ξ2φ̃i(t, ρ) dρ ,

(A.9)
where χ̃T

i (t, ρ) = [x̃T
i (t), x̃T

i (t − ξ), x̃T
i (t − σ), ˙̃xT

i (ρ)],
φ̃T
i (t, ρ) = [x̃T

i (t), ˙̃xT
i (ρ)], and Ξ1, Ξ2 are given in (16).

Indeed, both matrices Ξ1 and Ξ2 depend on Ψi ∈ Di−p; cf. (11)
and (13). If Ξ1 and Ξ2 are both negative definite over the whole
domain Di−p, then L̇ is negative definite for ∀Ψi ∈ Di−p,
implying x̃i(t) → 0 as t → ∞.

Appendix B. PROOF OF THEOREM 3

First, we study the dynamics of vehicle i and assume that the
states of vehicle j = p, . . . , i− 1 are T -periodic, i.e.,

sj(t+ T ) = sj(t) , vj(t+ T ) = vj(t) . (B.1)

We define the error states as ei,s(t) = si(t + T ) − si(t) and
ei,v(t) = vi(t + T ) − vi(t). Then, substituting t = t + T into
(1) and subtracting (1) from the result while considering (B.1)
results in
ėi,s(t) = ei,v(t) ,

ėi,v(t) = α1

(
V
(
hi,i−1(t+ T − ξ)

)
− V

(
hi,i−1(t− ξ)

))

+
i−2∑
j=p

αi−j

(
V
(
hi,j(t+ T − σ)

)
− V

(
hi,j(t− σ)

))

− κ1ei,v(t− ξ)−
i−2∑
j=p

κi−jei,v(t− σ) ,

(B.2)
where κi−j is given in (12). For hi,j ∈ D, based on the mean
value theorem, there exist variables µi,j ∈ D such that

V
(
hi,j(t+T − r)

)
−V

(
hi,j(t− r)

)
= −V ′(µi,j)

i− j
ei,s(t− r) ,

(B.3)
where r can be either ξ or σ.

Substituting (B.3) into (B.2) and writing the result into matrix
form leads to
ėi(t) = A0ei(t)+Aξ,i(Ui)ei(t−ξ)+Aσ,i(Ui)ei(t−σ) , (B.4)

where ei(t) = [ei,s(t) , ei,v(t)]
T, Ui = [µi,i−1, . . . , µi,p], and

A0, Aξ,i, Aσ,i are given in (11) by replacing Ψi with Ui.

Note that (B.4) is analogous to (A.1) since Ψi and Ui have
the same bounds, i.e., Ψi, Ui ∈ Di−p. When Theorem 1 and
Theorem 2 hold, the equilibrium x̃i(t) = 0 is asymptotically
stable in (A.1). Analogously, if Theorem 1 and Theorem 2 hold,
ei(t) = 0 is asymptotically stable in (B.4) as well. At steady
state, we have eis(t) = 0, implying that xis(t+ T ) = xis(t).

Since the state of vehicle 0 is T -periodic, the steady-state
of vehicle 1 will be T -periodic. Repeating this process to
vehicles i = 2, 3, . . . completes the proof.
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