PROBLEM SET 3 (DUE ON OCT 5)

(All Exercises are references to *Introduction to Commutative Algebra* by M. Atiyah and I. Macdonald.)

- **Problem 1.** Chapter 5, Exercise 2 (homomorphisms into an algebraically closed field can be extended along integral ring extensions)
- **Problem 2.** Chapter 5, Exercise 3 (tensor products preserve integrality)
- **Problem 3.** Chapter 5, Exercise 4 (integrality is not in general preserved by localizing at prime ideals compare with Proposition 5.6(ii), which is the correct sense in which localization preserves integrality)
- **Problem 4.** Chapter 5, Exercise 7 (conditions under which a subring is integrally closed)
- **Problem 5.** (a) Let A be a ring. Let G be a finite group along with an action on A via ring automorphisms (i.e. there is a map $G \times A \to A$, $(g, a) \mapsto g \cdot a$ satisfying $g \cdot (h \cdot a) = (gh) \cdot a$ and such that $a \mapsto g \cdot a$ is an automorphism of A for each $g \in G$). Let $A^G \subseteq A$ be the subring of elements fixed by every $g \in G$. Prove that A is integral over A^G . (This is the first part of Chapter 5, Exercise 12.)
 - (b) Now let $A = \mathbb{C}[x_1, \dots x_n]$ and take G to be the symmetric group S_n , acting on A by permuting the variables. Find all prime ideals $\mathfrak{p} \subset A$ lying over the prime ideal $(x_1x_2 \cdots x_n) \subset A^G$.
- **Problem 6.** Let $A = \mathbb{C}[x,y]/(y^2-x^3)$. Let $B = A_{(0)}$ be the field of fractions of A. Determine the integral closure C of A in B. Show that the inclusion $A \subset C$ induces a bijection Spec $C \to \operatorname{Spec} A$. (In other words, each prime ideal in A has exactly one prime ideal lying above it in C.)