PROBLEM SET 10 (DUE ON NOV 30)

(All Exercises are references to *Introduction to Commutative Algebra* by M. Atiyah and I. Macdonald.)

- **Problem 1.** Chapter 10, Exercise 4 (zero-divisors in completions)
- **Problem 2.** Let A be a Noetherian ring and let $I \subseteq A$ be an ideal. Let \widehat{A} be the I-adic completion of A. Show that \widehat{A} is isomorphic to a quotient of the ring of formal power series $A[[t_1,\ldots,t_k]]$ for some $k \geq 0$. (Hint: choose finitely many generators a_1,\ldots,a_k for I. Try to define a surjective ring homomorphism $f:A[[t_1,\ldots,t_k]] \to \widehat{A}$ with $f(t_i)=a_i$.)
- **Problem 3.** Let A be a DVR with maximal ideal \mathfrak{m} . Show that the \mathfrak{m} -adic completion \widehat{A} of A is also a DVR. (Hint: let v be the valuation on A and define a map $\widehat{v}: \widehat{A} \to \mathbb{Z}$ by $\widehat{v}((a_n)) = v(a_n)$ for n taken large enough such that $a_n \neq 0 \in A/\mathfrak{m}^n$ (and checking that this makes sense). Use \widehat{v} to show that \widehat{A} is a domain, and then show that it extends to a discrete valuation on the field of fractions of \widehat{A} .)
- **Problem 4.** Let A be a Dedekind domain and let \mathfrak{m} be a maximal ideal of A. Show that the \mathfrak{m} -adic completion of A is a DVR. (Hint: use the previous problem.)
- **Problem 5.** By the previous problem, the ring of p-adic integers \mathbb{Z}_p (the completion of \mathbb{Z} at (p)) is a DVR. The field of fractions of \mathbb{Z}_p is denoted \mathbb{Q}_p and called the p-adic rationals. Prove that the automorphism group of \mathbb{Q}_p is trivial, i.e. the only ring isomorphism $\mathbb{Q}_p \to \mathbb{Q}_p$ is the identity map. (Hint: for any positive integer k, let $S_k \subseteq \mathbb{Q}_p$ be the set of kth powers in \mathbb{Q}_p . By intersecting some of the S_k together (and using a combination of the p-adic valuation on \mathbb{Q}_p and Hensel's lemma on \mathbb{Z}_p to compute these S_k), show that the subset $1 + p\mathbb{Z}_p$ must be preserved by any automorphism. Then the subset $a + p^n\mathbb{Z}_p$ must be preserved for any integers a, n, and you should be able to finish from there.)