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In this paper large connected vehicle systems are analyzed where vehicles utilize vehicle-
to-vehicle (V2V) communication to control their longitudinal motion. It is shown that
packet drops in communication channels introduce stochastic delay variations in the feed-
back loops. Scalable methods are developed to evaluate stability and disturbance attenua-
tion while utilizing the mean, second moment, and covariance dynamics in open chain and
closed ring configurations. The stability results are summarized using stability diagrams in
the plane of the control parameters while varying the packet delivery ratio and the number
of vehicles. Also, the relationship between the stability of different configurations is char-
acterized. The results emphasize the feasibility of V2V communication-based control in
improving traffic flow.
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1. Introduction

The past decades witnessed a worldwide increase in the number of vehicles on the road, bringing major concerns about
traffic congestions (Schrank et al., 2015). The large reaction time and limited perception range of human drivers make them
unable to maintain smooth traffic flow and may trigger stop-and-go traffic jams while reacting to unexpected events (Orosz
et al., 2009, 2010). On the other hand, advanced driver assistant systems (ADAS) can be used to improve the longitudinal
control of vehicles. Although such technologies typically target at the enhancement of safety and driving comfort, they have
an enormous potential in improving the efficiency of large scale traffic systems.

For example, adaptive cruise control (ACC) can be used to maintain a velocity-dependent inter-vehicle distance based on
range sensors (radar or lidar) (Shladover, 1991; Ioannou and Chien, 1993; Rajamani and Zhu, 2002). It was demonstrated in
(Werf et al., 2002; Davis, 2007) that due to faster and more accurate sensing abilities ACC may have a positive impact on
traffic flow when the penetration rate of ACC vehicles is high enough. However, due to the high cost of range sensors and
the perception limitation within the line of sight, this technology is still not widely available. To overcome the limitations,
it was proposed to augment ACC with wireless V2V communication. This can allow vehicles to monitor the kinematic prop-
erties of other vehicles, even those beyond the line of sight, and they may utilize such information in their controllers to
improve their safety and fuel economy and to mitigate traffic jams. In the US dedicated short range communication (DSRC)
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has been standardized (Kenney, 2011; SAE J2735, 2016) for V2V communication to foster this idea. An overview of vehicular
control with V2V communication can be found in (Li et al., 2015).

One strategy is called cooperative adaptive cruise control (CACC) (Naus et al., 2010; Desjardins and Chaib-draa, 2011;
Milanes et al., 2014; Jia and Ngoduy, 2016) that assigns a fixed communication topology to a group of ACC vehicles: each
vehicle monitors the motion of the preceding vehicle using range sensors, as well as the motion of the group leader via
V2V communication. This technology was shown to be able to improve traffic throughput with a high enough penetration
rate using simulations (van Arem et al., 2006; Milanes et al., 2011; Ploeg et al., 2014b, 2015; di Bernardo et al., 2015; Zheng
et al., 2016b; Talebpour and Mahmassani, 2016; Lioris et al., 2017) and fruitful experiments have been conducted in the
PATH program (Rajamani and Shladover, 2001), the SARTRE project (Chan et al., 2012), and grand cooperative driving chal-
lenge (Ploeg et al., 2012). However, the harsh requirement that all the vehicles must be equipped with range sensors, DSRC
devices and controllers hinders the deployment of such strategy.

Alternatively, another control strategy, referred to as connected cruise control (CCC), has been proposed that does not
require every vehicle to be equipped with range sensors and DSRC devices. A CCC vehicle utilizes all the available V2V infor-
mation from vehicles ahead within the communication range (Ge and Orosz, 2014; Zhang and Orosz, 2016; Orosz, 2016).
Such flexibility allows controllers to fully exploit the advantages of V2V communication while gathering information from
vehicles within and beyond the line of sight. This includes scenarios when the vehicle immediately ahead is hidden by the
road geometry and cannot be detected by range sensors (such as radar or lidar). Different aspects of CCC have been studied,
such as the influence of communication delays, connectivity topology, nonlinearities and optimal design (Avedisov and
Orosz, 2015; Zhang and Orosz, 2017; Ge and Orosz, 2017; Ge et al., 2017), and it was demonstrated that this strategy has
a large potential in improving traffic flow.

In Qin et al. (2017), the two major aspects of V2V communication-based control of connected vehicle systems were con-
sidered for the simplest CCC system – a predecessor-follower pair; see Fig. 1(a). To incorporate intermittency in communi-
cation requires consideration of time delays and digital effects (Qin and Orosz, 2013), while to understand the effects of
packet drops requires the characterization of the dynamics in the presence of stochastic delays. The mathematical tools cre-
ated in (Qin et al., 2017) enabled us to analyze stochastic stability and stochastic disturbance attenuation (often referred to
as string stability) in the vicinity of the equilibrium in simple connected vehicle systems. In particular, the concept of nr
string stability was established that guarantees the attenuation of velocity fluctuations for trajectories that are within the
n times standard deviation about the mean. A natural question to ask is whether such stability results are scalable for large
stochastic connected vehicle systems; see (Zheng et al., 2016a) for scalability of stability for deterministic cases.

In this paper, we extend the notion of nr string stability to an open chain containing arbitrarily large numbers of con-
nected vehicles (while still keeping the simplification that each vehicle only reacts to the motion of the vehicle immediately
ahead). To ensure scalability, a set of decomposition methods is developed to significantly reduce the size of matrices
appearing in the mean, second moment, and covariance dynamics. Moreover, the notion of nr offset string stability is pro-
posed to characterize stability and disturbance attenuation as the number of vehicles is increased. This way the feasible
ranges of control parameters that ensure smooth traffic flow can be characterized analytically as the number of vehicles
increases towards infinity. Then, we also study the behavior of a system of arbitrary number of connected vehicles on a ring
road. Similar to the open chain system, decomposition methods are developed to make the stability analysis scalable. The
stability diagrams obtained unveil the relationships between large systems of connected vehicles of different configurations.
Clearly, such comparison is not possible using numerical simulations considering the large system size and the requirement
for enormous realizations given by the stochastically varying delays.

This paper is organized as follows. In Section 2, we provide the dynamics of a vehicle model and design a controller based
on the information received via wireless communication subject to stochastic packet drops. In Sections 3 and 4, an open
chain and a closed ring of connected vehicles are studied and the results are summarized using stability diagrams. In Sec-
tion 5, the results of the open chain and the closed ring systems are compared to each other. Finally, we arrive at some con-
clusions in Section 6.
Fig. 1. (a) Predecessor-follower pair equipped with V2V communication on a single lane. Dashed red arrow indicates the information flow through wireless
communication. (b) Range policy function (6). (c) Saturation function (7).
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2. Feedback control with stochastic delays

We first start with describing the predecessor-follower pair shown in Fig. 1(a), where the control output of the j-th vehi-
cle is based on the information received from the ðj� 1Þ-th vehicle. Similar to the setup in (Qin et al., 2017), we make the
following assumptions: (i) The inter-vehicle distance hj (called distance headway), can be calculated from GPS coordinates
of the vehicles with adequate accuracy. (ii) each vehicle broadcasts its kinematic information intermittently with the sam-
pling time Dt via DSRC devices subject to stochastic packet drops. (iii) A nonlinear controller with zero-order-hold, that acts
on the distance headway hj, the predecessor’s velocity v j�1, and the vehicle’s ego velocity v j, is implemented. (iv) The clocks
of the predecessor and follower are synchronized and aligned.

For simplicity, we consider zero inclination and omit rolling resistance and air drag effects in the physics-based model
(Orosz, 2016). This leads to the simplified vehicle dynamics
_hjðtÞ ¼ v j�1ðtÞ � v jðtÞ;
_v jðtÞ ¼ ujðtk�sjðkÞÞ;

ð1Þ
for tk � t < tkþ1, where ujðtÞ is the controller and the delay sjðkÞ is a stochastic variable due to stochastic packet drops. We
assume that the controller outputs a command based on the newest information received via V2V communication from the
vehicle ahead.

We remark that the framework presented in this paper allows vehicle models of different levels of fidelity. In particular, it
was shown in (Orosz, 2016) that the stability results remain similar when realistic vehicle dynamics is incorporated (Zheng
et al., 2016a). One may also incorporate the engine dynamics (Zheng et al., 2016a) as well but that may influence the stability
results. Here we omit these effects and use the simple model (1) to gain insights to the effects of digital control with stochas-
tic packet drops. The analysis of higher fidelity vehicle models is left for future research.

With the assumption that each packet delivery is a Bernoulli trial with the successful packet delivery ratio denoted as p,
the stochastic variable sjðkÞ can be interpreted as number of trials to achieve one successful packet delivery. Thus, the prob-
ability distributions of the stochastic variable sjðkÞ-s are identically geometrically distributed for each discrete time instant k
with distribution
f sjðkÞðnÞ ¼
X1
r¼1

wrdðn� rÞ; ð2Þ
where dð�Þ denotes the Dirac delta function and the weights are given by
wr ¼ pð1� pÞr�1
; r ¼ 1; . . . ; 1: ð3Þ
One may notice that the distribution (3) has infinite many supports but the probabilities are rather small for large r values.

Thus, we truncate the distribution (3) with the assumption that the maximum value of sjðkÞ is N, such that
PN�1

r¼1 wr P pcr and
pcr is the critical cumulative packet delivery ratio. This yields the truncated probability density function (PDF)
wr ¼
pð1� pÞr�1 if r ¼ 1; . . . ; N � 1;

1�PN�1
i¼1 wi ¼ ð1� pÞN�1 if r ¼ N;

0 if r > N:

8><
>: ð4Þ
Moreover, throughout this paper, we will assume that sjðkÞ-s are independently, identically distributed (IID) with the distri-
bution (2) and (4). More complicated (non-IID) stochastic processes were considered in (Qin et al., 2017).

We choose the nonlinear controller
ujðtÞ ¼ Kp V hjðtÞ
� �� v jðtÞ

� �þ Kv W v j�1ðtÞ
� �� v jðtÞ

� �
; ð5Þ
to regulate the inter-vehicle distance and velocity. The linearized version of this controller is also widely used in the liter-
ature (Naus et al., 2010; Lidström et al., 2012; Nieuwenhuijze et al., 2012; Ploeg et al., 2014a; Wang et al., 2014).

The range policy VðhjÞ gives the desired velocity as a function of distance headway hj, and must be

� continuous and monotonously increasing (the more sparse the traffic is, the faster the vehicles intend to run);
� zero for hj � hst (vehicles intend to stop within a safety distance);
� maximal for hj � hgo (vehicles intend to run with a given maximum speed in sparse traffic – often referred to as free flow).

Here we select the continuously differentiable range policy
VðhjÞ ¼
0 if hj 6 hst;

vmax
2 1� cos p hj�hst

hgo�h st

� �� �
if hst < hj < hgo;

vmax if hj P hgo;

8>><
>>: ð6Þ
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that is shown in Fig. 1(b). Moreover, the saturation function
Fig. 2.
while t
Wðv j�1Þ ¼
v j�1 if v j�1 < vmax;

vmax if v j�1 P vmax;

�
ð7Þ
provides the conditions on switching between connected cruise control (CCC) mode (v j�1 < vmax) where the vehicle tries to
match its velocity with the predecessor’s, and the normal cruise control mode (v j�1 � vmax) where it tries to achieve the pre-
set maximum velocity, see Fig. 1(c).

This paper will mainly focus on CCC mode when system (1) and (5) possesses the uniform flow equilibrium
v�
j�1 ¼ v�

j ¼ Vðh�
j Þ: ð8Þ
The objective is to design the control gains Kp; Kv such that the overall large systems (open chain or closed ring) are robust
against delays due to stochastic packet drops.

The setup used in this paper allows controllers of different levels of complexity. For example, one can use more compli-
cated connectivity topology that utilizes motion information of multiple vehicles in the neighborhood (Zhang and Orosz,
2016; Li et al., 2015), and apply different control designs (e.g., optimal control (Ge and Orosz, 2017)). However, our goal
is to understand how digital effects and stochastic delays influence the dynamics of large connected vehicle systems. For this
reason we consider the simplest CCC structure where each vehicle controls its motion based on the information received
about the motion of the vehicle immediately ahead via V2V communication. Nevertheless the following decomposition
methods can also be applied to large connected vehicle systems with more complicated connectivity topology, and the cor-
responding changes will be pointed out throughout the paper. We also assume that all the vehicles use the same control
gains (cf. (5)), which allows us to summarize the stability results in a low dimensional parameter space. The methods pre-
sented below are applicable to systems of vehicles with different gains and it is expected that such heterogeneity can
improve stability. However, investigating such effects is beyond the scope of this paper.

3. Open chain system

In this section, we consider an open chain of ðJ þ 1Þ connected vehicles as shown in Fig. 2. Although all the vehicles are
described by the same Eqs. (1) and (5), their dynamics are still not identical due to the (asynchronously changing) delays
caused by stochastic packet drops. Consequently, analysis of an open chain of vehicles subject to stochastic communication
delays cannot be simplified into analysis of predecessor-follower pairs as in deterministic case, but requires one to analyze
the dynamics of the large stochastic connected vehicle system. In this section, a stochastic model will be built for the open
chain system shown in Fig. 2, and the evolutions for the mean, second moment and covariance dynamics are derived in order
to analyze the stability properties of the uniform flow equilibrium (8).

3.1. Stochastic model

The overall dynamics of the open chain system of ðJ þ 1Þ vehicles are given by (1) and (5) for j ¼ 1; . . . ; J. For simplicity of
notation, the argument k of the delay sjðkÞ is not spelled out in the rest of the paper. Notice that in the time interval
t 2 ½tk; tkþ1Þ, the control signal ujðtk�sj Þ is a constant. Thus, one can solve the differential Eq. (1) using the input v0ðtÞ and ini-
tial values hðtkÞ;vðtkÞ, which results in the discrete-time nonlinear map
h1ðtkþ1Þ ¼ h1ðtkÞ � v1ðtkÞDt � 1
2
u1ðtk�s1 ÞDt2 þ

Z tkþ1

tk

v0ðtÞdt;

v1ðtkþ1Þ ¼ v1ðtkÞ þ u1ðtk�s1 ÞDt;

hjðtkþ1Þ ¼ hjðtkÞ þ v j�1ðtkÞ � v jðtkÞ
� �

Dt þ 1
2

uj�1ðtk�sj�1
Þ � ujðtk�sj Þ

� �
Dt2;

v jðtkþ1Þ ¼ v jðtkÞ þ ujðtk�sj ÞDt; j ¼ 2; . . . ; J:

ð9Þ
In order to analyze the stability of the stochastic system (9), we assume small variations about the equilibrium (8), i.e.,
J

An open chain of ðJ þ 1Þ connected vehicles on a single lane. Dashed red arrows indicate the information flow through wireless communication,
he solid blue arrow indicates the direction of traffic flow.
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~hjðtÞ ¼ hjðtÞ � h�
j ; ~v jðtÞ ¼ v jðtÞ � v�

j ; j ¼ 1; . . . ; J: ð10Þ

Moreover, Fourier’s theory states that periodic signals can be represented as an infinite sum of sines and cosines, which can
also be extended to absolutely integrable non-periodic signals. Henceforth, we assume sinusoidal velocity variations for the
head vehicle, i.e.,
v0ðtÞ ¼ v�
0 þ vamp

0 sinðxtÞ ) ~v0ðtÞ ¼ vamp
0 sinðx tÞ; ð11Þ
and v0ðtÞ < vmax.
By defining the state, the output and the input as
xjðkÞ ¼
~hjðtkÞ
~v jðtkÞ

" #
; yðkÞ ¼ ~v JðtkÞ; uðkÞ ¼ ~v0ðtkÞ

~v?
0 ðtkÞ

� �
; ð12Þ
where
~v?
0 ðtÞ ¼ vamp

0 cosðxtÞ; ð13Þ

and using the controller (5), the linearization of (9) becomes
x1ðkþ 1Þ ¼ a1 x1ðkÞ þ a3 x1 k� s1ð Þ þ b1 uðkÞ þ b2 uðk� s1Þ;
x2ðkþ 1Þ ¼ a2 x1ðkÞ þ a1 x2ðkÞ þ a5 x1ðk� s1Þ þ a4 x1ðk� s2Þ þ a3 x2ðk� s2Þ þ b3 uðk� s1Þ;
xjðkþ 1Þ ¼ a2 xj�1ðkÞ þ a1 xjðkÞ þ a6 xj�2ðk� sj�1Þ þ a5 xj�1ðk� sj�1Þ

þ a4 xj�1ðk� sjÞ þ a3 xjðk� sjÞ; j ¼ 3; . . . ; J;
yðkÞ ¼ c1 xJðkÞ;

ð14Þ
with the matrices given by (A.1) in Appendix A. Notice that the scalar sinusoidal input (11) that drives the continuous-time
system (1) results in the vector-valued input (12) for the discrete-time system (14), where the two components are depen-
dent. Also, notice that the input satisfies
uðk� rÞ ¼ Rr uðkÞ; ð15Þ

where
R ¼ cosðxDtÞ � sinðxDtÞ
sinðxDtÞ cosðxDtÞ

� �
: ð16Þ
By augmenting j-th vehicle’s delayed states as
XjðkÞ ¼

xjðkÞ
xjðk� 1Þ

..

.

xjðk� NÞ

2
66664

3
77775 2 R2ðNþ1Þ; ð17Þ
(14) can be rewritten as
X1ðkþ 1Þ ¼ a1;s1X1ðkÞ þ b1;s1uðkÞ;
X2ðkþ 1Þ ¼ ða3;s1 þ a2;s2 ÞX1ðkÞ þ a1;s2X2ðkÞ þ b2;s1uðkÞ;
Xjðkþ 1Þ ¼ a4;sj�1

Xj�2ðkÞ þ ða3;sj�1
þ a2;sj ÞXj�1ðkÞ þ a1;sj XjðkÞ; j ¼ 3; 4; . . . ; J;

yðkÞ ¼ cXjðkÞ;

ð18Þ
where a1;sj ; a2;sj ; a3;sj ; a4;sj 2 R2ðNþ1Þ�2ðNþ1Þ and b1;s1 ; b2;s1 2 R2ðNþ1Þ�2 are random matrices with possible values given by (A.3)
in Appendix A, and c is the output matrix given by (B.1) in Appendix B.

By defining the overall state, the input and the output
XðkÞ ¼

X1ðkÞ
X2ðkÞ

..

.

XJðkÞ

2
66664

3
77775 2 R2JðNþ1Þ; UðkÞ ¼ uðkÞ 2 R2; YðkÞ ¼ ~v jðkÞ 2 R; ð19Þ
(18) can be re-written as
Xðkþ 1Þ ¼ As XðkÞ þ Bs1 UðkÞ;
YðkÞ ¼ CXðkÞ; ð20Þ
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where s collects the random variables s1s2 . . . sJ , i.e., As denotes As1s2 ...sJ . The possible values for As and Bs1 are given by (B.4)
in Appendix B, and the output matrix C is given in (B.3) in Appendix B.

We remark that there is another way to rewrite (14) into state space form by inserting different vehicles’ states into a
vector first, and then augmenting the resulting states over time. However, the way presented above better supports physical
intuition and make the forthcoming calculations technically less challenging.

3.2. Dynamics for the mean, second moment and covariance

In order to find stability conditions, the mean, the second moment and the covariance dynamics need to be derived in the
same way as in (Qin et al., 2017). With the IID assumption of sðkÞ explained in Section 2, one can obtain the PDF-s of As and
Bs1 as
f As ðAÞ ¼
X1
r¼1

wrdðA� ArÞ; f Bs1 ðBÞ ¼
X1
r1¼1

wr1dðB� Br1 Þ; ð21Þ
respectively, where r is the set of realization for s, i.e., Ar denotes Ar1r2 ...rJ and
PN

r¼1wr denotesPN
r1¼1

PN
r2¼1 � � �

PN
rJ¼1wr1wr2 � � �wrJ . Notice that As and XðkÞ are mutually independent, which is also the case for Bs1 and XðkÞ.

The mean values of state variables can be defined as
�XðkÞ ¼ E½XðkÞ	 2 R2JðNþ1Þ; �YðkÞ ¼ E½YðkÞ	 2 R; ð22Þ

where E½�	 denotes the expected value. By taking expected value of both sides in (20) with the PDF-s (21) and using indepen-
dency between variables, one can derive the mean dynamics
�Xðkþ 1Þ ¼ �A �XðkÞ þ �BUðkÞ;
�YðkÞ ¼ �C �XðkÞ; ð23Þ
where the state matrix, the input matrix and the output matrix are the expected values of corresponding matrices given in
(B.4) in Appendix B, i.e.,
�A ¼
XN
r¼1

wrAr ; �B ¼
XN
r1¼1

wr1Br1 ;
�C ¼ C; ð24Þ
and their explicit expressions are spelled out in (B.5) in Appendix B.
Similarly, the second moments of state variables can be defined as
^̂XðkÞ ¼ E½XðkÞ 
 XðkÞ	 2 R22 J2ðNþ1Þ2 ; ^̂YðkÞ ¼ E½YðkÞ 
 YðkÞ	 2 R; ð25Þ

using Kronecker product. By taking expected value with the PDF-s (21) and using independency between variables, one can
obtain the second moment dynamics
^̂Xðkþ 1Þ ¼ PN
r¼1

wrAr 
 Ar

	 

^̂XðkÞ þ PN

r¼1
wrAr 
 Br

	 

ð�XðkÞ 
 UðkÞÞ

þ PN
r¼1

wrBr 
 Ar

	 

ðUðkÞ 
 �XðkÞÞ þ PN

r¼1
wrBr 
 Br

	 

ðUðkÞ 
 UðkÞÞ;

^̂YðkÞ ¼ ðC
 CÞX^̂ðkÞ:

ð26Þ
Finally, the covariance can be defined as
��XðkÞ ¼ E XðkÞ � �XðkÞ� �
 XðkÞ � �XðkÞ� �� � 2 R22 J2ðNþ1Þ2 ;
��YðkÞ ¼ E YðkÞ � �YðkÞ� �
 YðkÞ � �YðkÞ� �� � 2 R;

ð27Þ
and it can be shown that
��XðkÞ ¼ E½XðkÞ 
 XðkÞ	 � �XðkÞ 
 �XðkÞ; ��YðkÞ ¼ E½YðkÞ 
 YðkÞ	 � �YðkÞ 
 �YðkÞ: ð28Þ

Thus, using (23) and (26), one can obtain the covariance dynamics
��Xðkþ 1Þ ¼ ��A ��XðkÞ þ ��K1ð�XðkÞ 
 �XðkÞÞ þ ��K2ð�XðkÞ 
 UðkÞÞ
þ��K3ðUðkÞ 
 �XðkÞÞ þ ��K4ðUðkÞ 
 UðkÞÞ;

��YðkÞ ¼ ��C ��XðkÞ;
ð29Þ
where
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��A ¼
XN
r¼1

wrAr 
 Ar ;
��C ¼ C
 C;

��K1 ¼
XN
r¼1

wrAr 
 Ar � �A
 �A; ��K2 ¼
XN
r¼1

wrAr 
 Br � �A
 �B;

��K3 ¼
XN
r¼1

wrBr 
 Ar � �B
 �A; ��K4 ¼
XN
r¼1

wrBr 
 Br � �B
 �B;

ð30Þ
cf. (23), (24). The time evolutions of the mean and the covariance are described by the nonlinear system (23) and (29) such
that (29) is driven by (23).

3.3. Plant stability and string stability

Plant stability and string stability are often used to characterize traffic systems. In the predecessor-follower pair system,
plant stability characterizes the follower’s capability of approaching a constant desired velocity dictated by the predecessor.
In an open chain system, plant stability indicates whether all the following vehicles are able to approach the constant desired
velocity dictated by the head vehicle. The importance of plant stability lies in the fact that plant unstable traffic systems can
lead to vehicle crashes. Fig. 3 shows two simulation results of an open chain of ð15þ 1Þ connected vehicles for different
ðKv;KpÞ gains for the parameters vmax ¼ 30 ½m=s	;hst ¼ 5 ½m	;hgo ¼ 35 ½m	;v�

0 ¼ 15 ½m=s	;Dt ¼ 0:1 ½s	 (cf. (6) and (8)), which
will be kept the same throughout the whole paper. Here, the packet delivery ratio is p ¼ 0:6 and only the velocities of every
third vehicle are shown. Fig. 3(a) shows the time profiles for a simulation demonstrating plant stability as all the velocities
approach the head vehicle’s velocity despite the initial perturbations and stochastic packet drops. Thus, one can say that this
realization is plant stable. However, to check whether this pair of ðKv;KpÞ gains is plant stable in the stochastic sense, one has
to investigate all the possible realizations (that is clearly not feasible via simulations). Fig. 3(b) shows the time profiles for
one plant unstable simulation, where the vehicles are unable to maintain the same constant velocity prescribed by the head
vehicle.

String stability in the predecessor-follower system characterizes the follower’s capability of attenuating fluctuations
introduced by the predecessor. For an open chain vehicle system, string stability requires attenuation of fluctuations
between the head vehicle and the tail vehicle (Zhang and Orosz, 2016). String unstable traffic systems may trigger stop-
and-go motion, sometimes referred to as phantom traffic jams. Fig. 4 shows three simulation results for an open chain of
ð200þ 1Þ connected vehicles when the head vehicle is introducing a sinusoidal fluctuation into the system and the packet
delivery ratio is p ¼ 0:4. Here, only the velocities of every 40-th vehicles are shown, and the other parameters remain the
same as those for Fig. 3. It can be seen from Fig. 4(a) that the fluctuation introduced by the head vehicle is attenuated by
all the vehicles shown in the figure, including the tail vehicle. However, similar to the argument for plant stability, to check
whether this pair of ðKv;KpÞ gains is string stable in the stochastic sense, one has to investigate all the possible realizations
for all the possible excitation frequencies. Fig. 4(b, c) show the time profiles for two string unstable scenarios, where the tail
vehicle is unable to attenuate the fluctuation introduced by the head vehicle. In Fig. 4(b), the fluctuation introduced by the
head vehicle propagates upstream in the traffic flow and is amplified every now and then. Such fluctuations deteriorate driv-
ing comfort and fuel economy. Because of the stochasticity in packet drops, one may notice that the fluctuations are not per-
fectly sinusoidal. Whereas, in Fig. 4(c), the single-frequency fluctuation introduced by the head vehicle triggers more
fluctuations with different frequencies in the following vehicles due to the stochastic nature in the packet delivery, which
Plant stability simulations for an open chain of ð15þ 1Þ connected vehicles for different ðKv;KpÞ gains as indicated. The blue curves represent the
v0 of the head vehicle while the red, green, cyan, magenta and orange curves represent the velocities v3; v6; v9; v12; v15, respectively. (a) Plant

(b) Plant unstable.



Fig. 4. String stability simulations for an open chain of ð200þ 1Þ connected vehicles for different ðKv;KpÞ gains as indicated. The blue curves represent the
velocity v0 of the head vehicle while the red, green, cyan, magenta and orange curves represent the velocities v40; v80; v120; v160; v200, respectively. (a)
String stable. (b) String unstable. (c) String unstable.
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gives rise to stop-and-go traffic waves traveling upstream. In the controller design, we need to assure string stability in order
to prevent such phenomena.

In this section, we derive and simplify conditions on both plant stability and string stability for the dynamics of the mean
(23) and the covariance (29) for open chains subject to stochastic packet drops.
3.3.1. Plant stability
In the following, we will evaluate plant stability for both mean and second moment dynamics. On one hand, plant sta-

bility for the mean dynamics requires that the mean values of all the followers’ velocities approach the head vehicle’s veloc-
ity. This is a necessary condition for the plant stability of the stochastic system (20). On the other hand, the plant stability of
the second moment dynamics (26) (or the covariance dynamics (29)) requires that the variances of all the followers’ veloc-
ities converge to zero. This provides a sufficient condition for the (almost sure) plant stability (Appendix D) of the stochastic
system (20). Therefore, we will derive conditions on plant stability for the mean dynamics and second moment dynamics. In
order to test plant stability, we need to set the head vehicle’s velocity to be a constant, i.e.,
Table 1
Effort c

Deco

Deco
vamp
0 ¼ 0 ) v0ðtÞ � v�

0; ~v0ðtÞ � 0; ~v?
0 ðtÞ � 0; ð31Þ
in (11) and (13) or uðkÞ � 0 in (12).
For plant stability of the mean dynamics �Xðkþ 1Þ ¼ �A �XðkÞ (cf. (23) with UðkÞ � 0), all the eigenvalues of the matrix �A

must lie within the unit circle in the complex plane. By observing (B.5) in Appendix B, one may notice that the eigenvalues
of �A consist of all the eigenvalues of �a1, each with multiplicity J, cf. (A.4). In order to assure that the mean dynamics are plant
stable, we need to make sure that all the eigenvalues of the matrix �a1 lie within the unit circle in the complex plane. Finding
the corresponding stability boundaries analytically in the ðKv;KpÞ-plane is very difficult, so we use the bisection method (Qin
et al., 2017; Bachrathy and Stépán, 2012) in order to trace the boundaries. We remark that those plant stability boundaries
depend on the parameters ðKp;Kv; p;v�

0;DtÞ, but independent of the number of cars J.
In (Qin et al., 2017), it was shown that stability of the second moment dynamics and stability of the covariance dynamics

are equivalent when the mean dynamics are stable. Consequently, only the plant stability for the second moment dynamics

is discussed here. Similar to the mean dynamics, to ensure plant stability of the second moment dynamics ^̂Xðkþ 1Þ ¼ ��A ^̂XðkÞ
(cf. (26) with UðkÞ � 0 and ��A defined in (30)), all the eigenvalues of the matrix ��Amust lie within the unit circle in the complex
plane.

While solving this problem, we are faced with three issues. The first one lies in the construction of the possible values for

the Kronecker product Ar 
 Ar due to its huge dimension 22J2ðN þ 1Þ2, where J is the number of vehicles and N is the
haracteristics of the matrix ��A for ðJ þ 1Þ connected vehicles and N ¼ 6.

J 3 9 15 21 27

Before 22J2ðN þ 1Þ2 1764 15876 44100 86436 142884
mposition storage (GB) 0.023 1.878 14.490 55.665 152.110

NJ 216 1:1� 107 4:7� 1011 2:2� 1016 1:0� 1021

After 22ðN þ 1Þ2 196 196 196 196 196
mposition storage (GB) <0.001 <0.001 <0.001 <0.001 <0.001

N 6 6 6 6 6
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maximum delay. Table 1 shows how this dimension changes while varying numbers of cars J when the maximum delay is
N ¼ 6. It also shows how much RAM space is needed to store one of its possible values, given that each entry takes 8-byte
storage space. The second issue is the difficulty in enumerating all the NJ possible values of Ar 
 Ar , when calculating the
weighted sum in (30). As J increases, NJ increases dramatically, cf. Table 1. The third and the most critical issue is to deter-
mine plant stability changes while varying parameters, that is, frequent eigenvalue calculations on huge matrices with high
multiplicity of eigenvalues. The appearance of high multiplicity in eigenvalues will be shown later. In this case accuracy of
eigenvalues degrades significantly as the size of the matrix and the eigenvalue multiplicity increase; see (Trefethen and Bau,
1997). Henceforth, decomposition must be done to assure scalability of computations on plant stability.

The decomposition procedure outlined in the supplemental document relies on applying properties of the Kronecker pro-
duct (Laub, 2005; Olson et al., 2014; Loan, 2000) and using perfect shuffle (Loan, 2000; Davio, 1981). This allows us to trans-

form matrix ��A to a block diagonal matrix ~~A, that can be constructed using a weighted sum of N Kronecker products (rather
than NJ). Also, instead of enumerating Ar 
 Ar , we enumerate ai1 ;sj1


 ai2 ;sj2
, cf. (A.3) and (B.4), that is, the matrix dimension

decreases from size 22J2ðN þ 1Þ2 to size 22ðN þ 1Þ2. Table 1 also shows some effort characteristics needed to create ~~A. Due to

the fact that the eigenvalues of similar matrices are the same, the eigenvalues of matrix ��A are the same as the eigenvalues of

matrix ~~A. In particular, they are given by the eigenvalues of
Fig. 5.
corresp
�̂a11 ¼ �a1 
 �a1; ð32Þ

each with multiplicity JðJ � 1Þ, and the eigenvalues of
��a11 ¼
XN
l¼1

wl a1;l 
 a1;l; ð33Þ
each with multiplicity J, cf. (A.3).
Moreover, when plant stability of the second moment is concerned, plant stability of the mean dynamics must be guar-

anteed first. That is, all the eigenvalues of matrix �a1 lie inside the unit circle in the complex plane, which yields that all the
eigenvalues of matrix �̂a11 also lie inside the unit circle according to the properties of Kronecker product (Laub, 2005). Thus,
the plant stability condition of the second moment is simplified to assure that the eigenvalues of ��a11 lie inside the unit circle

in the complex plane. Notice that ��a11 is the weighted sum of N Kronecker products of matrices with dimension 22ðN þ 1Þ2
and that ��a11 is independent of J, that is, the plant stability condition does not depend on the number of cars. Similar to the
argument for mean dynamics, the plant stability boundaries of the second moment dynamics still depend on the parameters
ðKp;Kv; p;v�

0;DtÞ.
Fig. 5 shows the plant stability diagrams in the ðKv;KpÞ-plane for different packet delivery ratios. The inlets are the prob-

ability distributions of discrete stochastic delay given by (2). The red lines and red curves correspond to plant stability
boundaries for the mean dynamics. The regions enclosed by these curves, i.e., the union of the light red and light blue shaded
regions, are the mean plant stable regions. The blue lines and blue curves correspond to plant stability boundaries for the
second moment dynamics. The light blue shaded regions enclosed by them are the second moment plant stable regions.
It can be seen that the difference between plant stability boundaries for the mean dynamics and second moment dynamics
is increasing while the successful packet delivery ratio p decreases, i.e., the second moment dynamics plays an important
role when packet drops happen frequently in the V2V communication.

3.3.2. String stability
In this part, we follow the method and extend the notion presented in (Qin et al., 2017) to determine string stability for

the mean and covariance dynamics of the open chain system using transfer functions, which allow us to evaluate the behav-
ior of the open chain under stochastic delay variations. In order to test string stability, we consider the periodic input ~v0ðtÞ
Plant stability diagrams for an open chain of ðJ þ 1Þ connected vehicles in the ðKv;KpÞ-plane for different values of packet delivery ratio p. The
onding delay distributions (2) are plotted on each panel as inlets.
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given in (11) and the output ~v JðtÞ of the tail vehicle. After discretizing time (cf. (12) and (14)), we obtain two discrete inputs
~v0ðkÞ and ~v?

0 ðkÞ, and one discrete output ~v JðkÞ. We can derive the amplification ratio and phase lag for the mean dynamics as
Fig. 6.
packet
curves,
�MðxÞ ¼ j�CðejxDtÞj; �wðxÞ ¼ \�CðejxDtÞ; ð34Þ

where the transfer function
�CðzÞ ¼ �C z�I� �A
� ��1�B�E ð35Þ
is obtained by applying Z transform to (23), and
�E ¼ 1 j½ 	T ð36Þ
is used to sum up the effects of two inputs. Notice that �A (cf. (B.5)) is a block lower triangular matrix and �B (cf. (B.5)) has
many zero elements, the calculation of transfer function of mean dynamics can be further simplified into calculation of
matrices with much lower dimensions using block matrix inverse (Henderson and Searle, 1981). Such simplification is
explained in detail in the supplemental document.

The string stability condition for mean dynamics is given by
sup
x>0

�MðxÞ < 1: ð37Þ
We remark that �MðxÞ also depends on the parameters ðKp;Kv; p;v�
0;Dt; JÞ. Again it is difficult to find the stability boundaries

analytically, so we trace them numerically using the bisection method.
Fig. 6 shows string stability diagrams for the mean dynamics in the ðKv;KpÞ-plane for different values of packet delivery

ratio p and numbers of cars J. The green lines and curves correspond to the mean string stability boundaries, while the light
green shaded regions enclosed by them are the mean string stable regions. (The orange lines and curves, and the light orange
shaded regions will be explained later.) Note that the mean string stable regions must be embedded in the corresponding
mean plant stable regions, because plant stability is the prerequisite for string stability. In each panel, the boundaries cor-
responding to J ¼ 3;9;15;21;27, are plotted together such that the more vehicles there are, the darker the green boundary is.
However, the differences between different J-s are very small and possibly caused by numerical errors. In other words, the
mean string stability boundaries seem to be independent of the number of cars. Thus, the mean string stability condition for
open chain systems with fewer numbers of cars gives a very good estimate of that for the case with large numbers of cars.

To elaborate more on this, we use �Mðx; JÞ to spell out its dependence on the number of cars J. Suppose the amplification
ratio of the mean dynamics from the head vehicle to the first vehicle is �Mðx; 1Þ where x > 0, then it can be used to approx-
imate the amplification ratio from the j-th vehicle to the ðjþ 1Þ-th vehicle if we neglect the difference between the perfect
sinusoidal fluctuations in the head vehicle and triggered fluctuations in the j-th vehicle. This implies that
�Mðx; JÞ � �Mðx; 1ÞJ; x > 0; ð38Þ

and the approximation of (37) becomes
sup
x>0

�Mðx; 1ÞJ < 1 ) sup
x>0

�Mðx; 1Þ < 1; ð39Þ
since the amplification ratio is positive. That is, the mean string stability is independent of the number of cars J.
In order to derive string stability conditions for the covariance dynamics (29), only the steady state response to the sinu-

soidal input (10) is needed. However, the covariance dynamics (29) do not provide a direct input-output relationship as the
mean dynamics (23) do, because the covariance dynamics (29) are nonlinear and also contain terms driven by the mean
dynamics (23). To simplify the analysis, we assume that the mean dynamics are plant stable and already at steady state, that
is,
Mean string stability and 1r string stability diagrams for an open chain of ðJ þ 1Þ connected vehicles in the ðKv;KpÞ-plane for different values of
delivery ratio p. Each panel plots all the boundaries for mean string stability corresponding to J ¼ 3;9;15;21;27 from light green to dark green
and 1r string stability corresponding to J ¼ 3;9;15;21;27 from light orange to dark orange curves, respectively.



W.B. Qin, G. Orosz / Transportation Research Part C 83 (2017) 39–60 49
�XðkÞ ¼ QUðkÞ; ð40Þ

where Q satisfies
Q � �AQR ¼ �BR; ð41Þ

which can be obtained by substituting Eq. (40) into mean dynamics (23) and using the property (15).

Substituting (40) into (29) yields the simplified covariance dynamics
��Xðkþ 1Þ ¼ ��A ��XðkÞ þ ��B ��UðkÞ;
��YðkÞ ¼ ��C ��XðkÞ;

ð42Þ
where
��UðkÞ ¼ UðkÞ 
 UðkÞ; ð43Þ
and ��A and ��C are given by (30), while
��B ¼ ��K1ðQ 
 Q Þ þ ��K2ðQ 
 IÞ þ ��K3ðI
 Q Þ þ ��K4: ð44Þ
Similar to ��A, the matrices ��K1;
��K2;

��K3 and ��K4 are difficult to construct due to enormous enumeration of possibilities and
huge sizes. Therefore, decomposition based on block matrix calculation of Kronecker product and perfect shuffle can be used
to simplify the calculations; see supplemental document for more details.

Recall that �YðkÞ ¼ E½~v JðkÞ	 2 R and ��YðkÞ ¼ E½~v2
J ðkÞ	 � E½~v JðkÞ	2 2 R are the mean value and variance of the velocity ~v JðkÞ of

the tail vehicle. If we define
l ¼ �YssðkÞ; r2 ¼ ��YssðkÞ; ð45Þ

as the mean and variance of ~v JðkÞ at steady state, respectively, then the probability of ~v JðkÞ being outside the window
½l� nr;lþ nr	; n 2 Rþ is rather small when n � 1 according to Chebyshev’s inequality (Feller, 1950). Therefore, the follow-
ing definition is proposed.

Definition 1. The system is nr string stable if the input ~v0ðkÞ is attenuated such that
jl
 nrj < vamp
0 ; k ¼ 0; 1; 2; . . . ð46Þ
Note that when n ¼ 0, the nr string stability condition gives the mean string stability condition. One may notice that as n
is increased, nr string stability condition gets stronger since fewer trajectories are allowed to be outside the interval
½l� nr;lþ nr	. Thus, mean string stability gives the weakest condition and nr string stability with n � 1 implies that mean
string stability is satisfied. Also, we remark that the natural choice of n is n ¼ 1, and in Section 5 we will use stability charts to
demonstrate that 1r string stability of the open chain system is comparable to the second moment stability of the closed
ring system.

From linear system theory, the steady state of the mean value is
l ¼ vamp
0

�MðxÞ sin kxDt þ �wðxÞ� �
; ð47Þ
cf. (34). Thus, the steady state of the variance is needed. By substituting the input (12) into (43), one may notice that the

input ��UðkÞ can be separated into a constant part and a harmonic excitation part, i.e.,
��UðkÞ ¼ ��U0 þ ��U1ðkÞ; ð48Þ

where
��U0 ¼ 1
2
vamp
0

� �2��u0;
��U1ðkÞ ¼ 1

2
vamp

0

� �2��u1ðkÞ; ð49Þ
and
��u0 ¼

1
0
0
1

2
6664

3
7775; ��u1ðkÞ ¼

� cosð2kxDtÞ
sinð2kxDtÞ
sinð2kxDtÞ
cosð2kxDtÞ

2
6664

3
7775: ð50Þ
According to superposition principle, the particular solution of the linear system (42) is the sum of particular solution ��Y0 to
��U0 and particular solution ��Y1ðkÞ to ��U1ðkÞ. For input ��U0, the response of the system (42) is given by
��Y0 ¼ vamp
0

� �2 ��M0ðxÞ; ð51Þ
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with
��M0ðxÞ ¼ 1
2
��C ��I� ��A
� ��1��B��u0: ð52Þ
We remark that ��M0ðxÞ depends on x because matrix ��B depends on x, cf. (A.1), (A.4), (B.5), (30), (44). For ��U1ðkÞ, similar to
mean dynamics, taking the Z transform of (42) and summing the contributions of each individual inputs of ��u1ðkÞ in (50), we
obtain the corresponding steady state output
��Y1;ssðkÞ ¼ vamp
0

� �2 ��M1ðxÞ sin 2kxDt þ ��wðxÞ
� �

: ð53Þ
Here, the amplification ratio and phase lag are
��M1ðxÞ ¼ j��CðejxDtÞj; ��wðxÞ ¼ \��CðejxDtÞ; ð54Þ

where
��CðzÞ ¼ 1
2
��C z��I� ��A
� ��1��B��E; ð55Þ
and
��E ¼ �j 1 1 j½ 	T: ð56Þ

Therefore, the superposition principle yields that the steady state response to (48) is
r2 ¼ ��Y0 þ ��Y1;ssðkÞ ¼ vamp
0

� �2 ��M0ðxÞ þ ��M1ðxÞ sin 2kxDt þ ��wðxÞ
� �� �

: ð57Þ
The non-negativity of the variance yields that ��M0ðxÞ P ��M1ðxÞ. Hitherto we can calculate
l
 nr ¼ vamp
0

�MðxÞ sin kxDt þ �wðxÞ� �
 n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��M0ðxÞ þ ��M1ðxÞ sin 2kxDt þ ��wðxÞ

� �r� �
; ð58Þ
which is a periodic function with period T ¼ 2p=ðxDtÞ. Thus, the total amplification ratio becomes
��MðxÞ ¼ max
06k6T

�MðxÞ sin kxDt þ �wðxÞ� �
 n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��M0ðxÞ þ ��M1ðxÞ sin 2kxDt þ ��wðxÞ

� �r����
����

� �
; ð59Þ
and the condition for nr string stability is given by
sup
x>0

��MðxÞ < 1: ð60Þ
Again we remark that ��M0ðxÞ; ��M1ðxÞ and ��MðxÞ depend on the parameters ðKp;Kv; p;v�
0;Dt; JÞ. The corresponding boundaries

can be found numerically by bisection method.
Fig. 6 also shows the 1r string stability diagrams in the ðKv;KpÞ-plane for different values of packet delivery ratio p and

number of cars J. The orange lines and curves correspond to the 1r string stability boundaries for an open chain of different
number of cars such that the more vehicles there are, the darker the orange boundary is. The light orange shaded regions are
the 1r string stable regions for an open chain of J ¼ 27 cars. Indeed, the 1r string stable regions are embedded in the cor-
responding covariance plant stable regions. Fig. 6 illustrates that the 1r string stable regions expand as the number of vehi-
cles J increases. Also, the 1r string stable region converges to a limit as the number of vehicles J goes to infinity. If one can
succeed in obtaining this limit, that will be the necessary conditions of 1r string stable conditions for an open chain of any
number of cars. However, this is computationally infeasible and simplification is rather difficult. Thus, we take 1r string sta-
bility for an open chain of the largest number of vehicles that we can calculate so far, i.e., J ¼ 27, as the limit for the rest of the
paper. We remark that although we only show the results for 1r string stability, similar results can be obtained for nr string
stability when n – 1.

To better understand the above phenomena, we use ��M0ðx; JÞ; ��M1ðx; JÞ and ��Mðx; JÞ to emphasize their dependence on the

number of cars J. Similar to the argument made for the amplification ratio �Mðx; JÞ of the mean dynamics, ��M1ðx; JÞ can be
approximated by
��M1ðx; JÞ � ��M1ðx; 1ÞJ; x > 0; ð61Þ

where ��M1ðx; 1ÞJ is the amplification ratio of the harmonic fluctuation in the covariance dynamics from the head vehicle to
the first vehicle. When nr string stability with n � 1 is considered, mean string stability condition (37) is the minimum
requirement. One can check numerically that
��M1ðx; JÞ < 1; x > 0; ð62Þ
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is always satisfied when mean string stability condition holds. Thus, for a fixed nr string stability, as the number of cars J

increases, �Mðx; JÞ and ��M1ðx; JÞ will both decrease exponentially when mean string stability condition (37) holds, cf. (38)
and (61). In other words, the nr string stable condition (60) gets weaker as J increases, resulting in the expansion of nr string
stable regions.

However, ��M0ðx; JÞ provides a constant excitation to the covariance dynamics (42) and cannot be approximated in the

similar way as (38) and (61). Indeed, this constant excitation propagates along the traffic uniformly. To sum up, ��M0ðx; JÞ
becomes the leading part of (59) when (37) is satisfied and J is sufficiently large. Therefore, we have the following weaker
conditions for n r string stability.

Definition 2. The system is nr offset string stable if the amplitude of the input ~v0ðkÞ is attenuated such that
Fig. 7.
green a
respect
sup
x>0

�MðxÞ < 1; sup
x>0

��M0ðxÞ < 1
n2 : ð63Þ
Note that the condition above provides an easier way to check string stability. According to the exponential decaying

property in �Mðx; JÞ and ��M1ðx; JÞ, we have the following proposition.
Proposition 1. As the number of cars J in the open chain increases, nr string stability and nr offset string stability approximate
each other. Moreover, they converge to the same limit as J goes to infinity.

Fig. 7 summarizes the overall stability diagrams in the ðKv;KpÞ-plane for different values of packet delivery ratio p when
J ¼ 27. The same color scheme is used as in Figs. 5 and 6. The mean string stable regions and the 1r string stable regions are
embedded in the corresponding plant stable regions as discussed before. For plant stability, as the packet delivery ratio p
decreases, both the mean and covariance plant stable regions shrink, and the differences between them increase. Similar
behavior can be observed for the mean string stable and 1r string stable regions. Fig. 7 also shows us the mean string sta-
bility can be used as a good estimate for the 1r string stability when the open chain is sufficiently long.

4. Closed ring system

In some cases, it may be difficult to use a large open chain system to replicate some traffic phenomena which only appear
occasionally. For example, the phantom stop-and-go traffic jams only happen for a string unstable open chain system of large
scale when the head vehicle introduces some perturbations. However, this traffic jam will propagate upstream and finally
‘‘disappear”. Therefore, researchers (Ge et al., 2017; Avedisov and Orosz, 2015) resort to closed ring vehicle system as shown
in Fig. 8 that allows to observe such phenomena as sustained oscillations. However, this has only been achieved for deter-
ministic systems in continuous-time domain. In this section, we consider a closed ring system of J connected vehicles with
stochastic delays and derive the evolutions for the mean and second moment dynamics in order to evaluate the stability
properties.

4.1. Dynamics

Assuming that all the vehicles on the closed ring in Fig. 8 are described by the Eqs. (1) and (5), we can obtain the dynamics
for the overall system
_h1ðtÞ ¼ v JðtÞ � v1ðtÞ;
_v1ðtÞ ¼ u1ðtk�s1ðkÞÞ;
_hjðtÞ ¼ v j�1ðtÞ � v jðtÞ;
_v jðtÞ ¼ ujðtk�sjðkÞÞ; j ¼ 2; . . . ; J;

ð64Þ
Stability diagrams for an open chain of ð27þ 1Þ connected vehicles in the ðKv;KpÞ-plane for different values of packet delivery ratio p. Red, blue,
nd orange curves represent boundaries for mean plant stability, second moment plant stability, mean string stability and 1r string stability,
ively, while the light red, light blue, light green and light orange shaded regions represent the corresponding stability regions.



Fig. 8. A closed ring of J connected vehicles on a single lane. Dashed red arrows indicate the information flow through wireless communication, while the
solid blue arrows indicate the direction of traffic flow.
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for tk � t < tkþ1. Using the fact that ujðtk�sj Þ is a constant in the time interval t 2 ½tk; tkþ1Þ, one can solve the differential Eq.
(64) directly with initial values hðtkÞ;vðtkÞ, yielding the discrete-time nonlinear map
h1ðtkþ1Þ ¼ h1ðtkÞ þ v JðtkÞ � v1ðtkÞ
� �

Dt þ 1
2

uJðtk�sJ Þ � u1ðtk�s1 Þ
� �

Dt2;

v1ðtkþ1Þ ¼ v1ðtkÞ þ u1ðtk�s1 ÞDt;

hjðtkþ1Þ ¼ hjðtkÞ þ v j�1ðtkÞ � v jðtkÞ
� �

Dt þ 1
2

uj�1ðtk�sj�1
Þ � ujðtk�sj Þ

� �
Dt2;

v jðtkþ1Þ ¼ v jðtkÞ þ ujðtk�sj ÞDt; j ¼ 2; . . . ; J:

ð65Þ
The uniform flow equilibrium is achieved when all the vehicles reach the same velocity and distance headway given in (8).
Recall that in the open chain, the head vehicle determines the equilibrium velocity and (8) was used to devise the equilib-
rium distance headway; while in the closed ring, the length of the road and the number of cars determine the equilibrium
distance headway and (8) is used to obtain the equilibrium velocity.

Following the same process as we discussed in the case of open chain, we can define perturbations, states and augmented
states as (10), (12), (17), and (19), and obtain the stochastic dynamics
Xðkþ 1Þ ¼ AR
s XðkÞ; ð66Þ
where the possible values for AR
s are given in (C.1) in Appendix C.

With the IID assumption for the delays and the definition of the deterministic variables �XðkÞ in (22), one can derive the
equation for the mean dynamics
�Xðkþ 1Þ ¼ �AR �XðkÞ; ð67Þ

by taking expectations of both sides in (66), where
�AR ¼
XN
r¼1

wrA
R
r ; ð68Þ
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and the explicit expression of �AR is given in (C.2) in Appendix C.

Similarly, using the definition of the variable ^̂XðkÞ in (25), one can obtain the second moment dynamics
Fig. 9.
represe
^̂Xðkþ 1Þ ¼ ��AR ^̂XðkÞ; ð69Þ

by taking expectations with the PDF-s (21) and using independency between variables, where
��AR ¼
XN
r¼1

wrA
R
r 
 AR

r : ð70Þ
We remark that the covariance dynamics can also be obtained for the closed ring system. However, it is not needed for sta-
bility analysis.

4.2. Stability

Unlike open chain systems, the closed ring system does not have the definition of string stability due to the lack of input,
cf. (64)–(66), and plant stability reduces to the normal definition of stability in control theory. However, (Ge et al., 2017)
unveils the relationship between the stability of the closed ring system and the string stability of the open chain system with
the same configuration in the deterministic case in continuous-time domain. In this section, we investigate the stability of
the mean dynamics (67) and the second moment dynamics (69) of the closed ring system shown in Fig. 8, following the
method discussed in the case of open chain systems, in order to find the relationship between two different systems in
the stochastic sense in discrete-time domain.

To demonstrate stability, Fig. 9 shows three simulation results for a closed ring of 55 vehicles for different ðKv;KpÞ gains
when the packet delivery ratio p ¼ 0:4. The other parameters used here remain the same as those for Fig. 3. Again only the
velocities of every 11-th vehicles are shown. Fig. 9(a) shows a case when the equilibrium is stable. It can be seen that all the
vehicles’ velocities approach the desired equilibrium velocity despite the initial perturbations and stochastic packet drops. In
this sense, this realization for the stochastic closed ring system is stable. However, similar to the argument for the open chain
system, to check whether this pair of ðKv;KpÞ gains is stable in the stochastic sense, one has to investigate all the possible
realizations. Fig. 9(b, c) shows two different scenarios when the equilibrium is unstable. In Fig. 9(b), the vehicles are unable
to settle down to the desired velocity and keep oscillating around it due to the stochastic packet drops. This oscillation in
traffic system will deteriorate fuel economy and driving comfort. However, a more severe situation happens in Fig. 9(c),
where the initial perturbation causes stop-and-go traffic jams. The goal of the controller design is to eliminate all these
unstable behaviors by ensuring stability of the uniform flow equilibrium.

For stability of the mean dynamics (67), all the eigenvalues of the matrix �AR must lie within the unit circle in the complex
plane. Notice that �AR (cf. (C.2)) is a banded block circulant matrix (Davis, 1979; Olson et al., 2014), so the real matrix �AR is
unitarily similar to a block diagonal matrix with diagonal blocks
�Ki ¼ �a1 þ �a4e
�j2pJ 2ði�1Þ þ ð�a2 þ �a3Þe�j2pJ ði�1Þ; 1 6 i 6 J; ð71Þ
cf. (A.4). This can be obtained by using a transformation matrix that is the Kronecker product of the J-dimensional Fourier
matrix and the 2ðN þ 1Þ-dimensional identity matrix. In order to assure the mean stability, the eigenvalues of the matrices
�Ki; 1 � i � J;must lie within the unit circle in the complex plane. Notice that �AR is of dimension 2JðN þ 1Þ, but �Ki is of dimen-
sion 2ðN þ 1Þ: Also,
ej
2p
J ði�1Þ; 1 6 i 6 J; ð72Þ
Simulations of a closed ring of 55 connected vehicles for different ðKv ;KpÞ gains as indicated. The red, green, cyan, magenta and orange curves
nt the velocities v11; v22 ; v33; v44; v55, respectively. (a) Stable. (b) Unstable. (c) Unstable.
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is the collection of all the J-th roots of unity. For J ! 1; h can take all the possible values on the unit circle in the complex
plane. Thus, (71) yields the stability condition for the mean dynamics of the closed ring of infinitely many vehicles, that is, all
the eigenvalues of the matrix
Fig. 10.
and cur
the das
�Kh ¼ �a1 þ �a4e�2jh þ ð�a2 þ �a3Þe�jh; ð73Þ

lie within the unit circle in the complex plane for any 0 � h � p. Here, the fact that the eigenvalues of a real matrix appear as
conjugate pairs are used. We also remark that the limit J ! 1 is taken such that the length of the ring is also increased to
infinity while h� is kept constant.

Fig. 10 shows the mean stability diagrams of the closed ring system in the ðKv;KpÞ-plane for different values of packet
delivery ratio p and numbers of vehicles J. The solid cyan lines and curves correspond to mean stability boundaries for
the closed ring of J ¼ 3;9;15;21;27 vehicles such that the darker the color is, the more vehicles there are. The regions
enclosed by these curves are the mean stable regions. As the number of vehicles J increases, the mean stable regions con-
verge to the corresponding mean stable regions of the closed ring system of infinitely many vehicles. The limit mean stable
boundaries are represented by the dashed cyan lines and curves, and the corresponding mean stable regions are shown as
light cyan shaded regions. We remark that as the number of vehicles in the closed ring increases, the mean stable regions
shrink, but the mean stable conditions for a closed ring of J1 cars is neither a necessary nor a sufficient condition for that
of J2 cars when J1 � J2.

Similarly, to ensure stability of the second moment dynamics (69) for the closed ring system, all the eigenvalues of the

matrix ��AR must lie within the unit circle in the complex plane. Again we are faced with same issues as in the case of the open

chain, i.e., an enormous enumeration of high dimensional matrices AR
r 
 AR

r while constructing ��AR, as well as frequent eigen-
value calculations for this high dimensional matrix while varying parameters. As laid out in the supplemental document, by

applying properties of Kronecker product and using perfect shuffles, matrix ��AR can be transformed into a block circulant

matrix ^̂AR, and only N weighted sum of lower dimensional matrices is needed. This block circulant real matrix ^̂AR is unitarily
similar to a block diagonal complex matrix with diagonal blocks
��Ki 2 R22 JðNþ1Þ2�22JðNþ1Þ2 ; 1 6 i 6 J; ð74Þ

which are not shown here explicitly due to the complexity, but can be found in the supplemental document. Thus, in order to
assure the second moment stability of the closed ring, we need to make sure that all the eigenvalues of the matrices
��Ki; 1 � i � J; lie within the unit circle in the complex plane. Here, we remark that ��Ki is a perturbed block penta-circulant
matrix, but the perturbed block elements caused by vehicular connectivity prevent us from further simplifications. If one

can succeed in reducing this eigenvalue problem of ��Ki to the eigenvalue problem of matrices of even lower dimension, pos-

sibly 22ðN þ 1Þ2, then for the closed ring system of infinitely many vehicles, the stability condition for the second moment
dynamics can be obtained in the same way as that for the mean dynamics, cf. (73).

Fig. 11 shows the stability diagrams of the second moment dynamics in the ðKv;KpÞ-plane for different values of packet
delivery ratio p and numbers of cars J. The purple lines and curves correspond to the second moment stability boundaries for
the closed ring of J ¼ 3;9;15;21;27 vehicles in the way that the darker the purple color is, the more vehicles there are. Sim-
ilar to the mean dynamics, as the number of vehicles J increases, the second moment stable region converges to a limit, that
is given by the case of infinitely many vehicles. However, this limit is hard to obtain due to the aforementioned perturbed

terms in ��Ki. Therefore, we take the results for the largest number of vehicles J we can calculate so far, i.e., J ¼ 27, as the limit,
and shade the corresponding second moment stable regions with light purple color in Fig. 11. Again we remark that as the
number of vehicles increases, the second moment stable regions shrink in a similar way as the mean stable regions do.

In order to highlight the difference between mean stability and second moment stability, Fig. 12 shows the overall sta-
bility diagrams in the ðKv;KpÞ-plane for different values of packet delivery ratio p when J ¼ 27. The same color scheme is
Mean stability diagrams for a closed ring of J connected vehicles in the ðKv;KpÞ-plane for different values of packet delivery ratio p. The cyan lines
ves represent stability boundaries. Each panel plots all the boundaries corresponding to J ¼ 3;9;15;21;27 from light cyan to dark cyan curves, while
hed cyan curves correspond to the case J?1.



Fig. 12. Mean and second moment stability diagrams for a closed ring of 27 connected vehicles in the ðKv;KpÞ-plane for different values of packet delivery
ratio p. Cyan curves and purple curves represent the boundaries for mean stability and second moment stability, respectively, while the light cyan and light
purple shaded regions represent the mean stable regions and second moment stable regions, respectively.

Fig. 11. Second moment stability diagrams for a closed ring of J connected vehicles in the ðKv;KpÞ-plane for different values of packet delivery ratio p. Each
panel plots all the boundaries corresponding to J ¼ 3;9;15;21;27 from light purple to dark purple curves.

Fig. 13. Comparison diagrams between mean string stability of an open chain and mean stability of a closed ring in the ðKv;KpÞ-plane for different values of
packet delivery ratio p. The solid green curves represent mean string stability boundaries for an open chain of ð3þ 1Þ vehicles, while the dashed cyan curves
represent mean stability boundaries for a closed ring of infinitely many vehicles.
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used as in Figs. 10 and 11. The second moment stable regions are embedded in the corresponding mean stable regions as
discussed before. As the packet delivery ratio p decreases, both the mean and second moment stable regions shrink.
Fig. 12 demonstrates that the mean stability can be used as a good estimate for the second moment stability of the closed
ring system when the packet delivery ratio p is sufficiently large.

5. Comparison of results

In this section, we compare the stability results of the open chain system in Fig. 2 and closed ring system in Fig. 8 in the
presence of stochastic delays due to packet drops, where all the vehicles are described by the Eqs. (1) and (5).

Fig. 13 shows the comparison diagrams between the mean string stability for the open chain system of ð3þ 1Þ vehicles
and the mean stability for the closed ring system of infinitely many vehicles in the ðKv;KpÞ-plane for different values of
packet delivery ratio p. The same color scheme is used as in Figs. 6 and 10. We recall that the mean string stability for
the open chain system has an extremely weak dependence on the number of vehicles in the system, so mean string stability
for the open chain system of ð3þ 1Þ vehicles can be used as a good estimate for the open chain system of infinitely many
vehicles. It can be seen that the mean string stability for the open chain and mean stability for the closed ring for the same



Fig. 14. Comparison diagrams between 1r string stability of an open chain, and second moment stability of a closed ring in the ðKv ;KpÞ-plane for different
values of packet delivery ratio p. The solid orange curves and light orange shaded regions represent 1r string stability boundaries and 1r string stable
regions for an open chain of ð27þ 1Þ vehicles, while the solid purple curves and light purple shaded regions represent second moment stability boundaries
and second moment stable regions for a closed ring of 27 vehicles, respectively.
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parameter are practically indistinguishable. In other words, the mean string stability for the open chain system and mean
stability for the closed ring system with the same configuration converge to the same limit as the number of vehicles in
the system goes to infinity.

Fig. 14 shows the comparison between the 1r string stability for the open chain system of ð27þ 1Þ vehicles and the sec-
ond moment stability for the closed ring system of 27 vehicles in the ðKv;KpÞ-plane for different values of packet delivery
ratio p. The same color scheme is used as in Figs. 6 and 11. It can be seen that the difference between the 1r string stability
for the open chain system and second moment stability for the closed ring system for the same parameters is rather small
except that the second moment stable regions for the closed ring system have extra ‘‘peninsulas” that indeed disappear as
the number of vehicles J goes to infinity (similar to the mean stable regions). Therefore, the 1r string stability for the open
chain system and second moment stability for the closed ring system are essentially the same for large numbers of vehicles.

6. Conclusions

In this paper, we analyzed the dynamics of large connected vehicle systems using open chain and closed ring configura-
tions. We showed that packet drops lead to stochastic delay variations and we derived the mean, second moment, and
covariance dynamics in order to characterize the dynamics in the vicinity of the uniform flow. We established novel decom-
position techniques that allowed us to significantly reduce the size of the eigenvalue problems when analyzing stability.

For the open chain system, plant stability and nr string stability results were illustrated using stability diagrams on the
plane of gain parameters while varying the packet delivery ratio and the number of vehicles. It was found that both the mean
and the second moment plant stability are independent of the number of vehicles in the system. The mean string stability
has a very week dependence on the number of vehicles while the 1r string stable region expands as the number of vehicles
increases. Our results demonstrated that for large numbers of vehicles and sufficiently large packet delivery ratio the mean
string stability can be used as a good estimate for the 1r string stability.

For the closed ring system, stability charts were drawn using the mean and the second moment dynamics. We illustrated
that the stable regions shrink and converge to some limits as the number of vehicles increases. These limits can be obtained
by analyzing the case of infinitely many vehicles on the ring. Again the mean stability is a good estimate for the second
moment stability when the number of vehicles and packet delivery ratio are large enough. We also found that the mean
string stable region of open chain and mean stable region of the closed ring converge to the same limit as the number of
vehicles goes to infinity. Similarly, the 1r string stable region of the open chain and second moment stability of the closed
ring converge to the same limit.

Our results illustrate the feasibility of using connected vehicles to change the large scale dynamics of transportation sys-
tems in the presence of packet drops and provide the necessary mathematical tools in order to design connectivity-based
controllers that can ensure smooth traffic flow.

Acknowledgment

This work was supported by NSF grant 1300319.

Appendix A. Common matrices used for both systems

The matrices in (14) are given by



W.B. Qin, G. Orosz / Transportation Research Part C 83 (2017) 39–60 57
a1 ¼ 1 �Dt
0 1

� �
; a2 ¼ 0 Dt

0 0

� �
; a3 ¼ � 1

2Dt
2KpN� 1

2Dt
2ðKp þ KvÞ

DtKpN� �DtðKp þ KvÞ

" #
;

a4 ¼ 0 � 1
2Dt

2Kv

0 DtKv

" #
; a5 ¼

1
2Dt

2KpN� � 1
2Dt

2ðKp þ KvÞ
0 0

" #
; a6 ¼ 0 1

2Dt
2Kv

0 0

" #
;

b1 ¼
sinðxDtÞ

x
1�cosðxDtÞ

x

0 0

" #
; b2 ¼ � 1

2Dt
2Kv 0

DtKv 0

" #
; b3 ¼

1
2Dt

2Kv 0
0 0

" #
; ðA:1Þ

c1 ¼ 0 1½ 	:

where
N� ¼
dVðh�

j Þ
dh

¼
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v�
j
ðvmax�v�

j
Þ

p
hgo�hst

if hst < hj < hgo;

0 elsewhere;

8<
: ðA:2Þ
cf. (6).
In (18), a1;sj ; a2;sj ; a3;sj ; a4;sj 2 R2ðNþ1Þ�2ðNþ1Þ and b1;s1 ; b2;s1 2 R2ðNþ1Þ�2 can take the values
a1;rj ¼

a1 d1rja3 . . . dNrja3

I
. .
.

I

2
66664

3
77775; a2;rj ¼

a2 d1rja4 . . . dNrja4

0 0 . . . 0

� �
;

a3;rj ¼
0 d1rja5 . . . dNrja5

0 0 . . . 0

� �
; a4;rj ¼

0 d1rja6 . . . dNrja6

0 0 . . . 0

� �
; ðA:3Þ

b1;r1 ¼

b1 þ
PN

n¼1dnr1b2R
n

0
..
.

0

2
66664

3
77775; b2;r1 ¼

PN
n¼1dnr1b3R

n

0
..
.

0

2
66664

3
77775;
for rj ¼ 1; 2; � � � ; N, where dirj denotes the Kronecker delta, and j ¼ 1; 2; . . . ; J. The expected values of a1;sj , a2;sj , a3;sj , a4;sj , b1;s1 ,
b2;s1 are
�a1 ¼
XN
rj¼1

wrja1;rj ¼

a1 w1a3 . . . wNa3

I
. .
.

I

2
66664

3
77775; �a2 ¼

XN
rj¼1

wrja2;rj ¼
a2 w1a4 . . . wNa4

0 0 . . . 0

� �
;

�a3 ¼
XN
rj¼1

wrja3;rj ¼
0 w1a5 . . . wNa5

0 0 . . . 0

� �
; �a4 ¼

XN
rj¼1

wrja4;rj ¼
0 w1a6 . . . wNa6

0 0 . . . 0

� �
;

�b1 ¼
XN
rj¼1

wrjb1;rj ¼

b1 þ b2
�R

0
..
.

0

2
66664

3
77775; �b2 ¼

XN
rj¼1

wrjb2;rj ¼

b3
�R

0
..
.

0

2
66664

3
77775; ðA:4Þ
where
�R ¼
XN
n¼1

wnR
n: ðA:5Þ
Appendix B. Matrices used for open chain

The output matrix in (18) is
c ¼ c1 00 . . . 00� �
; ðB:1Þ
where
00 ¼ 0 0½ 	; ðB:2Þ
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and the output matrix in (20) is
C ¼ 0 . . . 0 c½ 	; ðB:3Þ

where 0 is a 2ðN þ 1Þ-dimensional row vector with all elements being 0.

In (20), As and Bs1 can take the values from
Ar ¼

a1;r1

a3;r1 þ a2;r2 a1;r2

a4;r2 a3;r2 þ a2;r3 a1;r3

. .
. . .

. . .
.

a4;rj�1
a3;rJ�1 þ a2;rJ a1;rJ

2
66666664

3
77777775
; Br1 ¼

b1;r1

b2;r1

0
..
.

0

2
6666664

3
7777775
; ðB:4Þ
for rj ¼ 1; 2; � � � ; N, and j ¼ 1; 2; . . . ; J, cf. (A.3).
The explicit expression for those matrices in (23) are given by
�A ¼

�a1

�a3 þ �a2 �a1

�a4 �a3 þ �a2 �a1

. .
. . .

. . .
.

�a4 �a3 þ �a2 �a1

2
66666664

3
77777775
; �B ¼

�b1

�b2

0
..
.

0

2
6666664

3
7777775
; ðB:5Þ
cf. (A.4).
We remark that if a different connectivity topology is used, some changes occur in (B.4) and (B.5) while the proposed

decomposition method still works. For example, if vehicles use the information of multiple predecessors instead of just
the immediate predecessor (Zhang and Orosz, 2016; Li et al., 2015), non-zero block elements appear under the second
sub-diagonal of block matrices Ar and �A, and Br1 and �B also change accordingly. Also, if vehicles have heterogeneous con-
trollers, difference in block elements will show the corresponding heterogeneity.

Appendix C. Matrices used for closed ring

In (66), AR
s can take the values from
AR
r ¼

a1;r1 a4;rJ a3;rJ þ a2;r1

a3;r1 þ a2;r2 a1;r2 a4;r1

a4;r2 a3;r2 þ a2;r3 a1;r3

. .
. . .

. . .
.

a4;rj�1
a3;rJ�1 þ a2;rJ a1;rJ

2
66666664

3
77777775
; ðC:1Þ
for rj ¼ 1; 2; � � � ; N, and j ¼ 1; 2; . . . ; J, cf. (A.3).
In (67), the explicit expression for matrix �AR is
�AR ¼
XN
r¼1

wrA
R
r ¼

�a1 �a4 �a3 þ �a2

�a3 þ �a2 �a1 �a4

�a4 �a3 þ �a2 �a1

. .
. . .

. . .
.

�a4 �a3 þ �a2 �a1

2
66666664

3
77777775
; ðC:2Þ
cf. (A.4).
Here we remark again that different connectivity topology or heterogeneous controllers will change the above matrices.

However, while the proposed decomposition method still work for different connectivity topology, it has some limitations
when heterogeneous controllers are considered, since heterogeneity breaks the block circulant structure of matrix �AR. In this
case, no further simplification can be achieved.

Using different connectivity topology or heterogeneous controllers will change the above matrices. The proposed decom-
position method still works for different connectivity topology. For heterogeneous controllers the block circulant structure of
matrix �AR disappears that may prohibit further simplifications.

Appendix D. Almost sure stability
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Definition 3. A random sequence fXðkÞ 2 Rngþ1
k¼0 converges to X� almost surely if
P lim
k!1

XðkÞ ¼ X�
� �

¼ 1: ðD:1Þ
If sequences generated by a stochastic dynamical system converge to X� almost surely, then the solution XðkÞ � X� is almost
surely asymptotically stable.
Appendix E. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.trc.
2017.07.005.
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