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Abstract:
In this study the lateral control of an automated vehicle is analysed with the help of a single-
track model while subject to a hierarchical control algorithm. At the higher-level we command
the steering angle based on the vehicle’s relative position and orientation to the desired path,
while the lower-level controller tries to achieve this angle by adjusting the steering torque. The
stability of the straight-line motion is investigated by incorporating time delays at both control
levels. We demonstrate that the two control algorithms can be designed independently from
each other. Moreover, we show that the stability of the lower-level controller is highly sensitive
to the delay, that is, to ensure stability very high sampling frequency is required.
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1. INTRODUCTION

In recent years automated driving of cars and different
computer-based driving aid systems became increasingly
well-spread. One essential task demanded from these con-
trol algorithms is to follow a given path with given speed
(Falcone et al., 2007),(Kayacan et al., 2016). It is usual
to deal with this problem with two separate controllers
assigned to the longitudinal and the lateral dynamics of
the vehicle (Ulsoy et al., 2012). Our analysis here focuses
on the lateral control. One of the simplest case is to follow
a straight line with the vehicle, e.g., a lane on the highway.
This simple manoeuvre can be used for selecting the gains
of the lateral control algorithm as such experiments can
be conveniently conducted on test tracks.

As in every control algorithm, time delay influences the
stability of steering controllers as shown in (Shuai et al.,
2014),(Jalali et al., 2017). In this paper we consider a hier-
archical controller. The higher-level controller determines
the desired steering angle based on the vehicle’s position
and orientation with respect to its desired path, while the
lower-level controller determines the corresponding steer-
ing torque needed. Consequently, two different time delays
appear in the system corresponding to the two different
control loops. The delay in the higher-level is of magnitude
0.1-0.3 s. This is related to the time needed for processing
camera images and GPS signals. The lower level controller
may also contain delay up to a few milliseconds and this is
related to the sampling frequency of that controller. In the
present study we focus on the analysis of the straight-line
motion with specific attention on how and to what extent
the two delays influence stability.

Fig. 1. The in-plane, single-track (so-called bicycle) model
of a front wheel drive car.

2. VEHICLE DYNAMICS AND CONTROL DESIGN

To describe the lateral and yaw motion of the car we utilize
an in-plane single-track model shown in Figure 1 which is
widely used to study vehicle handling (Pacejka, 2012). The
position and orientation of the vehicle in the horizontal
plane are given by the components x and y of the position
vector of the center of gravity G and the yaw angle ψ.
The front axle of the vehicle is steered as represented by
the steering angle δ. These four generalized coordinates
describe the configuration of the system unambiguously.



The geometry of the vehicle is described by the wheelbase
l and the distance of the center of gravity from the rear
axle denoted by d. Moreover, the mass of the vehicle is
denoted by m while its moment of inertia about its center
of mass is denoted by JG. The mass of the steering system
(including the front wheel) is denoted by mF while the
moment of inertia about the center of the front wheel F is
denoted by JF. (The mass and the mass moment of inertia
of the rear wheel are incorporated in m and JG.)

We distinguish between the specific points of the wheels
and tire-ground contact patches. In Figure 1, F and R
denote the wheel centers for the front and rear tires,
respectively. The leading points, where the center lines
of the treads enter the contact regions are referred by Q
and P, respectively. In order to eliminate the longitudinal
dynamics we neglect the lateral deformation of the tires
and consider that the driven wheels rotate with constant
speed. Since we consider a front wheel drive car, we
prescribe the wheel directional component of the velocity
of the wheel center F to be a constant V . This poses a
nonholonomic constraint on the dynamics of the system.

To derive the equations of motion we use the Appell-Gibbs
formalism (Gantmacher, 1975),(De Sapio, 2017) which
requires the introduction of the so-called pseudo velocities.
Since the configuration is described by four generalized
coordinates and there is one nonholonomic constraint, we
need to choose three pseudo-velocities. Here we choose σ1
to be the lateral velocity of the center of gravity G, σ2 to
be the yaw rate of the vehicle whereas σ3 is the steering
rate (the yaw rate of front axle relative to the car). The
nonholonomic constraint and the definition of the pseudo-
velocities can be summarized using the matrix equationcos(ψ + δ) sin(ψ + δ) (l − d) sin δ 0

− sinψ cosψ 0 0
0 0 1 0
0 0 0 1



ẋ
ẏ

ψ̇

δ̇

 =

Vσ1σ2
σ3

 .
(1)

Solving this equation the time derivatives of the gener-
alised coordinates can be expressed as

ẋ = V
cosψ

cos δ
− σ1

sin(ψ + δ)

cos δ
− σ2(l − d) cosψ tan δ,

ẏ = V
sinψ

cos δ
+ σ1

cos(ψ + δ)

cos δ
− σ2(l − d) sinψ tan δ,

ψ̇ = σ2,

δ̇ = σ3.

(2)

These kinematic equations give part of the governing
equations, while the other part is comprised of the Appell-
Gibbs equations:[

m11 m12 0
m21 m22 JF
0 JF JF

][
σ̇1
σ̇2
σ̇3

]
=

[
f1
f2
f3

]
, (3)

where the elements of the generalised mass matrix are
given by

m11 =
mF +m

cos2 δ
,

m12 = m21 =
mF +m sin2 δ

cos2 δ
(l − d),

m22 = JF + JG +
mF +m sin2 δ

cos2 δ
(l − d)2,

(4)

while the right hand side can be expressed as

f1 =
FF

cos δ
+ FR

+
1

cos δ

(
− (mF +m)V +mσ2(l − d) sin δ

)
σ2

+
(mF +m) sin δ

cos3 δ

(
V sin δ − σ1 − (l − d)σ2

)
σ3,

f2 =MF +MR +
(l − d)FF

cos δ
− dFR

− l − d

cos δ

(
mFV +mσ1 sin δ

)
σ2

+
(mF +m)(l − d) sin δ

cos3 δ

(
V sin δ − σ1 − (l − d)σ2

)
σ3,

f3 =MF +MS.
(5)

Here MS denotes the steering torque while FF, FR and
MF, MR are the lateral tire forces and aligning torques
calculated from the tire model. In particular, for the brush
tire model these can be expressed by the formulae

F (α) =

{
ϕ3 tan

3 α+ ϕ2 tan
2 α sgnα+ ϕ1 tanα, 0 ≤| α |< αcrit,

µFzsgnα, αcrit <| α |,
(6)

and

M(α) =

µ4 tan
4 α sgnα+ µ3 tan

3 α+ µ2 tan
2 α sgnα+ µ1 tanα,

0 ≤| α |< αcrit,

0, αcrit <| α |,
(7)

as function of the slide-slip angle α.

The slide slip angles can be calculated from vehicle kine-
matics as

tanαF = −σ1 + (l − d)σ2 + a(σ2 + σ3)

V cos δ
+ tan δ,

tanαR = −
(
σ1 − (d− a)σ2

)
cos δ

V −
(
σ1 + (l − d)σ2

)
sin δ

,
(8)

for the front and the rear wheels, respectively. In the
formulae above µ denotes the friction coefficient, Fz is
the vertical load on the tire while αcrit corresponds to the
critical side-slip angle at which the whole contact patch
starts to slide. Moreover, the constants ϕi and µi are given
in Appendix A and a denotes the half-length of the tire-
ground contact patch (i.e., the distance between F and Q
and the distance between R and P).

Fig. 2. Qualitative lateral tire force (left panel) and align-
ing torque (right panel) characteristics.

Formulae (6) and (7) are visualized in Fig. 2. While these
characteristics are piecewise-smooth continuous functions,
for linear stability analysis of the rectilinear motion it is
sufficient to use the continuous linear parts for small α,
that is,

F (α) ≈ ϕ1α = 2a2kα, (9)

and

M(α) ≈ µ1α = −2

3
a3kα, (10)



where a is the half-length of the tire-ground contact patch
while k is the lateral stiffness of the tire distributed along
the contact length; see the definition of ϕ1 and µ1 in (A.1)
and (A.4) in Appendix A. The constant 2a2k in (10) is
often referred as the cornering stiffness.

Here we construct a hierarchical controller in order to
regulate the steering torque MS such that the vehicle
follows a straight path. Without loss of generality we make
the vehicle to run along the x axis, i.e., y(t) ≡ 0 and
ψ(t) ≡ 0. At the higher-level we calculate a desired steering
angle from the vehicle position and orientation as

δdes(t) = −kψ sin (ψ(t− τ1))− kyy(t− τ1), (11)

where kψ and ky are proportional gains for the lateral
position and the orientation angle while a time delay τ1
represent the time needed for sensing, computation, and
actuation. Then the steering torque is determined by the
PID controller
MS(t) = kp(δdes(t− τ2)− δ(t− τ2))

+ kd(δ̇des(t− τ2)− δ̇(t− τ2)) + kiz(t− τ2),
(12)

where τ2 represent the time delay in the control loop
and the integral term is considered trough the variable
z defined by

ż(t) = δdes(t)− δ(t). (13)

In our study we consider the gains of the lower-level
controller in the form of

kp = pkp0, (14)

kd = pkd0, (15)

ki = pki0. (16)

The benefit of this formulation is that parameter p can be
used to represent the ‘strength’ of the lower-level controller
for a fixed set of the gains kp0, kd0 and ki0. Note that p = 0
corresponds to the case of no control on the front axle,
while p → ∞ with τ2 = 0 corresponds to the ideal case
when the steering angle can be directly set.

3. LINEAR STABILITY ANALYSIS

The closed-loop dynamics of the vehicle is described by
the equations (2,3,11,12,13) that can be written into the
compact form

ẋ(t) = ϕ (x(t),x(t− τ2),x(t− τ1 − τ2)) , (17)

where
x = [x y ψ δ σ1 σ2 σ3 z]

T
, (18)

contains the state variables. The rectilinear motion can be
expressed as

x∗(t) = [V t 0 0 0 0 0 0 0]
T
. (19)

Let us introduce the perturbations x̃(t) = x(t)−x∗(t) and
linearize (17) about the the rectilinear motion to obtain

˙̃x(t) = A0x̃(t) +A2x̃(t− τ2) +A21x̃(t− τ1 − τ2), (20)

where the matrixes A0, A2, and A21 are defined in
Appendix B.

Using the trial solution x(t) = ceλt we can obtain the
characteristic equation as

D(λ) = det
(
A0 +A2e

−λτ2 +A21e
−λ(τ1+τ2)

)
= 0, (21)

which has infinitely many solutions for the characteristic
roots λ. Notice that λ = 0 is always a solution corre-
sponding to the ‘neutral’ direction x. After eliminating this

trivial eigenvalue by defining D̃(λ) = D(λ)/λ, D̃(0) = 0
provides the stability boundaries for non-oscillatory stabil-
ity loss whereas D̃(iω) = 0 gives the stability boundaries
for oscillatory stability loss. These bound the stable do-
main in the parameter space where all eigenvalues have
negative real part. When crossing a D̃(0) = 0 boundary
a real characteristic root moves to the right half complex
plane, while when crossing the D̃(iω) = 0 boundary a pair
of complex conjugate roots crosses the imaginary axis from
left to right (Stépán, 1989). In this case oscillations arise
with angular frequency close to ω.

In order to calculate the stability boundaries numerically
we use semi-discretisation (Insperger and Stépán, 2013).
In particular, we utilize Chebysev polynomials and the
Chebysev differentiation matrix to approximate the infi-
nite dimensional spectrum of (20); see (Trefethen, 2000).
Using these techniques we draw stability charts in the
plane of the control gains for different values of the delays.

Fig. 3. Stability charts for different values of higher-level
delay τ1 in the plane of the higher-level control gains
kψ and ky with lower-level delay τ2 = 0.0001 s.
The boundaries corresponding to different values of
control strength p are shown in different colours. In
the top left panel parts of stable regions are outside
the window.

In Fig. 3 the stability boundaries are shown for different
higher-level delays τ1 in the plane of the higher-level
control gains (kψ, ky) corresponding to the lateral position
and orientation of the vehicle. The different curves in each
panel correspond to different values of parameter p while
the lower-level delay is set to τ2 = 0.0001 s which is small
enough not to endanger stability. Then the lower-level
control gains are set to kp0 = 8 Nm, kd0 = 0.1 Nms, ki0 =
0.5 Nm/s while the vehicle and tire parameters are listed in
Table 1 and they are kept the same in the rest of the paper.
It can be seen, that the size of the stable parameter domain
strongly depends on the time delay in the higher-level



Fig. 4. Stability charts for different values of lower-level
delay τ2 in the plane of the higher-level control gains
kψ and ky with higher-level delay of τ1 = 0.2 s and
control strength of p = 4000 are considered.

Fig. 5. Stability chart in the plane of the control ‘strenght’
p and the time delay τ2 of the lower-level controller.
The higher lever gains are set to kψ = 0.5 and ky =
0.01 1/m whereas the higher-level delay of τ1 = 0.2 s
is considered.

control loop, i.e., the larger the delay is, the smaller the
stable parameter domain is. The larger values of parameter
p result in larger stable domains. However, this growth has
an upper limit corresponding to p → ∞, i.e., the ‘ideal’
lower-level controller. (Practically the value p = 8000 can
be regarded as an almost ‘ideal’ lower-level controller).

Table 1. Vehicle and tire parameters

Parameter name Value Unit

l wheelbase 2.57 m
d center of gravity position 1.54 m
m vehicle mass 1100 kg
JG vehicle mass moment of inertia 1343 kgm2

mF front axle mass 10 kg
JF front axle mass moment of inertia 0.25 kgm2

V longitudinal velocity 15 m/s
a tire-ground contact half-length 0.1 m
k lateral tire stiffness 2×106 N/m

If the delay τ2 of the lower-level controller is non-zero but
sufficiently small it has a negligible effect on the stability
boundaries. However, within a very narrow interval of

this delay the whole stable parameter region disappears,
as shown in Fig. 4 where the lower-level delay is varied
only by a fraction of a millisecond. This means that the
critical value of the lower-level delay is only very weakly
dependent to the parameters of the higher-level controller.
Thus, the two controllers can be designed and investigated
separately. In the meantime, it can be established that the
critical lower-level delay strongly depends on the control
strength p as shown in Fig. 5.

The investigation of the imaginary parts of the critical
eigenvalue reveals that the frequency corresponding to the
arising vibrations are considerably different in the two
control levels. If the higher-level control gains are chosen
from the unstable parameter domain vibrations with a
frequency up to ∼3-5 Hz can be observed. On the contrary
due to instabilities of the lower-level controller one can
observe high-frequency vibrations (∼100-150 Hz).

4. SIMULATIONS
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Fig. 6. Time profiles for the centre of gravity’s lateral
position (upper panel) and the desired (thick red) and
actual (thin black) steering angles (lower panel) for
control parameters kψ = 0.8, ky = 0.01 1/m, p = 2000
and time-delays τ1 = 0.2 s, τ2 = 0.0001 s.

Numerical simulations have been carried out for the non-
linear system to demonstrate the behavior for different
scenarios. In Figure 6 the lateral position of the vehicle
centre of gravity and the desired and actual steering angles
are presented for a stable set of control parameters shown
in the bottom left panel of Fig. 3. In Figures 7 and 8
we demonstrate the developing oscillations due to ‘badly’
chosen higher-level control gains. The two different initial
conditions are applied to show that the system converges
to a stable limit cycle. In Figure 9 we present the system
behavior in the case when the delay in the lower-level
controler is larger than the critical one, see the point
marked on the bottom left panel in Fig. 4.

5. CONCLUSIONS

In the paper a hierarchical lateral controller of an au-
tonomous vehicle was investigated considering different
time delays in the two control levels. The main result of the
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Fig. 7. Time profiles for the centre of gravity’s lateral
position (upper panel) and the desired (thick red) and
actual (thin black) steering angles (lower panel) for
control parameters kψ = 0.8, ky = 0.15 1/m, p = 2000
and time-delays τ1 = 0.2 s, τ2 = 0.0001 s.
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Fig. 8. Time profiles for the centre of gravity’s lateral
position (upper panel) and the desired (thick red) and
actual (thin black) steering angles (lower panel) for
control parameters kψ = 0.8, ky = 0.15 1/m, p = 2000
and time-delays τ1 = 0.2 s, τ2 = 0.0001 s.

analysis is, that although the higher- and the lower-level
controllers are designed to operate together, their influence
on each other is weak. In practice the control gains of the
higher-level controller may be chosen by assuming that
the desired steering angle can be set accurately. Similarly,
if the gains are large enough the stability of the lower-
level controller is almost independent from the way the
higher-level algorithm is designed. As we demonstrated,
the time delay τ2 in the lower-level controller is a critical
parameter from the point of view of the stability. While
the higher-level controller can be stable even for relatively
large delays, at the lower-level even a delay of a couple
of milliseconds can result unstable behavior. Therefore
it is required that such algorithms run with a sampling
frequency around 1000 Hz.
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Fig. 9. Time profiles for the centre of gravity’s lateral
position (upper panel) and the desired (thick red) and
actual (thin black) steering angles (lower panel) for
control parameters kψ = 0.8, ky = 0.01 1/m, p = 2000
and time-delays τ1 = 0.2 s, τ2 = 0.0019019505 s.

Further analysis could be carried out considering a
discrete-time system to emulate the digital controllers
more accurately. The nonlinear analysis of the system can
be subject of further studies, too. On one hand, consid-
ering the geometrical nonlinearities as well as the non-
linear piecewise-smooth tire characteristics might reveal
‘bistable’ parameter domains where a stable equilibrium
and a stable periodic solution coexist. This behavior con-
sidered to be dangerous is dangerous from engineering
point of view as the domain of attraction of the stable equi-
librium can be limited. On the other hand, one may need
to consider possible saturations of the actuators which can
also lead to complex dynamical phenomena.
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Appendix A. COEFFICIENTS IN THE TIRE-FORCE
CHARACTERISTICS

The coefficients in the tire force and self aligning torque
characteristics in (6) and (7) can be expressed as

ϕ1 = 2a2k, (A.1)

ϕ2 = − 8a4k2

3Fzµ0
+

4a4k2µ

3Fzµ2
0

, (A.2)

ϕ3 =
8a6k3

9F 2
z µ

2
0

− 16a6k3µ

27F 2
z µ

3
0

(A.3)

and

µ1 = −2

3
a3k, (A.4)

µ2 =
8a5k2

3Fzµ0
− 4a5k2µ

3Fzµ2
0

, (A.5)

µ3 = − 8a7k3

3F 2
z µ

2
0

+
16a7k3µ

9F 2
z µ

3
0

, (A.6)

µ4 =
64a9k4

81F 3
z µ

3
0

− 16a9k4µ

27F 3
z µ

4
0

, (A.7)

where a is the contact patch half-length, k is the dis-
tributed lateral stiffness of the tires, Fz is the vertical load
on the axles, µ and µ0 are the friction coefficients between
the tires and the road for sliding and rolling, respectively.

Appendix B. COEFFICIENT MATRICES OF THE
LINEARIZED SYSTEM

The coefficient matrices in (21) can be expressed as

A0 =



a11 a12 a13 0 0 0 a17 −kiϑ
a21 a22 a23 0 0 0 a27 −kiθ
a31 a32 a33 0 0 0 a37 kiΘ
0 0 0 0 0 0 0 0
1 0 0 0 0 V 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0


, (B.1)

where

Θ =
JF(m+mF) + ∆

JF∆
, θ =

m+mF

∆
, ϑ = − (l − d)mF

∆
(B.2)

while

a11 = −2a2k (6JG + (a+ 3l)(l − d)mF)

3V∆
, (B.3)

a12 = −V

+
2ka2

(
− 3JG(2a− 2d+ l) + (a− d)(d− l)(a+ 3l)mF

)
3V∆

(B.4)

a13 = −2a3kJG
V∆

, (B.5)

a17 =
2a2kJG

∆
, (B.6)

a21 =
2a2k

(
(6d− 3l + a)m+ (3l + a)mF

)
3V∆

, (B.7)

a22 = 2a2k
(
(a2 + 5da− 6d2 − 3al + 6dl − 3l2)m

+ (a− d)(a+ 3l)mF

)
/ (3V∆) ,

(B.8)

a23 =
2a3k(d− l)m

V∆
, (B.9)

a27 =
2a2k(l − d)m

∆
, (B.10)

a31 =
2a2k

((
− (a+ 3l)mF + (3l − 6d− a)m

)
JF + a∆

)
3V∆JF

(B.11)

a32 = 2a2k
((

(−a2 − 5da+ 3al + 6d2 + 3l2 − 6dl)m

+ (d− a)(3l + a)mF

)
JF + a(a− d+ l)∆

)
/

(3V∆JF) ,
(B.12)

a33 =
2a3k

(
3a(l − d)mJF + a∆

)
3V∆JF

, (B.13)

a37 =
2a3k

(
3a(l − d)mJF + a∆

)
3∆JF

, (B.14)

and
∆ = (d− l)2mFm+ (mF +m) JG. (B.15)

Moreover, we have

A2 =



0 0 kdϑ 0 0 0 kpϑ 0
0 0 kdθ 0 0 0 kpθ 0
0 0 −kdΘ 0 0 0 −kpΘ 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0


, (B.16)

A21 =

kdkyϑ kdkψϑ 0 0 kpkyϑ kd(kψ + kyV )ϑ 0 0
kdkyθ kdkψθ 0 0 kpkyθ kd(kψ + kyV )θ 0 0

−kdkyΘ −kdkψΘ 0 0 −kpkyΘ −kd(kψ + kyV )Θ 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −ky −kψ 0 0


.

(B.17)


