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Abstract

Witten’s class on the moduli space of 3-spin curves defines a (non-
semisimple) cohomological field theory. After a canonical modifica-
tion, we construct an associated semisimple CohFT with a non-trivial
vanishing property obtained from the homogeneity of Witten’s class.
Using the classification of semisimple CohFTs by Givental-Teleman,
we derive two main results. The first is an explicit formula in the
tautological ring of Mg,n for Witten’s class. The second, using the
vanishing property, is the construction of relations in the tautological
ring of Mg,n.

Pixton has previously conjectured a system of tautological rela-
tions on Mg,n (which extends the established Faber-Zagier relations
on Mg). Our 3-spin construction exactly yields Pixton’s conjectured
relations. As the classification of CohFTs is a topological result de-
pending upon the Madsen-Weiss theorem (Mumford’s conjecture), our
construction proves relations in cohomology. The study of Witten’s
class and the associated tautological relations for r-spin curves via a
parallel strategy will be taken up in a following paper.
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0 Introduction

0.1 Overview

The study of relations in the cohomology of the moduli space of curves was
initiated by Mumford [13] in the 1980s. While several classical approaches
were applied with success before, the subject has developed rapidly in the
last two decades via natural connections to topological string theory.

A systematic study by Faber and Zagier of the algebra of κ classes on the
moduli space Mg of nonsingular genus g curves led to a conjecture in 2000
of a concise set FZ of κ relations. A proof of the Faber-Zagier conjecture (in
Chow) via the geometry of stable quotients was given in 2010 [14]. In 2012,
the second author [16] conjectured a set P of tautological relations for the
moduli spaces Mg,n of stable curves. The set P recovers FZ when restricted
to Mg ⊂Mg.

Our main result proves the conjectured relations P in the cohomology
ring H∗(Mg,n,Q). By restriction, we obtain a second proof of the Faber-
Zagier conjecture in cohomology. Are there other relations? The sets FZ
and P explain all presently known tautological relations on Mg and Mg,n

respectively. At least in Chow, the sets FZ and P are conjectured to be
complete in both cases [14, 16].

We study here the geometry of 3-spin curves. Witten’s class on the moduli
space of 3-spin curves defines a non-semisimple cohomological field theory.
After a canonical modification (obtained by moving to a semisimple point of
the associated Frobenius manifold), we construct a semisimple CohFT with
a non-trivial vanishing property obtained from the homogeneity of Witten’s
class. Using the classification of semisimple CohFTs by Givental-Teleman
[6, 20], we derive an explicit formula in the tautological ring of Mg,n for
Witten’s 3-spin class and use the vanishing property to establish the relation
set P.

0.2 Stable graphs

The boundary strata of the moduli space of curves correspond to stable graphs

Γ = (V,H,L, g : V→ Z≥0, v : H→ V, ι : H→ H)

satisfying the following properties:
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(i) V is a vertex set with a genus function g : V → Z≥0,

(ii) H is a half-edge set equipped with a vertex assignment v : H → V and
an involution ι,

(iii) E, the edge set, is defined by the 2-cycles of ι in H (self-edges at vertices
are permitted),

(iv) L, the set of legs, is defined by the fixed points of ι and endowed with
a bijective correspondence with a set of markings,

(v) the pair (V,E) defines a connected graph,

(vi) for each vertex v, the stability condition holds:

2g(v)− 2 + n(v) > 0,

where n(v) is the valence of Γ at v including both edges and legs.

An automorphism of Γ consists of automorphisms of the sets V and H which
leave invariant the structures g, ι, and v (and hence respect E and L). Let
Aut(Γ) denote the automorphism group of Γ.

The genus of a stable graph Γ is defined by:

g(Γ) =
∑
v∈V

g(v) + h1(Γ).

A boundary stratum of the moduli space Mg,n of Deligne-Mumford stable
curves naturally determines a stable graph of genus g with n legs by consid-
ering the dual graph of a generic pointed curve parametrized by the stratum.

To each stable graph Γ, we associate the moduli space

MΓ =
∏
v∈V

Mg(v),n(v).

Let πv denote the projection fromMΓ toMg(v),n(v) associated to the vertex v.
There is a canonical morphism

ξΓ :MΓ →Mg,n (1)

with image1 equal to the boundary stratum associated to the graph Γ. To
construct ξΓ, a family of stable pointed curves over MΓ is required. Such a
family is easily defined by attaching the pull-backs of the universal families
over each of the Mg(v),n(v) along the sections corresponding to half-edges.

1The degree of ξΓ is |Aut(Γ)|.
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0.3 Strata algebra

Let Γ be a stable graph. A basic class on MΓ is defined to be a product of
monomials in κ classes2 at each vertex of the graph and powers of ψ classes
at each half-edge (including the legs),

γ =
∏
v∈V

∏
i>0

κi[v]xi[v] ·
∏
h∈H

ψ
y[h]
h ∈ H∗(MΓ,Q) ,

where κi[v] is the ith kappa class on Mg(v),n(v). We impose the condition∑
i>0

ixi[v] +
∑
h∈H[v]

y[h] ≤ dimC Mg(v),n(v) = 3g(v)− 3 + n(v)

at each vertex to avoid the trivial vanishing of γ. Here, H[v] ⊂ H is the set
of half-edges (including the legs) incident to v.

Consider the Q-vector space Sg,n whose basis is given by the isomorphism
classes of pairs [Γ, γ], where Γ is a stable graph of genus g with n legs and γ
is a basic class on MΓ. Since there are only finitely many pairs [Γ, γ] up to
isomorphism, Sg,n is finite dimensional.

A product on Sg,n is defined by intersection theory with respect to the
morphisms (1) to Mg,n. Let

[Γ1, γ1], [Γ2, γ2] ∈ Sg,n

be two basis elements. The fiber product of ξΓ1 and ξΓ2 over Mg,n is canon-
ically described as a disjoint union of ξΓ for stable graphs Γ endowed with
contractions3 onto Γ1 and Γ2. More precisely, the set of edges E of Γ should
be represented as a union of two (not necessarily disjoint) subsets,

E = E1 ∪ E2,

in such a way that Γ1 is obtained by contracting all the edges outside E1 and
Γ2 is obtained by contracting all edges outside E2 (see Proposition 9 in the

2Our convention is κi = π∗(ψi+1
n+1) ∈ H2i(Mg,n,Q) where

π :Mg,n+1 →Mg,n

is the map forgetting the marking n + 1. For a review of κ and and cotangent ψ classes,
see [8].

3If there are several different pairs of contractions from a given Γ, the corresponding
ξΓ appears with multiplicity.
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Appendix of [8]). The intersection of ξΓ1 and ξΓ2 inMg,n is then canonically
given by Fulton’s excess theory as a sum of elements in Sg,n. We define

[Γ1, γ1] · [Γ2, γ2] =
∑

Γ

[Γ, γ1γ2εΓ]

where
εΓ =

∏
e∈E1∩E2

−(ψ′e + ψ′′e )

is the excess class. Here, ψ′e and ψ′′e are the two cotangent line classes corre-
sponding to the two half-edges of the edge e.

A case of particular importance for us is when Γ2 has only a single edge.
The set E2 must consist of a single element e, while E1 may be either E or
E \ {e}. The above product then yields the restriction of a basic class to a
boundary divisor.

Via the above intersection product, Sg,n is a finite dimensional Q-algebra,
called the strata algebra [16]. Push-forward along ξΓ defines a canonical ring
homomorphism

q : Sg,n → H∗(Mg,n,Q), q([Γ, γ]) = ξΓ∗(γ)

from the strata algebra to the cohomology ring. By definition, the image of
q is the tautological ring RH∗(Mg,n). An element of the kernel of q is called
a tautological relation.

Each basis element [Γ, γ] has a degree grading given by the number of
edges of Γ plus the usual (complex) degree of γ,

deg[Γ, γ] = |E|+ degC(γ) .

Hence, Sg,n is graded,

Sg,n =

3g−3+n⊕
d=0

Sdg,n .

Since the product respects the grading, Sg,n is a graded algebra. Of course,

q : Sdg,n → H2d(Mg,n,Q) .
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0.4 The tautological relations P̃

We define a set P̃ consisting of elements Rd
g,A ∈ Sdg,n associated to the data

• g, n ∈ Z≥0 in the stable range 2g − 2 + n > 0,

• A = (a1, . . . , an), ai ∈ {0, 1},

• d ∈ Z≥0 satisfying d >
g−1+

∑n
i=1 ai

3
.

The elements Rd
g,A are expressed as sums over stable graphs of genus g with

n legs. We prove in Section 3.5 that the conjectured family of relations P of
[16] is implied in cohomology by the family of relations

q
(
Rd
g,A

)
= 0 ∈ H2d(Mg,n,Q)

for all Rd
g,A ∈ P̃. Before writing the formula for Rd

g,A, a few definitions are
required.

The following two series first arose in the study by Faber and Zagier of
tautological relations on the moduli space Mg of nonsingular curves:

B0(T ) =
∑
m≥0

(6m)!

(2m)!(3m)!
(−T )m = 1− 60T + 27720T 2 − · · · ,

B1(T ) =
∑
m≥0

1 + 6m

1− 6m

(6m)!

(2m)!(3m)!
(−T )m = 1 + 84T − 32760T 2 + · · · .

These series control the original set FZ and continue to play a central role
in the set P̃. In the first proof of the Faber-Zagier relations [14], the above
series appeared via differential equations satisfied by the logarithm of

Φ(t, x) =
∞∑
d=0

d∏
i=1

1

1− it
(−1)d

d!

xd

td
,

see [14, Section 5] and [10]. Here we discover a completely different source for
the series B0(T ) and B1(T ) via the homogeneous calibration of the Frobenius
manifold associated to A2.

Let f(T ) be a power series with vanishing constant and linear terms,

f(T ) ∈ T 2Q[[T ]] .
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For each Mg,n, we define

κ(f) =
∑
m≥0

1

m!
pm∗

(
f(ψn+1) · · · f(ψn+m)

)
∈ H∗(Mg,n,Q), (2)

where pm is the forgetful map

pm :Mg,n+m →Mg,n.

By the vanishing in degrees 0 and 1 of f , the sum (2) is finite.
Let Gg,n be the (finite) set of stable graphs of genus g with n legs (up

to isomorphism). Let Γ ∈ Gg,n. For each vertex v ∈ V, we introduce an
auxiliary variable ζv and impose the conditions

ζvζv′ = ζv′ζv , ζ2
v = 1 .

The variables ζv will be responsible for keeping track of a local parity condi-
tion at each vertex.

The formula for Rd
g,A is a sum over Gg,n. The summand corresponding to

Γ ∈ Gg,n is a product of vertex, leg, and edge factors:

• For v ∈ V, let κv = κ
(
T − TB0(ζvT )

)
.

• For l ∈ L, let Bl = ζalv(l)Bal

(
ζv(l)ψl

)
, where v(l) ∈ V is the vertex to

which the leg is assigned.

• For e ∈ E, let

∆e =
ζ ′ + ζ ′′ −B0(ζ ′ψ′)ζ ′′B1(ζ ′′ψ′′)− ζ ′B1(ζ ′ψ′)B0(ζ ′′ψ′′)

ψ′ + ψ′′

= (60ζ ′ζ ′′ − 84) + [32760(ζ ′ψ′ + ζ ′′ψ′′)− 27720(ζ ′ψ′′ + ζ ′′ψ′)] + · · · ,

where ζ ′, ζ ′′ are the ζ-variables assigned to the vertices adjacent to the
edge e and ψ′, ψ′′ are the ψ-classes corresponding to the half-edges.

The numerator of ∆e is divisible by the denominator due to the identity

B0(T )B1(−T ) + B0(−T )B1(T ) = 2.

Obviously ∆e is symmetric in the half-edges.
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Definition 0.1 Let A = (a1, . . . , an) ∈ {0, 1}n. We denote by Rd
g,A ∈ Sdg,n

the degree d component of the strata algebra class∑
Γ∈Gg,n

1

|Aut(Γ)|
1

2h1(Γ)

[
Γ,
[∏

κv
∏

Bl

∏
∆e

]
∏

v ζ
g(v)−1
v

]
∈ Sg,n,

where the products are taken over all vertices, all legs, and all edges of the
graph Γ. The subscript

∏
v ζ

g(v)−1
v indicates the coefficient of the monomial∏

v ζ
g(v)−1
v after the product inside the brackets is expanded.

Definition 0.2 We denote by P̃ the set of classes Rd
g,A where

d >
g − 1 +

∑n
i=1 ai

3
.

Theorem 1 Every element Rd
g,A ∈ P̃ lies in the kernel of the homomorphism

q : Sg,n → H∗(Mg,n,Q) .

As a formal consequence of Theorem 1, we will establish the originally
conjectured set of relations P.

Corollary 2 The full set P of relations conjectured in [16] holds in cohomol-
ogy.

Furthermore, we will identify Rd
g,(a1,...,an) as a simple multiple of Witten’s

class for r = 3 when d = g−1+
∑
ai

3
and a simple multiple of a push-forward

of Witten’s class under a forgetful map when d < g−1+
∑
ai

3
.

0.5 Cohomological field theories

We recall here the basic definitions of a cohomological field theory by Kont-
sevich and Manin [11].

Let V be a finite dimensional Q-vector space with a non-degenerate sym-
metric 2-form η and a distinguished element 1 ∈ V . The data (V, η,1) is the
starting point for defining a cohomological field theory. Given a basis {ei}
of V , we write the symmetric form as a matrix

ηjk = η(ej, ek) .
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The inverse matrix is denoted by ηjk as usual.
A cohomological field theory consists of a system Ω = (Ωg,n)2g−2+n>0 of

elements
Ωg,n ∈ H∗(Mg,n,Q)⊗ (V ∗)⊗n.

We view Ωg,n as associating a cohomology class on Mg,n to elements of V
assigned to the n markings. The CohFT axioms imposed on Ω are:

(i) Each Ωg,n is Sn-invariant, where the action of the symmetric group Sn
permutes both the marked points of Mg,n and the copies of V ∗.

(ii) Denote the basic gluing maps by

q :Mg−1,n+2 →Mg,n ,

r :Mg1,n1+1 ×Mg2,n2+1 →Mg,n .

The pull-backs q∗(Ωg,n) and r∗(Ωg,n) are equal to the contractions of
Ωg−1,n+2 and Ωg1,n1+1 ⊗ Ωg2,n2+1 by the bi-vector∑

j,k

ηjkej ⊗ ek

inserted at the two identified points.

(iii) Let v1, . . . , vn ∈ V be any vectors and let p : Mg,n+1 → Mg,n be the
forgetful map. We require

Ωg,n+1(v1 ⊗ · · · ⊗ vn ⊗ 1) = p∗Ωg,n(v1 ⊗ · · · ⊗ vn) ,

Ω0,3(v1 ⊗ v2 ⊗ 1) = η(v1, v2) .

Definition 0.3 A system Ω = (Ωg,n)2g−2+n>0 of elements

Ωg,n ∈ H∗(Mg,n,Q)⊗ (V ∗)⊗n

satisfying properties (i) and (ii) is a cohomological field theory or a CohFT.
If (iii) is also satisfied, Ω is a CohFT with unit.
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A CohFT Ω yields a quantum product • on V via

η(v1 • v2, v3) = Ω0,3(v1 ⊗ v2 ⊗ v3) .

Associativity of • follows from (ii). The element 1 ∈ V is the identity for •
by (iii).

A CohFT ω composed only of degree 0 classes,

ωg,n ∈ H0(Mg,n,Q)⊗ (V ∗)⊗n ,

is called a topological field theory. Via property (ii), ωg,n(v1, . . . , vn) is deter-
mined by considering stable curves with a maximal number of nodes. Such
a curve is obtained by identifying several rational curves with three marked
points. The value of ωg,n(v1 ⊗ · · · ⊗ vn) is thus uniquely specified by the
values of ω0,3 and by the quadratic form η. In other words, given V and η,
a topological field theory is uniquely determined by the associated quantum
product.

0.6 Witten’s r-spin class

For every integer r ≥ 2, there is a beautiful CohFT obtained from Witten’s
r-spin class. We review here the basic properties of the construction. The
integer r is fixed once and for all.

Let V be an (r − 1)-dimensional Q-vector space with basis e0, . . . , er−2,
bilinear form

ηab = 〈ea, eb〉 = δa+b,r−2 ,

and unit vector 1 = e0. Witten’s r-spin theory provides a family of classes

Wg,n(a1, . . . , an) ∈ H∗(Mg,n,Q).

for a1, . . . , an ∈ {0, . . . , r − 2}. These define a CohFT by

Wg,n : V ⊗n → H∗(Mg,n,Q), Wg,n(ea1 ⊗ · · · ⊗ ean) = Wg,n(a1, . . . , an) .

To emphasize r, we will often refer to V as Vr.
Witten’s class Wg,n(a1, . . . , an) has (complex) degree given by the formula

degC Wg,n(a1, . . . , an) = Dg,n(a1, . . . , an) (3)

=
(r − 2)(g − 1) +

∑n
i=1 ai

r
.
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If Dg,n(a1, . . . , an) is not an integer, the corresponding Witten class vanishes.
In genus 0, the construction was first carried out by Witten [21] using r-

spin structures (rth roots of the canonical bundle) and satisfies the following
initial conditions:

W0,3(a1, a2, a3) =

∣∣∣∣ 1 if a1 + a2 + a3 = r − 2,
0 otherwise.

(4)

W0,4(1, 1, r − 2, r − 2) =
1

r
[point] ∈ H2(M0,4,Q) .

Uniqueness of Witten’s r-spin theory in genus 0 follows easily from the initial
conditions (4) and the axioms of a CohFT with unit.

The genus 0 sector defines a quantum product • on V with unit e0,

〈ea • eb, ec〉 = W0,3(a, b, c) .

The resulting algebra, even after extension to C, is not semisimple.
The existence of Witten’s class in higher genus is both remarkable and

highly non-trivial. An algebraic construction was first obtained by Polishchuk
and Vaintrob [17] defining

Wg,n(a1, . . . , an) ∈ A∗(Mg,n,Q)

as an algebraic cycle class. The algebraic approach was later simplified by
Chiodo [2]. Analytic constructions have been given by Mochizuki [12] and
later by Fan, Jarvis, and Ruan [9]. The equivalence between the above
analytic and algebraic constructions was heretofore unknown.

Theorem 3 For every r ≥ 2, there is a unique CohFT which extends Wit-
ten’s r-spin theory in genus 0 and has pure dimension (3). The unique ex-
tension takes values in the tautological ring

RH∗(Mg,n) ⊂ H∗(Mg,n,Q).

As a consequence of Theorem 3, the analytic and algebraic approaches
coincide and yield tautological classes in cohomology. Our proof of Theorem 3
is not valid for Chow field theories as topological results play an essential role.
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0.7 Strategy of proof

Theorems 1 and 3 are proven together. Let Wg,n be any CohFT with unit
which extends Witten’s r-spin theory in genus 0 and has pure dimension (3).

We use a canonical procedure (a shift on the Frobenius manifold) to define

a new CohFT W̃g,n satisfying the following four properties:

(i) W̃ is canonically constructed from W with the genus 0 sector of W̃
entirely determined by the genus 0 sector of W ,

(ii) the quantum product associated to W̃0,3 defines a semisimple algebra
on Vr,

(iii) the component of W̃g,n(ea1⊗· · ·⊗ean) in complex degree Dg,n(a1, . . . , an)
equals Wg,n(a1, . . . , an),

(iv) the class W̃g,n(ea1⊗· · ·⊗ean) has no components in degrees higher than
Dg,n(a1, . . . , an).

In other words, W̃ is constructed from W by adding only lower degree terms.
By the results of Givental and Teleman, W̃ is determined via a universal

formula in the tautological ring by the semisimple genus 0 sector. By prop-
erty (iii), we deduce a formula for W̃ in the tautological ring depending only
upon Witten’s r-spin theory in genus 0 and obtain Theorem 3.

To prove Theorem 1, we write explicitly Givental’s formula for the mod-
ified CohFT W̃ in the 3-spin case. The series B0 and B1 appear in the
associated Frobenius structure. By property (iv), we obtain vanishings in
the tautological ring in degrees

d > Dg,n(a1, . . . , an) =
g − 1 +

∑n
i=1 ai

3
for r = 3.

The outcome is exactly the relations P̃.
As a further outcome of the above investigation, we obtain the following

formula for Witten’s 3-spin class.

Theorem 4 Let r = 3. Then, for g, n ∈ Z≥0 in the stable range, we have

Wg,n(a1, . . . , an) = 2g 1728d q
(
Rd
g,(a1,...,an)

)
∈ H2d(Mg,n,Q)

when d =
g−1+

∑n
i=1 ai

3
is integral (and Wg,n(a1, . . . , an) is 0 otherwise).
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0.8 Plan of the paper

In Section 1, we define the shifted Witten class for the r-spin theory. Theo-
rem 3 is proven as a consequence of semisimplicity and Teleman’s uniqueness
result. A short review of the R-matrix action on CohFTs is presented in
Section 2. In Section 3, we compute the R-matrix for the 3-spin case and
prove Theorems 1 and 4. The proof of Corollary 2 is also given in Section 3.

The study of the R-matrix for higher r and the exploration of the asso-
ciated relations in the tautological ring will be taken up in [15].
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1 Ar−1 and the shifted Witten class

1.1 Potentials

Frobenius manifolds were introduced and studied in detail in Dubrovin’s
monograph [3]. For a concise summary see [7, Section 1].

As for every CohFT, the genus 0 part of Witten’s r-spin class determines
a Frobenius manifold structure on the underlying vector space Vr. For Wit-
ten’s class, the Frobenius manifold coincides with the canonical Frobenius
structure on the versal deformation of the Ar−1 singularity [4] up to a co-
ordinate change. We will denote by t0, . . . , tr−2 the coordinates in the basis
e0, . . . , er−2 of Vr.
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The structure of a Frobenius manifold is governed by the Gromov-Witten
potential. The genus 0 Gromov-Witten potential of Witten’s r-spin class
(without descendants) is:

F(t0, . . . , tr−2) =
∑
n≥3

∑
a1,...,an

∫
M0,n

W0,n(a1, . . . , an)
ta1 · · · tan

n!
.

We will refer to F as the primary genus 0 potential.

Example 1.1 For r = 3, the primary genus 0 potential obtained from Wit-
ten’s class equals

F(x, y) =
1

2
x2y +

1

72
y4,

where x = t0 and y = t1.
For r = 4, the potential is

F(x, y, z) =
1

2
x2z +

1

2
xy2 +

1

16
y2z2 +

1

960
z5,

where x = t0, y = t1, and z = t2.

The third derivatives of F determine an associative algebra structure (the
quantum product) in each tangent space to the Frobenius manifold. Let ∂i
denote the vector field on Vr associated to differentiation by ti. Then,

∂i • ∂j =
∑
k,l

∂3F

∂ti∂tj∂tk
ηkl∂l .

The algebra on tangent spaces is semisimple outside the discriminant of Ar−1.
For instance, for r = 3, the discriminant is {y = 0}.

Definition 1.2 Let τ ∈ Vr. We define the shifted Witten class by

Wτ
g,n(v1 ⊗ · · · ⊗ vn) =

∑
m≥0

1

m!
(pm)∗Wg,n+m(vn ⊗ · · · ⊗ vn ⊗ τ ⊗ · · · ⊗ τ),

where pm :Mg,n+m →Mg,n is the forgetful map.
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Remark 1.3 We have the following degree bound:

deg
[
(pm)∗Wg,n+m(ea1 ⊗ · · · ⊗ ean ⊗ τ ⊗ · · · ⊗ τ)

]
≤ (g − 1)(r − 2) +

∑
ai +m(r − 2)

r
−m

= Dg,n(a1, . . . , an)− 2m

r
.

The sum in Definition 1.2 is thus finite for any given g and a1, . . . , an. The
shifted Witten class is therefore well-defined. Moreover, the highest degree
term of the shifted Witten class is equal to the Witten class itself – all the
other terms are of smaller degrees.

Remark 1.4 Let F(t) and Fτ ( t̂ ) be the primary genus 0 potentials of W
and Wτ respectively. By elementary verification,

Fτ ( t̂ ) = F(τ + t̂ )− (terms of degree < 3).

Proposition 1.5 The shifted Witten class Wτ is a CohFT with unit.

The proof is a straightforward check, and in any case, is identical to the
proof of Proposition 2.7 given in Section 2 below.

1.2 The Euler field

A Frobenius manifold is called conformal if it carries an affine Euler field E,
a vector field satisfying the following properties:

(i) in flat coordinates ti, the field has the form

E =
∑
i

(αit
i + βi)

∂

∂ti
,

(ii) the quantum product •, the unit 1, and the metric η are eigenfunctions
of the Lie derivative LE with weights 0, −1, and 2− δ respectively.

The rational number δ is called the conformal dimension of the Frobenius
manifold.
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For instance, on the Frobenius manifold Ar−1, an Euler field is given by

E =
r−2∑
a=0

(
1− a

r

)
ta
∂

∂ta
,

δ =
r − 2

r
.

Remark 1.6 We follow here Givental’s conventions for the Euler field. In
Teleman’s conventions, the Euler vector field and hence the eigenvalues of
LE have the opposite sign.

Let Ω be a CohFT and V the corresponding Frobenius manifold. Given
an Euler field E on V , a natural action of E on Ω is defined as follows. Let

deg : H∗(Mg,n,Q)→ H∗(Mg,n,Q)

be the operator which acts on H2k by multiplication by k. As usual, ∂i is the
vector field4 on V associated to differentiation by the coordinate ti. Then

(E.Ω)g,n(∂i1 ⊗ · · · ⊗ ∂in) =(
deg +

n∑
l=1

αil

)
Ωg,n(∂i1 ⊗ · · · ⊗ ∂in) + p∗Ωg,n+1

(
∂i1 ⊗ · · · ⊗ ∂in ⊗

∑
βi∂i

)
,

where p :Mg,n+1 →Mg,n is the forgetful map.

Definition 1.7 A CohFT Ω is homogeneous if

(E.Ω)g,n = [(g − 1)δ + n] Ωg,n

for all g and n.

Witten’s r-spin class is easily seen to be homogeneous. Indeed, we have

Dg,n(a1, . . . , an) +
n∑
i=1

(
1− ai

r

)
=

(r − 2)(g − 1) +
∑
ai

r
+ n−

∑
ai
r

= (g − 1)
r − 2

r
+ n = (g − 1)δ + n.

4We will often use the canonical identification of V with the tangent space of 0 ∈ V .
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The underlying vector space Vr and basis e0, . . . , er−2 are the same for
the CohFT obtained from the shifted Witten class. We denote the coordi-
nates on Vr in the basis e0, . . . , er−2 for the shifted r-spin Witten theory by
t̂ 0, . . . , t̂ r−2.

Proposition 1.8 The shifted Witten class is a homogeneous CohFT with
Euler field

E =
r−2∑
a=0

(
1− a

r

)
(τa + t̂ a)

∂

∂t̂ a
,

of conformal dimension δ = r−2
r

.

Proof. Assume for simplicity τ = u∂b for some fixed b ∈ {0, . . . , r − 2}.
Denote

Wg,n+m(∂a1 ⊗ · · · ⊗ ∂an ⊗ ∂b ⊗ · · · ⊗ ∂b)
here by just Wg,n+m. Then we have

(E.Wτ )g,n(∂a1 ⊗ · · · ⊗ ∂an) =

∑
m≥0

um

m!

{[
(r − 2)(g − 1) +

∑
ai +mb

r
−m

]
+

n∑
i=0

(
1− ai

r

)}
(pm)∗Wg,n+m

+
∑
m≥0

um

m!
u

(
1− b

r

)
(pm+1)∗Wg,n+m+1

After simplifying, the above equals

[(g − 1)δ + n]
∑
m≥0

um

m!
(pm)∗Wg,n+m

−
∑
m≥1

um

(m− 1)!

(
1− b

r

)
(pm)∗Wg,n+m

+
∑
m≥0

um+1

m!

(
1− b

r

)
(pm+1)∗Wg,n+m+1.

The last two sums cancel each other, so we obtain

[(g − 1)δ + n]
∑
m≥0

um

m!
(pm)∗Wg,n+m = [(g − 1)δ + n] Wτ

g,n(∂a1 ⊗ · · · ⊗ ∂an).
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The general case is similiar. ♦

Since the shifted r-spin Witten class is a homogeneous semisimple CohFT,
we can apply the following theorem by C. Teleman [20, Theorem 1].

Theorem 5 (Teleman) Let Ω0,n be a genus 0 homogeneous semisimple Coh-
FT with unit. The following results hold:

(i) There exists a unique homogeneous CohFT with unit Ωg,n extending
Ω0,n to higher genus.

(ii) The extended CohFT Ωg,n is obtained by an R-matrix action on the
topological (degree 0) sector of Ω0,n determined by Ω0,3.

(iii) The R-matrix is uniquely specified by Ω0,3 and the Euler field.

The unit-preserving R-matrix action in part (ii) of Theorem 5 will be re-
viewed in Section 2, see Definition 2.13.

We will compute the R-matrix for the 3-spin Witten class in Section 3.
Since the shifted 3-spin Witten class (considered for all genera) is a homo-
geneous CohFT with unit, the expressions obtained by the R-matrix action
coincide with the shifted 3-spin Witten class. In particular, if we split the
expression of the R-matrix action into pure degree parts, the parts of degree

d > Dg,n(a1, . . . , an)

vanish while the part of degree Dg,n(a1, . . . , an) coincides with Witten’s class,
which proves Theorem 3.

2 The R-matrix action

We present here a succinct but self-contained review of the R-matrix action
on CohFTs. The action was first defined on Gromov-Witten potentials by
Givental [6]. Its lifting to CohFTs was independently discovered by several
authors: the papers by Teleman [20] and Shadrin [19] give an abbreviated
treatment of the subject and refer to unpublished notes by Kazarian and by
Katzarkov, Kontsevich, and Pantev.
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2.1 The R-matrix action on CohFTs

Let V be a vector space with basis {ei} and a symmetric bilinear form η.
Consider the group of End(V )-valued power series

R(z) = 1 +R1z +R2z
2 + · · · (5)

satisfying the symplectic condition,

R(z)R∗(−z) = 1 ,

where R∗ is the adjoint with respect to η.

Remark 2.1 Let Rk
j be the matrix form of an endomorphism R in the given

basis,

R
(
tjej
)

=
∑
j,k

Rk
j t
j ek .

The symplectic condition in coordinates is∑
l,s,k

Rj
l (z)ηlsRk

s(−z)ηku = δju.

After multiplying by η−1 on the right, we obtain an equivalent condition in
bi-vector form ∑

l,s

Rj
l (z)ηlsRk

s(−z) = ηjk .

We conclude that the expression

ηjk −
∑

l,sR
j
l (z)ηlsRk

s(w)

z + w

is a well-defined power series in z and w.
Associated to R(z) is the power series R−1(z) = 1

R(z)
which also satisfies

the symplectic condition.5 It follows that

∑
j,k

ηjk −
∑

l,s(R
−1)jl (z)ηls(R−1)ks(w)

z + w
ej ⊗ ek ∈ V ⊗2[[z, w]]. (6)

5By the symplectic condition, we have R−1(z) = R∗(−z).
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We will denote the V ⊗2-valued power series (6) by

η−1 −R−1(z)η−1R−1(w)t

z + w

for short (where the superscript t denotes matrix transpose).
Let Ω = (Ωg,n)2g−2+n>0 be a CohFT on V , and let R be an element of

the group (5). The CohFT RΩ is defined as follows.

Definition 2.2 Let Gg,n be the finite set of stable graphs6 of genus g with
n legs. For each Γ ∈ Gg,n, define a contribution

ContΓ ∈ H∗(Mg,n,Q)⊗ (V ∗)⊗n

by the following construction:

(i) place Ωg(v),n(v) at each vertex v of Γ,

(ii) place R−1(ψl) at every leg l of Γ,

(iii) at every edge e of Γ, place

η−1 −R−1(ψ′e)η
−1R−1(ψ′′e )t

ψ′e + ψ′′e
.

Define (RΩ)g,n to be the sum of contributions of all stable graphs,

(RΩ)g,n =
∑

Γ∈Gg,n

1

|Aut(Γ)|
ContΓ .

We use the inverse of the R-matrix in all of our formulas in Definition 2.2.
There are two reasons for the seemingly peculiar choice. First, the result will
be a left group action rather than a right group action on CohFTs. Second,
the same convention is used by Givental and Teleman in their papers.

A few remarks about Definition 2.2 are needed for clarification. By the
symmetry property of CohFTs, the placement of Ωg(v),n(v) does not depend
upon an ordering of the half-edges at v. At a leg l attached to a vertex v, we
have

R−1(ψl) ∈ H∗(Mg(v),n(v),Q)⊗ End(V ).

6See Sections 0.2-0.4.
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The first factor acts on the cohomology of the moduli space Mg(v),n(v) by
multiplication. The endomorphism factor acts on the vectors which are “fed”
to Ωg(v),n(v) at the legs.

For an edge e attached to vertices v′ and v′′ (possibly the same vertex),
denote byMg′,n′ andMg′′,n′′ the corresponding moduli spaces. The insertion
on e is an element of

H∗(Mg′,n′ ,Q)⊗H∗(Mg′′,n′′ ,Q)⊗ V ⊗2

obtained by substituting z = ψ′e and w = ψ′′e in (6). Once again, the cohomol-
ogy factors act on the corresponding cohomology spaces by multiplication.
The bivector part is used to contract the two covectors sitting on the half-
edges e′ and e′′ in the corresponding CohFT elements at v′ and v. In the
expression R−1(ψ′e)η

−1R−1(ψ′′e )t, the bivector η−1 sits in the middle of the
edge, while the action of R−1 is directed from the middle of the edge towards
the vertices.

The similarity of Definition 2.2 with the form of the relations Rd
g,A was

the starting point of our paper.

Proposition 2.3 If Ω is a CohFT, the system (RΩ)g,n is a CohFT.

Proof. The symmetry of (RΩ) follows directly from the symmetry of Ω
and the definition of the R-matrix action. Hence, we need only establish the
pull-back property (ii) of Definition 0.3.

Let Φ ∈ Gg,n be a stable graph with a single edge e. In order to compute
the pull-back of tautological classes under

ξΦ :MΦ →Mg,n ,

according to the rule given in Section 0.3, we must enumerate all stable
graphs Γ with a distinguished edge e ∈ E(Γ) such that contracting all other
edges yields the graph Γ2 = Φ.

If E1 = E, we have Γ1 = Γ. The contribution of Γ to the pull-back is
obtained from the contribution of Γ1 to RΩ after a multiplication by

−(ψ′e + ψ′′e ) .

In other words, the contribution to the pull-back is obtained by placing the
class

R−1(ψ′e)η
−1R−1(ψ′′e )t − η−1
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on the edge e with the usual insertions on all other edges and legs.
If E1 = E \ {e} then Γ1 is obtained from Γ by contracting e. According

to the CohFT rules for Ω, the contribution of Γ to the pull-back is obtained
by placing η−1 on the edge e with the standard classes on all other edges.

After summing, the total contribution of Γ to the pull-back is equivalent
to placing

R−1(ψ′e) η
−1R−1(ψ′′e )t.

on the edge e of Γ – precisely what we obtain by the CohFT rules applied to
(RΩ)g,n. ♦

Proposition 2.4 The R-matrix action on CohFTs is a left group action.

Proof. We must prove the action of Ra(z) followed by the action of Rb(z)
is equal to the action of Rb(z)Ra(z).

When we apply Ra(z), we sum over all stable graphs of type (g, n). Let
us color the edges of these stable graphs in red. When we then apply Rb(z),
we sum over all stable graphs of type (g, n), but now we replace each vertex
of the stable graph by a small red graph. Let us color the edges of the large
graph in blue. The result of the consecutive actions of Ra(z) and Rb(z) will
be a sum over all stable graphs of type (g, n) whose edges are colored in red
and blue.

On every leg l of the stable graph, we place first R−1
a (ψl) closer to the

vertex and then R−1
b (ψl) at the end of the leg. The final outcome is

R−1
a (ψl)R

−1
b (ψl) = (RbRa)

−1(ψl) . (7)

The result (7) is also what we place on a leg when we compute the action of
the product RbRa.

Consider next an edge e of the stable graph. We will use the abbreviations
R′ = R(ψ′e) and R′′ = R(ψ′′e ). On a red edge, we have placed

red edge:
η−1 − (R′a)

−1η−1((R′a)
−1)t

ψ′e + ψ′′e

via the first action. On a blue edge, on the other hand, we see R′a and R′′a on
the ends of the edge and

η−1 − (R′b)
−1η−1((R′b)

−1)t

ψ′e + ψ′′e
.
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in the middle of the edge. The final outcome, after unwinding the definitions,
is

blue edge:
(R′a)

−1η−1((R′a)
−1)t − (R′a)

−1(R′b)
−1η−1((R′b)

−1)t((R′a)
−1)t

ψ′e + ψ′′e
.

Since we are summing over all possible colorings, every edge in the stable
graph will appear once in red and once in blue. The total contribution will
be the sum of the contributions of the two colors,

red + blue:
η−1 − (R′bR

′
a)
−1η−1((R′bR

′
a)
−1)t

ψ′e + ψ′′e
.

The result is exactly what is placed on an edge when we compute the action
of the product RbRa. ♦

2.2 Action by translations

Let Ω be a CohFT based on the vector space V , and let

T (z) = T2z
2 + T3z

3 + · · ·

be a V -valued power series with vanishing coefficients in degrees 0 and 1.

Definition 2.5 The translation of Ω by T is the CohFT TΩ defined by

(TΩ)g,n(v1 ⊗ · · · ⊗ vn)

=
∑
m≥0

1

m!
(pm)∗Ωg,n+m

(
v1 ⊗ · · · ⊗ vn ⊗ T (ψn+1)⊗ · · · ⊗ T (ψn+m)

)
,

where pm :Mg,n+m →Mg,n is the forgetful map.

The use of T (ψi) as an argument in a CohFT is an abuse of notation.
The result should be understood as

Ωg,n(· · ·T (ψi) · · · ) =
∑
k≥2

ψki Ωg,n(· · ·Tk · · · ).

Remark 2.6 The action by translations is very close to the shift of Defini-
tion 1.2. However, unlike shifts, the translation action is always well-defined
for degree reasons: the degree of the mth summand of the definition is at
least m, so the sum is actually finite for any given g, n.

23



The action by translations can be described in terms of stable graphs. It
is a summation over stable graphs with a single vertex and n + m legs for
m ≥ 0. The first n legs carry the vectors v1, . . . , vn, and the last m legs carry
the series T (ψi). The latter legs are then suppressed by a forgetful map.
We will call the first n legs main legs and the last m legs κ-legs, since the
push-forward of powers of ψ-classes gives rise to κ-classes.

Proposition 2.7 If Ω is a CohFT, the system (TΩ)g,n is a CohFT.

Proof. Let Φ be a stable graph with a single edge, and let MΦ the corre-
sponding moduli space. We examine the pull-back of TΩ toMΦ. If Φ has a
single vertex, then the κ-legs in the definition of TΩ just stay on this vertex.
If Φ has two vertices, then the κ-legs are distributed among the two vertices.
The automorphism coefficients match: there are

(
m

m1,m2

)
ways to distribute

m κ-legs between two vertices, which leads to a coefficient

1

m!

(
m

m1,m2

)
=

1

m1!

1

m2!
.

Thus, TΩ satisfies the axioms of a CohFT. ♦

Proposition 2.8 Translations form an abelian group action on CohFTs.

Proof. The definition of (Ta + Tb)Ω contains the following sum (where we
have suppressed the ψ-classes in the notation):∑

m≥0

(Ta + Tb)
m

m!
=
∑
m≥0

∑
ma+mb=m

Tma
a Tmb

b

ma!mb!
=
∑
ma≥0

Tma
a

ma!

∑
mb≥0

Tmb
b

mb!
,

which is the definition of the successive actions of Tb and Ta. ♦

Proposition 2.9 Let R(z) ∈ id + zEnd(V )[[z]] be an End(V )-valued power
series satisfying the symplectic condition. Let Ta, Tb ∈ z2V [[z]] be two V -
valued power series related to R by

Ta(z) = R(z)Tb(z) .

Then, for every CohFT Ω, we have

TaRΩ = RTbΩ .
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Remark 2.10 The equality of the proposition can be written more concisely
as

RTΩ = (RT )RΩ

or
RTR−1Ω = (RT )Ω.

Thus the actions of R and T can be combined into an action of an affine
group.

Proof of Proposition 2.9. Both CohFTs TaRΩ and RTbΩ can be ex-
pressed as sums over stable graphs. We will match the sums.

Consider first TaRΩ. By definition, we start with n main legs marked by
v1, . . . , vn and m κ-legs marked by Ta(ψn+1), . . . , Ta(ψn+m). We attach these
legs to all possible stable graphs of genus g with n + m legs. Their vertices
are marked with Ω, their legs with R−1(ψi), and their edges with

η−1 −R−1(ψ′)η−1R−1(ψ′′)t

ψ′ + ψ′′
.

The outcome is a sum over stable graphs of genus g with n + m legs whose
n main legs are marked with R−1(ψi)(vi) and m κ-legs with

(R−1Ta)(ψi) = Tb(ψi) .

Consider next RTbΩ. We start with a sum over all stable graphs of genus
g with n legs. Their vertices are marked with Ω, their legs with R−1(ψi), and
their edges with

η−1 −R−1(ψ′)η−1R−1(ψ′′)t

ψ′ + ψ′′
.

Now we add to every vertex of such a graph an arbitrary number of κ-legs
marked with Tb(ψi). The sum only runs over the graphs which remain stable
when we remove the κ-legs. However, the summation can be extended to
all stable graphs with n + m legs. Indeed, if a stable graph has a genus 0
vertex v with m κ-legs and less than 3 other half-edges, then the dimension
of the moduli space assigned to v is less than m, while the degree of the
class sitting on this moduli space is at least 2m. Thus the contribution of
the graph vanishes. In conclusion, we obtain exactly the same sum as in the
first case.

The sums here are infinite (as m is unbounded), but only a finite number
of terms are nonzero. The same issue arose in the definition of the translation
action. ♦
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2.3 CohFTs with unit

Let Ω be a CohFT with unit 1 ∈ V satisfying

Ωg,n+1(v1 ⊗ · · · ⊗ vn ⊗ 1) = p∗Ωg,n(v1 ⊗ · · · ⊗ vn),

Ω0,3(v1 ⊗ v2 ⊗ 1) = η(v1, v2) ,

where p : Mg,n+1 → Mg,n is the forgetful map. The R-matrix action and
the translation action defined in the previous sections do not preserve the
property of being a CohFT with unit. However, we will explain here how the
two actions can be combined in a unique way so as to preserve the unit.

We recall a well-known geometric result which we will implicitly use in
the computations.

Lemma 2.11 Consider the following commutative square of forgetful maps:

Mg,n+k Mg,n

Mg,n+k+m Mg,n+m

? ?
-

-

Pm pm

Pk

pk

The relation (pk)
∗(pm)∗ = (Pm)∗(Pk)

∗ holds in cohomology.

Proof. Let X be the fiber product of pm and pk, with maps

a : X →Mg,n+m , b : X →Mg,n+k , f :Mg,n+k+m → X .

Then (pk)
∗(pm)∗ = b∗a

∗ is immediate, and also

(Pm)∗(Pk)
∗ = (b∗f∗)(f

∗a∗) = b∗(f∗f
∗)a∗ = b∗a

∗

by birationality of f . ♦

The definition of the translation action involves push-forwards and the
axioms of a CohFT with unit involve a pull-back. By the above Lemma, we
will not have to worry about whether the pull-back is taken before or after
the push-forward.
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Proposition 2.12 Let Ω be a CohFT with unit 1 ∈ V . Let R(z) be an
R-matrix satisfying the symplectic condition, and let

Ta(z) = z · [R(1)− 1](z), Tb(z) = z · [1−R−1(1)](z)

be two elements of z2V [[z]]. Then,

TaRΩ = RTbΩ

is also a CohFT with unit 1 ∈ V .

Proof. By Proposition 2.9, TaRΩ and RTbΩ are equal CohFTs. Hence,
only the unit property must be verified.

The CohFT RTbΩg,n(v1⊗· · ·⊗vn) is expressed as a sum over stable graphs
of genus g with n main legs and any number m ≥ 0 of κ-legs (see the proof
of Proposition 2.9). Their vertices are marked with Ω, their main legs with
R−1(ψi), their κ-legs with Tb(ψi), and their edges with

η−1 −R−1(ψ′)η−1R−1(ψ′′)t

ψ′ + ψ′′
.

The expression is an infinite sum with only a finite number of nonzero terms.
To calculate p∗RTbΩg,n(v1 ⊗ · · · ⊗ vn), we will study the pull-back under p∗

of the contribution of every stable graph Γ in the sum.
Let us call the new leg marked n+ 1 appearing onMg,n+1 after the pull-

back the special leg. The pull-back of a stable graph Γ is given by the stable
graphs obtained by attaching the special leg to one of the vertices of Γ.

The pull-backs of the stable graph contributions involve also the pull-
backs of the cotangent line classes. The relation between the pulled-back
ψ-classes p∗ψi from Mg,n+m in terms of the new classes ψi on Mg,n+m+1 is
given by the well-known formula

p∗(ψdh) = ψdh −∆h,n+1 p
∗(ψd−1

h ). (8)

Here h is a half-edge of Γ and ∆h,n+1 is the divisor7 in the moduli space
at the vertex carrying h corresponding to curves with a genus 0 component
carrying only the markings h and n+ 1.

The pull-back of the contribution of Γ is given by a sum of two kinds of
terms. A term of the first kind is obtained by attaching the special leg to

7The divisor is empty unless h and the special leg are on the same vertex.
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one of the vertices of Γ and placing the class 1 on it. This happens if we
choose the first term on the right side of (8) in the pull-back of each ψ-class.
We use here also the original unit property of Ω.

A term of the second kind is obtained by choosing a half-edge of Γ, placing
a new vertex on it, and adding the special leg maked with 1 to this vertex.
The power of the ψ-class that was written on this half-edge is then reduced
by 1. This happens if we choose the second term of (8) in the pull-back of
the ψ-class corresponding to the chosen half-edge. A term of the second kind
occurs with a minus sign.

Let us look more closely at the terms of the second kind. Suppose we
have placed the new vertex on the ith main leg. Then there are two legs
attached to this vertex.

1

ψ′ = p∗ψi

ψ′′

ψiψn+1

vi

First, the ith main leg carrying a vi is attached. We can replace the vi by
R−1(vi)(ψi) since anyway ψi = 0 on the moduli spaceM0,3 corresponding to
our vertex. Second, the special leg carrying 1 is attached. We can similarly
replace 1 by R−1(1)(ψn+1). Finally, there is the edge connecting our vertex
to the rest of the graph with a

[vi −R−1(vi)](p
∗ψi)

p∗ψi
(9)

placed8 on it. We can replace the edge insertion with the standard one

η−1 −R−1(ψ′)η−1R−1(ψ′′)t

ψ′ + ψ′′

8The minus sign in the second term of (8) is included in (9).
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since we have ψ′′ = 0 and

Ω0,3(vi ⊗ v′′i ⊗ 1) = η(vi, v
′′
i ).

We have therefore obtained a stable graph with n + 1 legs marked precisely
as in the definition of (RTbΩ)g,n+1(v1 ⊗ · · · ⊗ vn ⊗ 1).

Next, suppose we have placed the new vertex on a half-edge. We group
the terms obtained from the two half-edges of a single edge of Γ together.

1

ψn+1 = 0

ψ′

ψ′′

ψ′′′ = 0

ψ′′′′ = 0

The standard edge insertion for Γ is

η−1 −R−1(ψ′)η−1R−1(ψ′′)t

ψ′ + ψ′′
.

If we place the new vertex at first half-edge, we obtain

− 1

ψ′

[
η−1 −R−1(ψ′)η−1R−1(ψ′′)t

ψ′ + ψ′′
− η−1 − η−1R−1(ψ′′)t

ψ′′

]
.

Here, we have subtracted the ψ′-free term from the edge insertion and divided
the result by ψ′. The minus sign in front is the sign of the second term of (8).
Similarly, if we place the new vertex on the second half-edge, we obtain

− 1

ψ′′

[
η−1 −R−1(ψ′)η−1R−1(ψ′′)t

ψ′ + ψ′′
− η−1 −R−1(ψ′)η−1

ψ′

]
.

Adding the two contributions yields

η−1 −R−1(ψ′)η−1 − η−1R−1(ψ′′)t +R−1(ψ′)η−1R−1(ψ′′)

ψ′ψ′′

t

=
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η−1 −R−1(ψ′)η−1

ψ′
η
η−1 − η−1R−1(ψ′)t

ψ′′
. (10)

The result (10) is precisely the product of the standard edge insertions for
the two new edges, considering the ψ-classes at the new vertex vanish and

Ω0,3(v′ ⊗ v′′ ⊗ 1) = η(v′, v′′) .

Finally, as before, we replace the 1 on the special leg by R−1(1)(ψn+1) with-
out consequence since ψn+1 = 0 on our vertex. Once again, we have ob-
tained a stable graph with n+ 1 legs marked precisely as in the definition of
(RTbΩ)g,n+1(v1 ⊗ · · · ⊗ vn ⊗ 1).

The final case to consider is when we place the new vertex on a κ-leg.
The edge joining the new vertex to the rest of the graph will then be marked
by

−Tb(ψi)
ψi

= [R−1(1)− 1](ψi).

We immediately take the push-forward of our class under the partial forgetful
map that forgets just the single κ-leg we are considering. We will obtain a
graph on which the special leg carries the marking

[R−1(1)− 1](ψn+1).

Exactly the same graph also appears among what we called the terms of
the first kind — when we attach the special leg without creating any new
vertices. There the special leg carried the marking 1. After adding the
two contributions together, we obtain R−1(1)(ψ), which is the standard leg
insertion.

We have shown p∗(RTbΩ)g,n(v1 ⊗ · · · ⊗ vn) is given by precisely the same
sum over stable graph contributions as (RTbΩ)g,n+1(v1⊗· · ·⊗vn⊗1). There-
fore the two are equal. ♦

Definition 2.13 Let Ω be a CohFT with unit 1 ∈ V . Let R(z) be an
R-matrix satisfying the symplectic condition, and let

T (z) = z · 1− zR−1(z)(1) ∈ z2V [[z]].

The unit-preserving R-matrix action on Ω is

R.Ω = RTΩ .

Proposition 2.14 The unit-preserving R-matrix action is a left group ac-
tion.
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Proof. By Definition 2.13, we have

Ra.(Rb.Ω) = Ra

(
z[1−R−1

a ]
)
Rb

(
z[1−R−1

b ]
)
Ω. (11)

The action of
(
z[1− R−1

a ]
)
Rb equals the action of Rb

(
R−1
b

(
z[1− R−1

a ]
))

by

Proposition 2.9. Thus, (11) equals

RaRb

(
R−1
b

(
z[1−R−1

a ]
))(

z[1−R−1
b ]
)
Ω

= RaRb

(
z
[
R−1
b (1)−R−1

b R−1
a (1) + 1−R−1

b (1)
])

Ω

= (RaRb)
(
z[1− (RaRb)

−1(1)]
)
Ω .

Proposition 2.8 has been used in the last equality. The result is precisely the
definition of the unit-preserving action of RaRb. ♦

3 The R-matrix for A2

We compute the R-matrix for the Frobenius manifold of the A2 singularity
and deduce an expression for the shifted 3-spin Witten class in terms of stable
graphs. The outcome is a proof of Theorems 1 and 4.

3.1 The Frobenius manifold A2

We compute all the differential geometric data associated with the Frobenius
manifold A2 for use in the following calculations.

The Frobenius manifold A2 is based on the 2-dimensional vector space9

V with coordinates x = t0 and y = t1 corresponding to the remainders 0 and
1 modulo 3 respectively. The unit vector field is ∂x = ∂

∂x
. The metric is

η = dx⊗ dy + dy ⊗ dx or η =

(
0 1
1 0

)
.

Since the only nonzero values of Witten’s 3-spin class in genus 0 are

W0,3(0, 0, 1) = 1, W0,4(1, 1, 1, 1) =
1

3
,

9In the notation of Section 0.6, V is V3.
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the primary genus 0 Gromov-Witten potential is

F(x, y) =
1

2
x2y +

1

72
y4 .

The Euler field is

E = x
∂

∂x
+

2

3
y
∂

∂y
.

The Lie derivatives of E on the basis vectors fields are easily calculated:

LE(∂x) = [E, ∂x] = −∂x ,

LE(∂y) = [E, ∂y] = −2

3
∂y .

By Proposition 1.8, the conformal dimension equals

δ =
r − 2

r
=

1

3
.

Let v be a tangent vector at a point of the Frobenius manifold. We define
the shifted degree operator µ(v), also called the Hodge grading operator, by

µ(v) = [E, v] + (1− δ/2)v .

Here, the vector v is extended to a flat tangent vector field in order to compute
the commutator. We have

µ(∂x) = −1

6
∂x ,

µ(∂y) =
1

6
∂y .

Definition 3.1 To simplify the formulas, we will use the following notation:

φ =
y

3
, ∂̂x = φ1/4∂x , ∂̂y = φ−1/4∂y .

The frame (∂̂x, ∂̂y) in the tangent space of V at (x, y) is the most practical
for the computations. The dual frame of the cotangent space is denoted by

d̂x = φ−1/4dx , d̂y = φ1/4dy .
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The quantum multiplication of vector fields on the Frobenius manifold is
given by

∂̂x • ∂̂x = φ1/4∂̂x ,

∂̂x • ∂̂y = φ1/4∂̂y ,

∂̂y • ∂̂y = φ1/4∂̂x .

Whether in basis (∂x, ∂y) or in frame (∂̂x, ∂̂y), the shifted degree operator
is expressed by the matrix

1

6

(
−1 0
0 1

)
.

Unlike ∂x, the vector field ∂̂x is not flat. However, in the definition of µ, we
use the flat extension of ∂̂x at a given point, which only differs from ∂x by a
multiplicative constant.

We will also need the operator ξ of quantum multiplication by E. In the
frame (∂̂x, ∂̂y), ξ is given by

ξ =

 x 2φ3/2

2φ3/2 x

 .

Remark 3.2 The computations not involving the Euler vector field apply
more generally to 2-dimensional Frobenius manifolds whose Gromov-Witten
potential has the form

F(x, y) =
1

2
x2y + Φ(y)

with the convention φ = φ(y) = Φ′′′(y). For instance, the Gromov-Witten
potential of CP1 has the above form with

Φ = φ = Qey.

3.2 The topological field theory

A topological field theory ωg,n is a CohFT of degree 0, as discussed in Sec-
tion 0.5. Teleman’s reconstruction, used to prove Theorem 5, expresses ev-
ery semisimple CohFT Ω as a unit-preserving R-matrix action (see Defini-
tion 2.13) on the topological field theory ωg,n with unit where

ω0,3 = Ω0,3.
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Let us start by determining the topological field theory ωg,n for Witten’s
3-spin class.

Lemma 3.3 For the topological (degree 0) part of Witten’s 3-spin theory, we
have

ωg,n(∂̂⊗n0
x ⊗ ∂̂⊗n1

y ) = 2gφ
2g−2+n

4 · δodd
g+n1

,

where n = n0 + n1. Here,

δodd
g+n1

=

∣∣∣∣ 1 if g + n1 is odd,
0 if g + n1 is even.

Proof. The values of ω0,3 are prescribed by the quantum product:

ω0(∂̂x ⊗ ∂̂x ⊗ ∂̂x) = ω0(∂̂x ⊗ ∂̂y ⊗ ∂̂y) = 0

ω0(∂̂x ⊗ ∂̂x ⊗ ∂̂y) = ω0(∂̂y ⊗ ∂̂y ⊗ ∂̂y) = φ1/4 .

For other g and n, we consider a stable curve with a maximal possible number
of nodes (each component is rational with 3 special points). The vectors ∂̂x
and ∂̂y are placed in some way on the marked points, and we must place

either ∂̂x ⊗ ∂̂y or ∂̂y ⊗ ∂̂x at each node in such a way that the number of ∂̂y’s
is odd on each component of the curve. If g + n1 is even, such a placement
is impossible. If g + n1 is odd, the placement can be done in 2g ways, since
the dual graph of the curve has g independent cycles.

By the factorization rules for CohFTs, the contribution of each successful
placement of the ∂̂x’s and ∂̂y’s equals φ

2g−2+n
4 , where 2g−2+n is the number

of rational components of the curve. ♦

3.3 The R-matrix

Givental [7, pages 4-5] gives a general method for computing the R-matrix of
a Frobenius manifold without using an Euler field. The method is ambiguous:
the R-matrix depends on the choice of certain integration constants. In the
presence of an Euler field E, there is a unique choice of constants such that

LERm = −mRm

for every m. In the conformal case, Givental’s method can be simplified by
substituting iE into his recursive equation. The simplified method for com-
puting the R-matrix of a conformal Frobenius manifold is given, for instance,
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by Teleman [20] in the proof of the theorem of Section 8.15. Since the 3-
spin theory yields a conformal Frobenius manifold, the simplified method is
suitable for us.

Let ξ be the operator of quantum multiplication by the tangent vector E.
The matrices Rm then satisfy the following recursive equation10:

[Rm+1, ξ] = (m+ µ)Rm. (12)

At a semisimple point of a conformal Frobenius manifold, the above equation
determines the matrices Rm uniquely starting from R0 = 1. Let

Rm =

(
am bm
cm dm

)
.

Using the formulas of Section 3.1 for ξ and µ, we rewrite (12) as[(
am+1 bm+1

cm+1 dm+1

)
,

(
x 2φ3/2

2φ3/2 x

)]
=

1

6

(
6m− 1 0

0 6m+ 1

)(
am bm
cm dm

)
,

or in other words

2φ3/2

(
bm+1 − cm+1 am+1 − dm+1

dm+1 − am+1 cm+1 − bm+1

)
=

1

6

(
(6m− 1)am (6m− 1)bm
(6m+ 1)cm (6m+ 1)dm

)
.

The following formulas are easily checked to be the unique solutions:

am =
1

1728m φ3m/2

1 + 6m

1− 6m

(6m)!

(3m)! (2m)!
δeven
m ,

bm =
1

1728m φ3m/2

1 + 6m

1− 6m

(6m)!

(3m)! (2m)!
δodd
m ,

cm =
1

1728m φ3m/2

(6m)!

(3m)! (2m)!
δodd
m ,

dm =
1

1728m φ3m/2

(6m)!

(3m)! (2m)!
δeven
m .

We now make explicit the connection with the central power series dis-
covered by Faber and Zagier,

B0(T ) =
∑
m≥0

(6m)!

(2m)!(3m)!
(−T )m, B1(T ) =

∑
m≥0

1 + 6m

1− 6m

(6m)!

(2m)!(3m)!
(−T )m.

10In Teleman’s paper, the commutator has the opposite sign, since his Euler field is the
opposite of ours.
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Denote by Beven
0 , Bodd

0 , Beven
1 , and Bodd

1 the respective even and odd degree
parts. The final expression for the R-matrix is:

R(z) =


Beven

1

(
z

1728φ3/2

)
−Bodd

1

(
z

1728φ3/2

)

−Bodd
0

(
z

1728φ3/2

)
Beven

0

(
z

1728φ3/2

)
 . (13)

The symplectic condition for the R-matrix follows from the identity

B0(T )B1(−T ) + B0(−T )B1(T ) = 2,

or, equivalently,

Beven
0 (T )Beven

1 (T )−Bodd
0 (T )Bodd

1 (T ) = 1

discovered previously in [16]. Using the identity, we find

R−1(z) =


Beven

0

(
z

1728φ3/2

)
Bodd

1

(
z

1728φ3/2

)

Bodd
0

(
z

1728φ3/2

)
Beven

1

(
z

1728φ3/2

)
 . (14)

3.4 An expression for the shifted 3-spin Witten class

We combine here the expression for the topological field theory from Sec-
tion 3.2 with the R-matrix action from Definition 2.13 using the explicit
formulas for the R-matrix of Section 3.3.

Let τ = (x, y), y 6= 0, be a point of the Frobenius manifold A2. Let
a1, . . . , an ∈ {0, 1} and let

D =
g − 1 +

∑n
i=1 ai

3

be the degree of Witten’s 3-spin class. By convention, φ = y/3. Recall the
expressions Rd

g,(a1,...,an) of Definition 0.1.

Theorem 6 Witten’s class for the shifted 3-spin theory equals

Wτ
g,n(∂a1 ⊗ · · · ⊗ ∂an) = 2g

∑
d≥0

φ
3
2

(D−d)

1728d
q
(
Rd
g,(a1,...,an)

)
,

where ∂0 = ∂x, ∂1 = ∂y.
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The following Corollary is an immediate consequence of Theorem 6 and
the equation

Wτ
g,n(∂a1 ⊗ · · · ⊗ ∂an) = Wg,n(a1, . . . , an) + lower degree terms.

explained in Section 1. Theorems 1 and 4 are implied by the Corollary.

Corollary 7 We have the evaluations:

q
(
Rd
g,(a1,...,an)

)
= 2g 1728DWg,n(a1, . . . , an) for d = D,

q
(
Rd
g,(a1,...,an)

)
= 0 for d > D.

Proof of Theorem 6. By Teleman’s reconstruction result in the conformal
semisimple case, Witten’s shifted 3-spin class is given by R.ω where

• R is given by (13),

• ω is the topological part of the shifted 3-spin theory.

The proof now just amounts to a systematic matching of all factors in the
sums over stable graphs which occur in Definition 2.13 for the R-matrix
action and Definition 0.1 for Rd

g,(a1,...,an).
Consider first the expression for the CohFT R.ω applied to a tensor prod-

uct of n vectors ∂x and ∂y. As before, we denote by n0 and n1 the number
of 0s and 1s among a1, . . . , an so that n0 + n1 = n.

Powers of φ.

Since we wrote the R-matrix in frame (∂̂x, ∂̂y), we must substitute

∂x 7→ φ−1/4∂̂x , ∂y 7→ φ1/4∂̂y

in the tensor product argument for R.ω. The result of the substitution is a

factor of φ
n1−n0

4 .
By formula (14), all coefficients of R−1

m contain a factor of φ−3m/2. Tracing
through the definitions of the all the actions

R.ω = RTω , T (z) = z · [∂x −R−1(∂x)](z), (15)

the R-matrix contributes a factor of φ−3d/2, where d is the degree of the class.
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By Lemma 3.3, the topological field theory ω contributes (subject to

parity condition accounted for later) a factor of φ
2gv−2+nv

4 for every vertex v.

These factors combine to yield φ
2g−2+n

4 .
Finally, each κ-leg contributes in two way. First, since we must substitute

∂x 7→ φ−1/4∂̂x

in formula (15) for T (z), each κ-leg contributes φ−1/4. Second, because the
κ-leg increases the valence of the vertex by 1, a factor of φ1/4 is contributed
via the topological field theory. Thus, the contributions of each κ-leg to the
power of φ cancel.

Collecting all of the above factors, we obtain a final calculation of the
exponent of φ:

n1 − n0

4
− 3d

2
+

2g − 2 + n

4
=
g − 1 + n1 − 3d

2
=

3D − 3d

2
=

3

2
(D − d).

Powers of 1728.

All coefficients of R−1
m contain a factor of 1/1728. Hence, as above, we

obtain a factor of 1728−d from the R-matrix action.

Powers of 2.

At each vertex the topological field theory contributes a factor of 2gv .
These combine into ∏

v∈V (Γ)

2gv =
2g

2h1(Γ)
.

The factor 2−h
1(Γ) is present in the definition ofRd

g,(a1,...,an), and the remaining
2g is included in the statement of Theorem 6.

Parity conditions at the vertices.

The topological field theory ω provides a nonzero contribution at a vertex
if and only if gv + n1(v) is odd. We must prove the parity condition which
occurs in the definition of Rd

g,(a1,...,an) exactly matches.

The parity condition is imposed on Rd
g,(a1,...,an) by extracting the coeffi-

cient of ζgv−1
v , at each vertex v: see Definition 0.1. We may view the factors

of ζv as having the following sources. A leg carrying the assignment al = 1
(corresponding to ∂y) contributes a ζv, while a leg carrying the assignment
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al = 0 (corresponding to ∂x) does not. The terms of Bodd
0 (including the ef-

fect of the κ-legs) and the terms of Bodd
1 contribute a ζv. The terms of Beven

0

and Beven
1 do not contribute anything (because they leave the parity invari-

ant). Finally, every edge insertion ∆e contributes a factor if e is adjacent
to v. The edge term of Definition 0.1 can be expanded via

B0 = Beven
0 + Bodd

0 , B1 = Beven
1 + Bodd

1

and matched with the edge term of the CohFT R.ω using (6) and (14). Then

the contributing factor is ζv if the bi-vector includes a factor ∂̂y on the side
of the vertex v and 1 otherwise. Hence, the power of the variable ζv correctly
counts the parity of entries ∂̂y submitted to the topological field theory ω at
the vertex v.

Coefficients of the series B.

These coefficients simply coincide in the expression forRd
g,(a1,...,an) and the

formulas of the unit-preserving R-matrix action in all instances (legs, κ-legs,
and edges). ♦

3.5 P̃ implies P

We present here the proof of Corollary 2: the derivation of the more complete
set of relations P conjectured in [16] from the set P̃ proven in Theorem 1.

Our relations Rd
g,A differ from the relations Rd

g,A,σ of [16] in three ways.
First, the signs of the coefficients in the series B0 and B1 are modified. The
outcome is a global change of sign in some of the relations. Second, the range
of the ai’s is different. In our relations, the ai’s are equal to 0 or 1, while
in [16], the ai’s can be any integers equal to 0 or 1 modulo 3. In fact, replacing
an ai by ai + 3 in the relations of P amounts to multiplying the relation
by ψi. Therefore taking ai < 3 is sufficient. Finally, the relations of [16] also
depend on a partition σ. In our relations, we are implicitly considering only
the empty partition case. A relation with a nonempty partition σ is easily
obtained from a relation with an empty σ by push-forward:

Rd
g,(a1,...,an),(σ1,...,σm) = p∗Rd

g,(a1,...,an,σ1+3,...,σm+3),

where p : Mg,n+m → Mg,n is the forgetful map. Thus the relations Rd
g,A

imply all the relations Rd
g,A,σ.
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The span of P̃ is not an ideal, but generates an ideal in each Sg,n. The as-
sociated family of ideals is closed under pull-backs by forgetful maps (because
of axiom (iii) of a CohFT with unit) and gluing maps (because of axiom (ii)
of a CohFT). The family of ideals is not closed under push-forwards by for-
getful maps and gluing maps. After taking the closure under push-forwards
by forgetful maps, we obtain the span of Rd

g,A,σ, as we have just proved.
Taking the closure under push-forwards by gluing maps we get the full set of
relations P from [16]. ♦

3.6 Examples

Example 3.4 Let g = 0, n = 3. Here, we have

Wτ
0,3(∂x ⊗ ∂x ⊗ ∂y) = 1, Wτ

0,3(∂y ⊗ ∂y ⊗ ∂y) = φ =
y

3
.

These values come directly from the topological field theory – the R-matrix
is not needed. The first expression equals the Witten class W0,3(0, 0, 1), and
the second expression is the push-forward of

W0,4(∂y ⊗ ∂y ⊗ ∂y ⊗ y∂y) = yW0,4(1, 1, 1, 1).

In both cases, no further y∂y insertions are possible for dimension reasons.

Example 3.5 Let g = 0, n = 4. We will study all 5 cases.

First case: Wτ
0,4(∂x ⊗ ∂x ⊗ ∂x ⊗ ∂x). We have D = −1/3. The parity

condition imposes d = 1. Thus 3
2
(D − d) = −2. By Theorem 6, we find

Wτ
0,4(∂x ⊗ ∂x ⊗ ∂x ⊗ ∂x) =

60κ1 − 60
∑4

i=1 ψi + 60δ

1728φ2
.

Since d > D, the above expression must be 0. We obtain the first nontrivial
relation:

κ1 −
4∑
i=1

ψi + δ = 0 ∈ H2(M0,4,Q) .

The relation is true by the following basic evaluation in H2(M0,4,Q):

κ1 = [point], ψi = [point], δ = 3[point] .
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Alternatively, we see that this expression coincides up to a factor with Mum-
ford’s formula for λ1, and λ1 = 0 in genus 0.

Second case: Wτ
0,4(∂x ⊗ ∂x ⊗ ∂x ⊗ ∂y). We have D = 0. The parity

condition imposes d = 0. Thus 3
2
(D − d) = 0. From Theorem 6, we obtain

Wτ
0,4(∂x ⊗ ∂x ⊗ ∂x ⊗ ∂y) = 1.

Since d = D we know that this expression should be equal to Witten’s class,
which is indeed the case: W0,4(0, 0, 0, 1) = 1.

Third case: Wτ
0,4(∂x ⊗ ∂x ⊗ ∂y ⊗ ∂y). We have D = 1/3. The parity

condition imposes d = 1. Thus 3
2
(D − d) = −1. We obtain

Wτ
0,4(∂x ⊗ ∂x ⊗ ∂y ⊗ ∂y) =

60κ1 − 60(ψ1 + ψ2) + 84(ψ3 + ψ4) + 60δ[1,2|3,4] − 84(δ[1,3|2,4] + δ[1,4|2,3])

1728φ
.

Since d > D, the expression must vanish (as is easly checked).

Fourth case: Wτ
0,4(∂x ⊗ ∂y ⊗ ∂y ⊗ ∂y). We have D = 2/3. The parity

condition imposes d = 0. Thus 3
2
(D − d) = 1. We obtain

Wτ
0,4(∂x ⊗ ∂y ⊗ ∂y ⊗ ∂y) = φ

which is the push-forward of

W0,5(∂x ⊗ ∂y ⊗ ∂y ⊗ ∂y ⊗ y∂y) = yW0,5(0, 1, 1, 1, 1)

under the forgetful map forgetting the last marked point.

Fifth case: Wτ
0,4(∂y⊗∂y⊗∂y⊗∂y). We have D = 1. The parity condition

imposes d = 1. Thus 3
2
(D − d) = 0. We obtain

Wτ
0,4(∂y ⊗ ∂y ⊗ ∂y ⊗ ∂y) =

60κ1 + 84
∑4

i=1 ψi + 60δ

1728

=
(60 + 84 · 4 + 60 · 3)[pt]

1728

=
1

3
[point]

which is the correct value of Witten’s class

W0,4(1, 1, 1, 1) =
1

3
[point].
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The relations obtained through these computations in d = 1 (after divid-
ing by 12 or by 60) are listed below:

κ1 − ψ1 − ψ2 − ψ3 − ψ4 + δ[1,2|3,4] + δ[1,3|2,4] + δ[1,4|2,3] = 0,

5κ1 − 5ψ1 − 5ψ2 + 7ψ3 + 7ψ4 + 5δ[1,2|3,4] − 7δ[1,3|2,4] − 7δ[1,4|2,3] = 0,

5κ1 + 7ψ1 + 7ψ2 − 5ψ3 − 5ψ4 + 5δ[1,2|3,4] − 7δ[1,3|2,4] − 7δ[1,4|2,3] = 0,

5κ1 − 5ψ1 + 7ψ2 − 5ψ3 + 7ψ4 − 7δ[1,2|3,4] + 5δ[1,3|2,4] − 7δ[1,4|2,3] = 0,

5κ1 + 7ψ1 − 5ψ2 + 7ψ3 − 5ψ4 − 7δ[1,2|3,4] + 5δ[1,3|2,4] − 7δ[1,4|2,3] = 0,

5κ1 − 5ψ1 + 7ψ2 + 7ψ3 − 5ψ4 − 7δ[1,2|3,4] − 7δ[1,3|2,4] + 5δ[1,4|2,3] = 0,

5κ1 + 7ψ1 − 5ψ2 − 5ψ3 + 7ψ4 − 7δ[1,2|3,4] − 7δ[1,3|2,4] + 5δ[1,4|2,3] = 0.

After some linear algebra, the system is equivalent to:

κ1 = ψ1 = ψ2 = ψ3 = ψ4 = δ[1,2|3,4] = δ[1,3|2,4] = δ[1,4|2,3].

We have obtained a complete set of relations in RH2(M0,4).

Example 3.6 The Getzler relation [5] is a degree 2 relation in S1,4 which
can not be obtained by the pull-back of any simpler relations. Since

2 >
1− 1 + 1 + 1 + 1 + 1

3
=

4

3
,

the relation R2
1,(1,1,1,1) lies in the set P̃. In fact, R2

1,(1,1,1,1) is the Getzler

relation (modulo more elementary genus 0 and 1 relations).
The Belorousski-Pandharipande relation [1] is a degree 2 relation in S2,3

which can not be obtained by the pull-back of any simpler relations. The
relation R2

2,(1,1,1) lies in P̃ since

2 >
2− 1 + 1 + 1 + 1

3
=

4

3

and is an equivalent form of the BP equation.

The outcome of several such investigations is reported in [16]. All known
relations have been explained by Theorem 6.
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3.7 Some concluding remarks

Our computations provide an instructive example of what happens to a Coh-
FT as we move towards a non-semisimple point of a Frobenius manifold. Let
us examine more closely the limit of our expressions for the shifted Witten
3-spin class as y → 0 or, in other words, φ → 0. The coefficients of the
R-matrix involve negative powers of φ, therefore the R-matrix diverges. The
topological field theory ω to which we apply the R-matrix involves positive
powers of φ. As a result, each term of our expression for the shifted Witten
class comes with a factor

φ
2
3

(D−d),

where D = Dg,n(a1, . . . , an) is the degree of Witten’s class and d is the degree
of the term in question. As φ → 0, the terms of degree less then D tend
to 0, the terms of degree equal to D are invariant, and the terms of degree
greater than D diverge. At first sight the expression appears to diverge, but
because the terms of degree greater than D combine into tautological relations
the expression actually has a finite limit equal to Witten’s 3-spin class.

A natural question is whether our formulas for Witten’s class lift from

Mg,n to formulas on the space M1/r

g;a1,...,an
of r-spin structures. The answer

is no: the divisibility condition

(g − 1)(r − 2) +
∑

i ai
r

∈ Z

does not necessarily hold for each vertex of the dual graph. Hence, there is

no natural boundary stratum in M1/r

g;a1,...,an
where the terms of our formula

can be lifted. Moreover, in the simplest case r = 2, we have

Wg,n(0, . . . , 0) =

∣∣∣∣ 1 if the spin structure is even,
−1 if the spin structure is odd.

Such an answer cannot be expressed in terms of dual graphs at all. Some
more structure is required.
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