PROBLEM SET 7 (DUE ON NOV 2)

(All Exercises are references to *Introduction to Commutative Algebra* by M. Atiyah and I. Macdonald.)

- **Problem 1.** Chapter 8, Exercise 3, implication (i) \implies (ii). (Artinian f.g. k-algebras are finite k-algebras you've already done the other implication.)
- **Problem 2.** Let A be a finite ring (i.e. a ring with finitely many elements). Show that A is isomorphic to a product of rings, each of which has a prime power number of elements (i.e. p^n for prime p and $n \ge 1$).
- **Problem 3.** Let $A = \mathbb{C}[x,y]$ and $X = \mathbb{C}^2$. For each $n \geq 0$, define

$$X^{[n]} := \{ I \subseteq A \mid I \text{ is an ideal and } \dim_{\mathbb{C}}(A/I) = n \}.$$

(Here $\dim_{\mathbb{C}}$ means dimension as a \mathbb{C} -vector space. We say that such ideals I have colength n. The set $X^{[n]}$ is sometimes called the *Hilbert scheme of points* of X.)

Also let

$$S^n(X) := X^n/S_n = \{ \text{multisets of size } n \text{ consisting of elements of } X \}.$$

(Here S_n is the symmetric group on n elements, acting on the n factors of the cartesian product X^n .)

Show that there exist functions

$$\phi_n: X^{[n]} \to S^n(X)$$

for each $n \geq 0$ such that

- (a) ϕ_n is surjective for each $n \geq 0$.
- (b) If I and J are ideals of finite colengths m and n respectively and $I \subseteq J$, then $\phi_n(J)$ is a sub-multiset of $\phi_m(I)$.
- (c) If I and J are ideals of finite colengths m and n respectively, then $I \cap J$ has colength m+n if and only if $\phi_m(I)$ and $\phi_n(J)$ are disjoint, and in this case $\phi_{m+n}(I \cap J) = \phi_m(I) \cup \phi_n(J)$.
- **Problem 4.** Let k be a field. Describe all discrete valuations on the field k(x) satisfying $v(f) \geq 0$ for all polynomials $f \in k[x]$ and show that the corresponding DVRs are localizations of k[x] at maximal ideals.
- **Problem 5.** Give an example of a discrete valuation on the field $\mathbb{C}(x,y)$ such that
 - (a) $v(f) \ge 0$ for all polynomials $f \in \mathbb{C}[x, y]$;
 - (b) the corresponding DVR is not equal to a localization of $\mathbb{C}[x,y]$ (both viewed as subrings of $\mathbb{C}(x,y)$).

(Hint: look for a discrete valuation such that v(x) = v(y) = 1.)