PROBLEM SET 6 (DUE ON THURSDAY, OCT 17)

(All Exercises are references to the July 27, 2024 version of *Foundations of Algebraic Geometry* by R. Vakil.)

- **Problem 1.** Let $S = k[x, y]/(x^2y)$ be a graded ring, where x and y have degree 1. Let $X = \operatorname{Proj} S$. Is X affine? Is X reduced?
- **Problem 2.** Let S = k[x, y, t, u]/(xu yt) be a graded ring, where x, y have degree 1 and t, u have degree 0. (So $S_0 = k[t, u]$.)
 - (a) For any graded ring T, there is a natural morphism $\operatorname{Proj} T \to \operatorname{Spec} T_0$ coming from $(T[\frac{1}{f}])_0$ being a T_0 -algebra. Let π be this morphism in the case T = S, i.e. π : $\operatorname{Proj} S \to \operatorname{Spec} S_0$. Check that the pullback map by π on rings of global sections $S_0 = \mathcal{O}_{\operatorname{Spec} S_0}(\operatorname{Spec} S_0) \to \mathcal{O}_{\operatorname{Proj} S}(\operatorname{Proj} S)$ is an isomorphism. (This is often (but not always) true for a general graded ring T - for instance it is true in the case of projective space $\mathbb{P}_k^n = \operatorname{Proj} k[x_0, \ldots, x_n]$, where both sides will be k.)
 - (b) Let π : Proj $S \to \operatorname{Spec} S_0 \cong \mathbb{A}^2_k$ be as above and let $U \subset \operatorname{Spec} S_0$ be the complement of the origin. Prove that π restricts to an isomorphism $\pi^{-1}(U) \cong U$.