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Vectors, Coordinate Systems, and 1D Kinematics Notions of Units

Scientific Notations

Definition

Scientific notation expresses numerical values in powers of 10. It is
used to represent very large numbers or very small numbers, giving
the correct number of significant figures. )

Example
The distance from the earth to the moon is denoted as

3.84 x 108 m )
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Vectors, Coordinate Systems, and 1D Kinematics Notions of Units

Unit Prefixes

Definition

Sl (Systeme International) units are used to keep measurements
consistent around the world. By adding a prefix to the fundamental
units, additional units are derived. )

Example

1Tom=10°"m 1um=10%m 1mm=10"3m

1em=10"?m 1km=10°m )
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Vectors, Coordinate Systems, and 1D Kinematics Notions of Units

Unit Conversions

Definition
Expressing the same physical quantity in two different units forms a
unit conversion factor. )
Example
3 min = (3 min) ( GO,S > =180s
1 min )
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Vectors, Coordinate Systems, and 1D Kinematics Uncertainty and Significant Figures

Uncertainty

Definition

Uncertainties exist in all measurements. They are the maximum
possible deviation (to some confidence level) of the true value of the
quantity from the measured value. The significant figures are
composed of one or two uncertain digit with all the digits preceding it
being certain.

Example

In my Vp 141 lab report for Exercise 1, | wrote:
The moment of inertia for cylinder B in hole 2 is calculated as

IB,2,math = /B,principal,math + deg
=1.860 x 107° 4 0.1656 x (45.09 x 1073)?
= 3.5528 x 10 *kg - m*> + 0.0025 x 10~*kg - m?
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Vectors, Coordinate Systems, and 1D Kinematics Estimates and Orders of Magnitude

Back-of-the-Envelope Calculations

Definition

Order-of-magnitude estimates are calculations where we make
some rough approximations to carry them out quickly. Since they are
carried out so quickly that they can be calculated at the back of an
envelope, they are also called back-of-the-envelope calculations.

Example

How many gallons of gasoline are used in the United States in one
day? Assume that there are two cars for every three people, that each
car is driven an average of 10,000 mi per year, and that the average
car gets 20 miles per gallon.

The US Population on 05/06/2016 is around 323, 496 thousand, which
we approximate to 323 million.

323 x 108 x (2/3) x 10,000/20 ~ 10" gallons

’
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Vectors, Coordinate Systems, and 1D Kinematics Vectors and vector operations

Vectors

Definition

Vectors are quantities that have both magnitude and direction. A

vector in an n-dimensional real vector space is denoted as

Xq
X2
XeR": X=|%B|=0 x - x)7 =(,%,...,X)

Xn

Example

Displacement s, velocity v, acceleration &, force v, momentum P,
angular velocity @ are vectors in R3.
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Vectors, Coordinate Systems, and 1D Kinematics Vectors and vector operations

Vector Addition and Scalar Multiplication

Definition

The addition and subtraction of vectors follows the “parallelogram
rule”. The scalar multiplication changes the magnitude (perhaps
reserve the direction) of the vector.

o subtrechon o ubtiplicahion 5{3 Scabar

/ :
4&@ of &

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 13/289



Vectors and vector operations
Dot Product in R” and Cross Product in R3

Definition
The dot product of two vectors U, v in R” is denoted as o v.

n
UoV= Z ujv; = [Ul|v|cos Z(u, V)
i—1

v
Definition
The cross product of two vectors T, v in RS is denoted as U x V.
o U, us| |us uq| (U1 U
UxXV— 2 U] \Us Uy jUr Uz
Vo V3 V3 W Vi W
a b
where d‘ =ad — bc
v
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Vectors, Coordinate Systems, and 1D Kinematics Vectors and vector operations

Dot Product: Perpendicular (Orthogonal) Projections

Unit Vector
The unit vector in the direction of w is given by %
v
Magnitude of Projection
The magnitude of the projection of vector v on vector w is
_ __, Uuow
U] - cos Z(u,v) = et
@] )

Orthogonal Projections
The orthogonal projection of vector v on vector @ is

u

— g
Sk

(@]
[
y
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The direction of the cross product follows the right-hand rule. The

The Right Hand Rule
¢ a

b

h S

p— /

length of the cross product |b| = |u||w]sin Z(U, V) axb
divechon - /nj"‘l" heud nele

Properties

The Cross Product has the following properties:
Q UxU=-Uxw
Quixwluyuxw lw
Quxw=0&sul|w
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Vectors and vector operations
Examples for Dot Product and Cross Product

Example

The elementary work dw is defined as the dot product of force F and
infinitesimal displacement dr: w = F odr

Example

Torque T is defined as the cross product of position vector r and force
F.7=7xF

[l
S F - -force

E

d %
i N pontion vedkl
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Vectors, Coordinate Systems, and 1D Kinematics 3D Curvilinear Coordinate Systems

Cylindrical Coordinates

Cyinglricat, toodingles Coordinates: p, ¢, z

1 Unit vectors: f,, A, A,
[P Versors are NOT Fixed:

Careful with derivatives
: p=Vx2+y2

¢ =arctan(y/x),z=2z

X =pcosy, Yy =psinp
T = ph, + z,, where 7, carries information about ¢

Polar coordinates is the special case z = 0.
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Vectors, Coordinate Systems, and 1D Kinematics 3D Curvilinear Coordinate Systems

Spherical Coordinates

g : Coordinates: r, 0, ¢
o he
SN Pip Unit vectors: 7y, fg, f,
3 a

e r= 12 2,
e Ny

A | ¢ = arctan ——,
LN S
\gf‘} oy ¢ = arctan(y/x)
& Tk :
X = rsinf cos ¢,
O((p(Zﬁ
0¢p <7 Yy =rsinfsinyp, Z=rcosf

X/

T = rn,, where f, carries information for # and .

Polar coordinates is the special case § = /2.
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Vectors, Coordinate Systems, and 1D Kinematics 3D Curvilinear Coordinate Systems

Gradient, Divergence, and Curl

..
('R AR)+———'3’ %?no—"ksﬂ??

n /\Aﬂ -_ 2
yU= r\,‘M‘* “va7+'\151- V'A‘a%\ﬁ"”’"‘/ +2 Mg
2 K= 1 9A
glU= % h( ar+“¢ 2—74-“,_92‘ v"“?‘}'rt"'/\')*r—,,,'-%‘l'%ﬂ,_z‘w-
u
= +R
gU= nr ar l'\e— ?rsmo 3‘? ¢ A k" 39\

Total ‘F‘ux § h 15 vubaqw. &v A },,..—M

Pivemene T&earw“\ Sv A AV‘ ih &g’

. I\ =. 17
Circulation » §°A 'A} Cu(‘ QXA’) L (n A A/')
Stokefs Theram  § (¥R ) 45 = §Z Ar
n A o -
VXR‘-‘- ____l____ :u“\( ;-,\\. ;1 Cm% M-lﬁ";:l
h,i,)\) 3%, F IS TN : Gliadnca |l RENET Rp=v
M e W Sheacal Azt hazR hy=Rsab
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Vectors, Coordinate Systems, and 1D Kinematics 1D Kinematics

@ 1D Kinematics
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Motion Along a Straight Line

Define positive direction first. As a convention, the vectors x, v and a
are written as positive if they have the same direction as the positive
direction of the axis, and are written as negative if their direction is
oppositve to the positive direction of the axis.
xt) x (trat)
Q IL_I__,_._/)'I .

ousplacement

fone € 4o trat

Here we assume that x is twice differentiable if there are no impulses.
The reasons will be clear when we study the Newton’s laws.
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Vectors, Coordinate Systems, and 1D Kinematics 1D Kinematics

Average and Instantaneous Velocity

x(t+At)—x(t)

Average Velocity over (f,f+ Af): Vay x = N

Instantaneous Velocity at t: vi(t) = d’g—g')’t

x &) [m]

(€

S‘gre 0+ lecent = “-'”’"“ff Ut[ov..ﬁ

Slof\'/ 0'f' |“‘:§C‘l+ i "”':é:m(a.hmns
v c,.'{3

t Es]

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 24/289



Average and Instantaneous Acceleration

Average Acceleration over (t,t + At): agy x = %ﬂ_v(”
Instantaneous Acceleration at t: ay(t) = d‘g—(t)‘t

afe) ["]

mé

Newton’s notation for derivatives W.R.T time: vy = X, ay = Vx = X

Average Speed vs. Average Velocity

Average speed=(distance traveled)/(time interval)
Average velocity=(displacement)/(time interval)
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Obtain Displacement from Acceleration

Obtain Velocity from Acceleration

v(t) = v(0) + [J a(r)dr  v(0): Initial (t=0) Condition

Obtain Displacement from Velocity

x(t) = x(0) + [o v(r)dr

Special Case: Constant Acceleration a
x(t) = x(0) + v(0)t + sat?

General Case: Varying Acceleration a

x(t):x(0)+/0t v(7)dr = x(0) + O)t+/ dT/

y
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Relative Motion

Relative Velocity

Velocity of Particle in FOR A
=Velocity of Origin of FOR A’+Velocity of Particle in FOR A’

Vx = Vorx + vy,

Analogously, ay = ap/x + &, for acceleration.

Galilean Transformation (Vo = const, xo/(0) = 0)

ax = aIX
Vx = Vox + Vg
X = Voyt+x

where vt = X,
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Planck’s Units

Given the Dirac’s constant i = h/(2r), gravitational constant G, and
the speed of light in vacuum c¢, use dimensional analysis to construct
the so called natural units of time, length, and mass. These are also
called Planck’s units: Planck’s time t,, Planck’s length /,, and Planck’s
mass mp. Find their values in the Sl units. How do they compare to
the time, distance, and mass that we are able to measure nowadays?

Hints

From Chapter 6 in Vc 210, we learnt the uncertainty principle
Ax - A(mv) > h/(4r), so h has dimension

[m] - [ke] - [m/s] = [m*-kg-s~']

c is the speed of light, so it has dimension [m/s]

The gravitational force F = GMm/r?, so G has dimension
[kg-m/s?] - [m?] - [kg™?] = [m*-s72 kg™ ]
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Constants

fi=1.054 x 1073* m? . kg -s~!
G=6.674x10""m3 kg™ ! .52
c=2.998 x 108 m/s

v
Solution
Express mp as mp = h*GP¢?, so the power for m, kg, and s shall
match.
2a+38+1y =0 a =}
—a—28-v =0 c =3
— mp= ,/%ﬁ =2176 x 1078 kg
Similarly, tp = ¢=%/2G"/21'/2 = 5391 x 10~% 5, and
Ip = c32G"/2h'/2 =1.616 x 1073% m )
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Dimension Analysis on a Simple Pendulum

Question

A simple pendulum consists of a light inextensible string AB with length
L, with the end A fixed, and a point mass M attached to B. The
pendulum oscillates with a small amplitude, and the period of
oscillation is T. It is suggested that T is proportional to the product of
powers of M, L, and g, where g is the acceleration due to gravity. Use
dimensional analysis to find this relationship.
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Dimension Analysis on a Simple Pendulum

Question

A simple pendulum consists of a light inextensible string AB with length
L, with the end A fixed, and a point mass M attached to B. The
pendulum oscillates with a small amplitude, and the period of
oscillation is T. It is suggested that T is proportional to the product of
powers of M, L, and g, where g is the acceleration due to gravity. Use
dimensional analysis to find this relationship.

Solution
T=ML'g" = [s] = [ko]"[m]’[m/s?]"
— a=0,=1/2,v=-1/2 T=ky/L/g
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Chain Rules in v-x Relations
Suppose a particle in 1 dimensional motion has the following v-x (Sl)

relation:
Vv=vx-+1

Determine v(t).
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Chain Rules in v-x Relations
Suppose a particle in 1 dimensional motion has the following v-x (Sl)

relation:
Vv=vx-+1
Determine v(t). )
Solution
By the chain rule of differentiation,
dv  dvdx 1 1
=G ~xat 2t~ 5 m/s
1
v(t) = §t+ v(0)

Now v(1)? — v(0)? = 2a(t)x(t), we obtain v(0) = 1 m/s )
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Dot Product in Cartesian Coordinates

Check that in the Cartesian coordinates, the dot product of two vectors
u = (ux, Uy, Uz) and w = (wy, wy,, w;) can be equivalently found either
as UoW = UyWy + UyWy + Uz Wz, Or as U - W = uw cos o, where « is the
smaller angle between u and w.
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Dot Product in Cartesian Coordinates

Check that in the Cartesian coordinates, the dot product of two vectors
u = (ux, Uy, Uz) and w = (wy, wy,, w;) can be equivalently found either
as UoW = UyWy + UyWy + Uz Wz, Or as U - W = uw cos o, where « is the
smaller angle between u and w.

Solution

lu—w}?=0u?+w?—-2uwcosa
v+ w? —ju—w?
2
2(uxwy + uywy + Uz W)
2

uwcos o =
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Inverse Cross Product

Question

Is it possible to find a vector u, such that (2, -3,4) x u = (4,3,—-1)?
What is a quick way to check it?
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Inverse Cross Product

Question

Is it possible to find a vector u, such that (2, -3,4) x u = (4,3,—-1)?
What is a quick way to check it?

Solution
Suppose u = (uy, uy, U) satisfies this relation.

—1 =2uy + 3uy —3 =5u,+ux
_ __3
3 :4Ux_2Uz % :UX_%UZ

B=—u—3uand1=-3u, -y, 2 =0, i.e., not possible.

8 =
Quick way: (2,—-3,4)0(4,3,—-1)=-5#0

4
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Pulling a Boat at Constant Speed

Question

Suppose a person convolves a rope at constant speed v, on the left
riverbank that is h above the water. The other end of the rope is fixed
on a small boat floating on the surface of the water. Find the speed
and the acceleration of the boat when it is x from the person
(assuming the rope is weightless).
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Pulling a Boat at Constant Speed

Question

Suppose a person convolves a rope at constant speed v, on the left
riverbank that is h above the water. The other end of the rope is fixed
on a small boat floating on the surface of the water. Find the speed
and the acceleration of the boat when it is x from the person
(assuming the rope is weightless).

Solution

The fact that the motion of the boat is constrained on a straight line
allows us to use the magnitude of position vector, velocity, and
acceleration directly. Let r denote the length of the rope, then:

- —
a — V0
r =+vx24+h?

4
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Pulling a Boat at Constant Speed

Solution (continued)

Our goal is to express x and x using x, v and h.

Taking the derivative w.r.t t on both sides of r = v/x2 + h? using the
chain rule,
dr 2x dx

at 2V/x2 1 2 dt

SO v = x = —Vx2 + h?vy/x, where the — sign indicates that the boat is
moving toward the left.

2,2
Xy \/x2x 2 x2—x2—H?
. 24/x2+h2 . v/ x2+h?
V=—y 5 X=—-v|V+—o—
X X

= [VBV/x2 + 2 /x][- 2/ (x®\/x2 + h2)] = _Vig’z

y
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Parallel and Perpendicular Components of Vectors

Question

Consider two vectors u = 371, + 4/, and w = 67, + 167,. Find (a) the
components of the vector w that are parallel and perpendicular to the
vector u, (b) the angle between w and u.

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 37/289



Vectors, Coordinate Systems, and 1D Kinematics Exercises

Parallel and Perpendicular Components of Vectors

Question

Consider two vectors u = 371, + 4/, and w = 67, + 167,. Find (a) the
components of the vector w that are parallel and perpendicular to the
vector u, (b) the angle between w and u.

Solution
(a) The parallel component of w to u is given by the orthogonal
projection wj = u _ 3x614x16_(34) _ (984 13.12). The

‘W‘ |U‘ - \/32+42 \/32+42
orthogonal component is given by w;, = w —w) = (-3.84,2.88)

(b)

3x6+4x16
5x17.088

Z(W,u) = arccos UoW _ arccos| ] = 0.285 rad
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Harmonic Oscillation Drifting in One Direction

Question

A particle moves along a straight line with non-constant acceleration
ay(t) = —Aw? coswt, where A and w are positive constants with proper
units. At the instant of time t = 0 its velocity vx(0) = 3 [m/s] and
position x(0) = 4 [m]. Find vx(t) and x(t) at any instant of time. Sketch
the graphs of x(t), vx(t), and ax(t). What kind of motion may these
results describe?
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Harmonic Oscillation Drifting in One Direction

Question

A particle moves along a straight line with non-constant acceleration
ay(t) = —Aw? coswt, where A and w are positive constants with proper
units. At the instant of time t = 0 its velocity vx(0) = 3 [m/s] and
position x(0) = 4 [m]. Find vx(t) and x(t) at any instant of time. Sketch
the graphs of x(t), vx(t), and ax(t). What kind of motion may these
results describe?

Solution

vx(t) = vx(0) + /t a(t)dr =3 — Awsinwt
0

x(t) = x(0) + /t Ve(7)dr = 4 + 3t + A(coswt — 1)
0

4
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Vectors, Coordinate Systems, an Kinematics Exercises

Ploto al), _w=5 [radis), A=2 m] Plotofu, _w=5 [radis], A=2 m] Ploto xt, _w=5 [radis], A<2 (m)

Figure: Plot for x, v, and a given w = 5 [rad/s], A= 2 [m]
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Vectors, Coordinate Systems, an Kinematics Exercises

Plotof al, _w=5 [radis), A<5 (m] Plotofu, _w=5 [radis], A=S [m] Ploto x(, _w=5 [rads], A<5 (m)

fs] : s) ls]

Figure: Plot for x, v, and a given w = 5 [rad/s], A= 5 [m]
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Vectors, Coordinate Systems, an Kinematics Exercises

. Plototaly, _w=10(rads), A=2 m] - Plotof vt _w=10 [rads], A=2 m] o PlototxX), _wst0 rads] A<2 m]

Figure: Plot for x, v, and a given w = 10 [rad/s], A = 2 [m]
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Vectors, Coordinate Systems, an Kinematics Exercises

Plototafy, _w=10 rads), A=S [m] Plotof vt _w=10 [rads}, A=5 [m] Plotof x, _w=10 rads), A<S [m]

Figure: Plot for x, v, and a given w = 10 [rad/s], A =5 [m]
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

MATLAB Scripts

omega=10;t=0:p1/2000:2+2+pi/omega;A=2;

| figure

subplot (1,3,1)
. |plot (t,-A.+omega. 2.*cos (omega.x*t), , ,2);
| xlabel ( ) ; ylabel ( y;title(

)i
subplot (1,3,2)
. |plot (t,3-A.+xomega.*sin (omega.x*t), , ,2);
| xlabel ( ) ;ylabel ( )y;title(
)i
| subplot (1,3, 3)
plot (t,4+3.*t+A.*x (cos (omega.*xt)-1), , ,2);
| xlabel ( ) ;i vlabel ( )y;title(
)
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An Under-Damped Oscillation

A particle is moving along a straight line with velocity
vx(t) = —BAwe P! coswt, where A, w, 3 are positive constants.

@ What are the units of these constants?

@ Find acceleration ax(t) and position x(t) of the particle, assuming
that x(0) = 5 [m].

© Sketch x(t), vk(t), and ax(t)

© What kind of motion could these results refer to (qualitatively)?

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 44/289



An Under-Damped Oscillation (Solution)

Bt is dimensionless, so 3 has unit [s~']. The same holds for w. fAw
has unit [m/s], so A has unit [m - s]

ax(t) = VX( ) = ﬁZAwe Bt coswt + BAw?e Plsinwt

x(t) = )+ fo vx(7)dT, where we need to integrate by part.

t

t 1 t
/ e P coswrdr = ——e P coswr| — / 86_57 sinwTtdr
0 B 0o B

0

t 1
/ e P sinwrdr = ——e P sinwr
0 B

+/ Z e P coswrdr

so denoting C = [ e %" coswrdr, we have
t t
— _1g 67 _w[_ 18T w i
C= 5€ cosz‘O B[ 5€ smw7"0 + BC]’ ie.,

1+ ‘E—;)C = —%e_ﬁtcoswt+ % + 5

i [ sin wi]
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

x(1)

_ B!
T B2+u? |
x(0) — BAwC =5 —

C

(1

BAw

B2 tw

— e coswt) +

s [B((1

W .
— e Plsinwt

132

sl

Figure: x(t) given A=3m-s, 3 =1s"',w = 10rad/s
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Sketch of v, (t) and ax(t)

v(t)/[m/s]
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Figure: v(t) and a(t) given A=3m-s, 3 =1s"", w=10rad/s

This represents an underdamped oscillation.
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A Moving Car

Question

A car is moving in one direction along a straight line. Find the average
velocity of the car if: (a) it travels half of the journey with velocity vy and
the other half with velocity v», (b) it covers half the distance with

velocity vq and the other with velocity v». Both v4 and v, are constants. |

Solution

The formula we use is the definition: vayg x = %
(@) X = vit/2 4+ Vot /2, SO Vayg x = A% 1
(b) t - X/(2V1) + X/(2V2), SO Vavg7x - W
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3D Kinematics

e 3D Kinematics
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3D Kinematics Kinematics in Cartesian Coordinates

@ Kinematics in Cartesian Coordinates
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3D Kinematics Kinematics in Cartesian Coordinates

Kinematics in Cartesian Coordinates

The velocity and acceleration are just the Derivatives of the position
vector.

Position Vector

7(t) = x(t)ix + y(H)ny + z(t)h,

Velocity
V(t) = 7(t) = x(t)Dx + y(t)hy + 2(t)D,
Instantaneous Speed v = /X2 + y2 + 22

Acceleration

a(t) = v(t) = X(t)hx + y(t)h, + 2(t)N;
a=+\x2+j2+22
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3D Kinematics Kinematics in Cylindrical Coordinates

@ Kinematics in Cylindrical Coordinates
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3D Kinematics Kinematics in Cylindrical Coordinates

Derivatives of Versors w.r.t. Time

Based on the position vector, we find the velocity and acceleration.

Position Vector in Cylindrical Coordinates

r(t) = p(t)h, + 2(t)A,

Relation Between Versors

N, =Nycosp+Nysing N, =—Nysing+nNycosg h, =y
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3D Kinematics Kinematics in Cylindrical Coordinates

Derivatives of Versors w.r.t. Time

Based on the position vector, we find the velocity and acceleration.

Position Vector in Cylindrical Coordinates

r(t) = p(t)h, + 2(t)A,

Relation Between Versors

N, =Nycosp+Nysing N, =—Nysing+nNycosg h, =y

Derivatives of Versors

Ié)p = —Nyxpsing + Ny cosp = P,

Iél(p = —fxpcosp — Nypsinp = —php )

Then using the product rule of differentiation, we calculate velocity and

acceleration.
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3D Kinematics Kinematics in Cylindrical Coordinates

Velocity and Acceleration in Cylindrical Coordinates
f;,) = ¢h, and r*),u; = —php are used in the following derivation.
Velocity J

V = ph, + ph, + 2P, = ph, + pphy, + 2,
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3D Kinematics Kinematics in Cylindrical Coordinates

Velocity and Acceleration in Cylindrical Coordinates
f;,) = ¢h, and r*),u; = —php are used in the following derivation.
Velocity

V = ph, + ph, + 2P, = ph, + pphy, + 2,

Acceleration

a= ﬁhp + pﬁp + P@ﬁga + P‘ﬁﬁs& + /’9.9’%9 + zhy,
= phy 4 pphy, + ppi, + p@hy, 4 pp(—php) + 20,
= (p—p)y + (0P +200), +2

~
radial component  transversal component

Setting z = 0 in the preceding formulas yields the formulas for the
polar coordinates.
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3D Kinematics Kinematics in Spherical Coordinates

@ Kinematics in Spherical Coordinates
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3D Kinematics Kinematics in Spherical Coordinates

Position Vector in Spherical Coordinates

Relation Between Versors

Ny = sin O( Ay cos ¢ + Ny sin ) + f1 cos §
Ny, = —Rysinp + hy cos
g = cos O(Fy cos p + Ny sin )

Derivatives of Versors w.r.t. Time

A, = O + @ sin 6n,

N, = —psinOn, — ¢ cos Oy
Ng = —0n, 4+ ¢ costn, )
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3D Kinematics Kinematics in Natural Coordinates

@ Kinematics in Natural Coordinates
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Kinematics in Natural Coordinates
Natural Coordinates

luwake  Systewt Versors:

h.: tangent (along V)
Np: normal

fp: binormal

Velocity:

v(t) = vh,

"ﬁ\

h, =
Assumption: the trajectory is not straight;
the particle moves in one direction.

ﬁn = ‘TT| ﬁb = hT X i\"n
hy

<I<I
=
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3D Kinematics Kinematics in Natural Coordinates

Acceleration and Curvature

Acceleration

a=  vh. o+ v|h¢,
~—~ N—_——
tangent component  normal component
v
Radius of Curvature
RC — X
|77
— A 2 A
a= Vn.,- + (V /Rc)nn
) N~ _ H/_/
tangential component a:  normal component @,
y
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3D Kinematics Discussion

@ Discussion
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The Difference Between v and v

The derivative of a vector v is the vector whose components are
derivatives of the components in the original vector. It is exactly the
acceleration of the particle. The derivative of a scalar v is the rate of
change of the magnitude of velocity. It is precisely the magnitude of
the tangential component of acceleration.

Example
t 1
Consider a particle moving with velocity v(t) = [ 2 |, sov = | 2t
t3 32
Now v = V2 + {4 + 16, s0 v — 204468
24/ 2+ t4+16
t
Now the unit tangent vector n, = ﬁ =1 |
2t4+16 3

y
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v as Magnitude of Tangential Component of a

Example

Now the tangential component and normal component of the
acceleration can be calculated using the inner product of these unit
vectors and acceleration. The magnitude a, = (a, f;) and a, = (a, fy).

L 2\ (f)\_treesas
ToVEr P\ 3] \p VRt 18

This results conforms with the assertion that v is just the magnitude of
the tangential component a, of the acceleration a = v.

Then, applying the quotient rule for the derivative, we find the unit
normal vector:
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3D Kinematics Discussion

Calculating n,

Example
VI £ {84 16 — p2HArter
1 R/
s 1 | op/P i 6 j22ta0 460
= V2444t t\/m
t2 t2+t4+t t3w
t2+t4+t6
o VETAEE
R G A
VP F {4 6 _ 246t
. 244+t %ﬁﬂﬁﬁ
LS W [ YN R Ly S
n_|f7\_ t4 4416 + 18 2\/ 414415
! 312\/fZ 1 14 + {6 — (324104615
14416
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3D Kinematics Discussion

Calculating an

Example
V16— p2tariet
1 ] P+t tWS
= 746 8 2tV + t4 + 16 — (2 24060
an t4+4t6+t8< 2t2 s + + 2\/@
. 32V 4 14 + 16 — (3 2LALI60
2 4t44t6

o+t +12

and we can check that a2 + a2 = a°
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3D Kinematics Discussion

Role of the normal component a,

Remarks

" oa d . . d, . o d.,

npoh. =1 = d—t[nTonT]_O - d—tnTonTJrnTod—tnT—O
Notice that fvT is perpendicular to n, because n, has unit length. The
normal component of acceleration, therefore, only changes the
direction of velocity, and has no effect on the magnitude of velocity.
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3D Kinematics Discussion

Differential Geometry in Polar Coordinates

Changing r ,keeping ¢ constant, results in displacement along r, while
changing ¢, keeping r constant, results in displacement perpendicular
to r. Putting these two kinds of changes in the form of infinitesimal
displacement vector: nydr and f,rde, we note that in fact,

dr = nedr + hyrdg

Infinitesimal displacement Radial Component  Transversal Component
Therefore, by the Pythagoras’ theorem,
|dF|? = (dr)? + (rdgp)?

In fact, this is exactly the case for velocity: we can decompose the
velocity into radial and transversal components, and exploit the fact
that they are mutually perpendicular to each other.
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3D Kinematics Exercises

@ Exercises
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Kinematics Exercises
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3D Kinematics Exercises

A Parabolic Motion
A particle moves in the x — y plane so that

x(t) = at, y(t)=bt?

where a, b are positive constants. Find its trajectory, velocity, and
acceleration (its tangential and normal components).

Solution

The trajectory is y = b(x/a)?. The position vector 7 = (;l;) so the

. a . - 0
velocity is r = <2bt>' The accelerationis r = (2b>'

<I<I

The unit tangent vector n, =

_ 1 a
@ rape <2bt>'
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3D Kinematics Exercises

A Parabolic Motion

Solution (Continued)
The tangential component of acceleration a. = (a, n,) .

a — 40t 1 a) 1 [(dab?t
T Va2 + 4022 /@2 1 4p2f2 \2bt) @2 + 4b212 \ 8b32

The normal component of acceleration a, = a — a-

a 1 —4ab?t - 1 —4ab?t
"7 @2 1 4b21R \2b(&% + 4bP12) — 8b%12 ) T a2 + 4b22 \ 2ba?

y
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3D Kinematics Exercises

Relative Motion of Two Particles

Question

The velocities of two particles observe from a fixed frame of reference
are given in the Cartesian coordinates by vectors

vi(t) = (0,2,0) +(3,1,2)t? and vo(t) = (1,0, 1). At the initial instant of
time t = 0, the positions of these particles are r4(0) = (1,0, 0), and
r>(0) = (0,1,1).

Find the positions of both particles and the acceleration of particle 1
(and its tangential and normal components), relative position, and
relative acceleration of particle 1 with respect to particle 2 at any
instant of time t.
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3D Kinematics Exercises

Relative Motion of Two Particles (Solution)

The posmons are found as follows:

ri(t) =ry(0 +f0 vi(7)dr = (1,0,0) + (0,2,0)t + (1,1/3,2/3)¢3
ra(t) =ro O)Jrf0 Vo(7)dr = (0,1,1) + (1,0, 1)t

The acceleration of particle 1 and 2 are found as follows:

ai(f) =Vi(t) = (6,2,4)t ap(t)=0

The unit tangent vector for particle 1 is found as

e = it = Varrermranl(©:2:0) + (3.1.2)F

so the tangential component of acceleration is found as

2 2 2
a1 = (a(t), A1) Pry = GEEHETR[(0,2,0) + (3, 1,2)17]
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3D Kinematics Exercises

Relative Motion of Two Particles (Continued Solution)

t2
3
a .= 735”7?) 2+ 2 |, so the normal component of accelration
; 2242 op2
6t(2 + t2)
an1=ai—a,1 =55 | —26t° |. Check they are orthogornal!
4t(2 + t?)

The relative position of particle 1 w.r.t. particle 2 is
r1(t) - rg(t) = (17_17_1) + (_1727_1)t+ (17 1/372/3)t3
The relative acceleration of particle 1 w.r.t. particle 2 is

a((t) —ax(t) = (6,2,4)t
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Beetle on the Wheel

A disc of radius R rotates about its axis of symmetry (perpendicular to
the disk surface) with constant angular velocity ¢ = w = const. At the
instant of time t = 0 a beetle starts to walk with constant speed v
along a radius of the disk, from its center to the edge. Find
@ the position of the beetle and its trajectory in the Cartesian and
polar coordinate systems,
@ its velocity in both systems,
© its acceleration in both systems (Cartesian components, polar
components, as well as tangential and normal components).

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 74/289



Beetle on the Wheel (Solution)

Position and Trajectory

In the Polar Coordinate system, r = vt, ¢ = wt. Hence in the
Cartesian Coordinate system, x(t) = wtcoswt, y(t) = witsinwt. The
trajectory in the Polar coordinates is r = voo/w. The trajectory in the
Cartesian coordinates is found by

{tanwt =y/x

x2+y? = Vit?

so the trajectory is y/x = tan(w+/Xx2 + ¥2/v), known as Archimedes’
spiral.
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3D Kinematics Exercises

Velocity
In the Polar Coordinate system, r = vy, ¢ = w. Therefore,

Vi =T = Vp, and v, = r¢ = vowt.

In the Cartesian Coordinate system, vy = x(t) = vy coswt — wpt sin wt,

vy = y(t) = vosinwt + wvpt coswt. )

Acceleration
In the Polar Coordinate system, r = 0, and ¢ = 0. Therefore,

ar=r—r¢? = —wtw® and a, = rj 4 2rp = 2vow.

In the Cartesian Coordinate system,
ay = X(t) = —ww(2sinwt + wt coswt), and

ay = y(t) = wvp(2coswt — wtsinwt).

y

CAUTION: Tangential component is not radial component in this case.
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Tangential Component and Normal Component

Based on the previous results, we calculate v, with which we find the
magnitude of the tangential component of acceleration.

V=/VB+ V2 =vp/1+ (wt)?

w2t
1+ (wt)?

Then we exploit the fact that the tangential and the normal
components are perpendicular to each other to find the magnitude of

the normal component from a:  a= /a2 + & = vw\/(wt)? + 4

o o2t @)
T 1+ (wt)?

aT:\'/:vo
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3D Kinematics Exercises

More on the Beetle

@ What is the distance covered by the beetle?

T T
s = vdt:/ Voy/ 1+ (wt)2dt
/0 oy

-
— v (;T W2T2 41 +W>

©@ What is the radius of curvature of the trajectory?

LV (2R
“Ta,  w@+wiR)
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Hyperbolic Spiral Motion

Question

A particle moves along a hyperbolic spiral (i.e. a curve r = ¢/, where
c is a positive constant), so that ¢(t) = po + wt, where ¢y and w are
positive constants. Fint its velocity and acceleration (all components
and magnitudes of both vectors).
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Hyperbolic Spiral Motion

Question

A particle moves along a hyperbolic spiral (i.e. a curve r = ¢/, where
c is a positive constant), so that ¢(t) = po + wt, where ¢y and w are
positive constants. Fint its velocity and acceleration (all components
and magnitudes of both vectors).

Solution
p=w F=-c/p? w, 80V, =—cw/(pg+wt)? and v, = wc/(po + wt)

v =/VZ+ V2 = [we/(po +wt)P]/1 + (po + wt)?

=0 F=(2w?c)/¢% s0 a,=rj+2rp = —2cw?/(po + wt)?
ar = — rp® = (2w2c) /(o + wt)® —w?c/(po + wt)

a— \/ag +a = \/—CZW“(“(‘POJFW)“)

(potwt)®
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Four Crawling Spiders

Four spiders are initially placed at the four corners of a square with
side length /. The spiders crawl counter-clockwise at the same speed
v and each spider crawls directly toward the next spider at all times.
They approach the center of the square along spiral paths. Find

@ polar coordinates of a spider at any instant of time, assuming the
origin is at the center of the square.

@ the time after which all spiders meet.
© the trajectory of a spider in polar coordinates.

© the acceleration of a spider, and the radius of curvature at any
instant of time.

CAUTION: The transversal component is not the tangential
component in this case.
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Four Crawling Spiders (Solution)

Due to the symmetry of the problem, we study the spider starting at
r(0) = I/v/2 and ¢(0) = 0. Notice that the four spiders always lie on
the four corners of a square due to symmetry. Now the fact that one
spider always aims directly at the next spider is interpreted as each
spider having a radial velocity v, = —v/+/2 and a transversal velocity
vgo = v/\@ Therefore, r = —v/v/2 and ¢ = (v/v/2)/r(t). Now

)+ [y H(7)dr = 1/V/2 — vt/v/2, and p(t) = (0) + [3 ¢(r)dr.

t vt vt d vz‘fld
w(t):/vdr:/ ds:_/ S:_/ w
O(I—VT) 0 I—S 0 S—/ .y w

so the polar coordinates are given by

/\—/évt Lp(t)——ln(w__ll>
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3D Kinematics Exercises

The time {; the spiders meet is the time when r(f;) =0,s0 ty = I/v
The trajectory of the spider is given by

¥)
p=—In 7

The acceleration of the spider is given by

a(t) = (F — r¢?)ny + (rg + 2f¢p)n,, where ¥ = 0 and

¢ = —[(v/v2)/r(t)?](-v/V2) = v?/(I — vt)?. Hence,

ar = —v2/[v2(I - v,

a, = V3/[V2(l — vl + V2(-v)(v/V2)/[(l - vt)/V2] =
~(V2-1/V2)2 /(1 - wt)

a=./a+a=v/(—w)

Since there is no tangential acceleration, this is the normal
acceleration, so the radius of curvature is (/ — vt).
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3D Kinematics Exercises

A Numerical Animation

The animation works with Adobe Reader XI or Adobe Acrobat Reader
DC. Equivalent GIF is uploaded to CANVAS.
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3D Kinematics Exercises

void SpiderChase (Pointx spiders,doublex angle, int size) {
! double step=0.00004, newx, newy;

l double distance=sqgrt (pow((spiders[0].x-spiders[l].x),2)

+pow ( (spiders[0] .y—-spiders[1l].v),2));
if (distance<=step*5.0) {
; distance=sqgrt (pow ( (spiders[0] .x-spiders[1]

}

; for (int i=0;i<size;i++) {

» newx=spiders[i] .x+step/distancex (spiders[ (i+1)%

size] .x-spiders[i].x);

» newy=spiders[i].y+step/distancex (spiders[ (i+1)%

size].y-spiders[i].y);
spiders[i]={newx,newy};

! angle[i]=atan2 (spiders[ (i+l)%size].y-spiders[i
].y,spiders[(i+1l)%size] .x-spiders[i].x)-PI

*0.5;

; spiders[0]={-1.0,1.0};spiders[1]={-1.0,-1.0};
spiders[2]={1.0,-1.0};spiders[3]={1.0,1.0};
LX)
,2)tpow ( (spiders[0] .y-spiders[1l].vy),2));
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Force, Newton’s Laws, Linear Drag and Oscillators

e Force, Newton’s Laws, Linear Drag and Oscillators

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 85/289



Force, Newton’s Laws, Linear Drag and Oscillators Force

@ Force
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Force, Newton’s Laws, Linear Drag and Oscillators Force

Force

Definition

Force is interaction between two objects or an object and its
environment. The interactions are of material origin. Force is a vector
quantity with Sl unit Newton. 1 N = 1 kg - m/s?

Several Forces

Normal Force When an object pushes on a surface, the surface
pushes back on the object in the direction perpendicular to the surface.
Friction When an object slides on a surface, the surface resists such
sliding parallel to the surface.

Tension A pulling force exerted on an object by rope/cord.

Weight Pull of gravity on an object.
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Force, Newton’s Laws, Linear Drag and Oscillators Newton’s Laws

@ Newton’s Laws
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Force, Newton’s Laws, Linear Drag and Oscillators Newton’s Laws

Newton’s First Law

Essence
An Inertial frame of reference exists. )

Inertial frame of reference

A special class of frames of reference is inertial frames of reference,
where a particle acted upon by zero net force moves with constant

velocity.

Zsz@é:O
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Force, Newton’s Laws, Linear Drag and Oscillators Newton’s Laws

Newton’s Second Law

In an inertial frame of reference (identified by the first law),
acceleration of a particle is directly proportional to the net force, and is
inversely proportional to the mass.

Q@ FA0<2a+#0

Q@ axF

Q@ ax1/m

Equivalence of all Inertial FoRs (Galilean Invariation)
r(t) = ro(t) + r'(t)

v(t) = vo(t) + V(1)

a(t) = a(t)

Conclusion: Enough to have one inertial FoR.
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Free Body Diagram

Definition

A free-body diagram is a sketch showing all forces acting upon an
object. When kinematics and dynamics are both involved, we sketch
two diagrams, with one diagram is sketched for

alertkinematics, and the other for dynamics.

Remarks
Newton’s Second Law bridges kinematics and dynamics.
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Force, Newton’s Laws, Linear Drag and Oscillators Newton’s Laws

Newton’s Third Law

Statement

The mutual forces of action and reaction between two bodies are equal
in magnitude and opposite in direction.

Remarks

Newton’s third law allows us to consider several objects as a system
and ignore the internal forces of the system when we study the
kinematics and dynamics of the system as a whole.
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Force, Newton’s Laws, Linear Drag and Oscillators Application of Newton’s Laws

@ Application of Newton’s Laws
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Particles in Static Balance

LLLLLL AT LS S S Now consider a person with mass

my = 60 kg standing on a board
with mass m» = 20 kg. Ignoring
the friction between the rope and
the wheels and the mass of them.
How much force does the person
need to exert on the rope to keep
himself and the board static?
]
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Force, Newton’s Laws, Linear Drag and Oscillators Application of Newton’s Laws

Particles in Motion

frictionless, and the weight of the
IT wheel and the ropes can be
= ignored. Find the horizontal force
F F and the stress N block M exerts
) M = on the horizontal surface in the

following two cases:

@ There is no relative motion
Now consider the situation shown among block my, m,, and M

in the figure. All the surfaces are O M is static
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Force, Newton’s Laws, Linear Drag and Oscillators Application of Newton’s Laws

Friction

Consider a brick sliding upward an inclined surface 30° to the
horizontal plane. Its initial speed is 1.5 m/s, and the coefficient of
kinetic friction 1 = v/3/12. How far is the brick from its initial position
after 0.5 s?
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Force, Newton’s Laws, Linear Drag and Oscillators Motion with Air/Fluid Drag

@ Motion with Air/Fluid Drag
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Projectile Motion with Linear Drag

Question

Consider a particle launched with horizontal speed v«(0) and vertical
speed v, (0) from the origin. The drag is linear, i.e., f = —av. Find its
position at time t.

ODE Solution as IVP

mvy = —avy deXx = —(a/m)dt
my, =-mg-—av, = % = —(a/m)dt —
{In(vx(t)) — In(vx(0)) = —(a/m)t
In(vy(t) + mg/a) —In(v,(0) + mg/a) = —(a/m)t
V(t) = vx(0)e~ /M1 vy (t) = (vy(0) + mg/a)e~(*/™! — mg/a
x(t) = w(0)(1 — e~ /MY m/a
y(t) = (%(0) + mg/a)(1 — e~ /MYm/a — mgt/a

4
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sl AR
Free Fall with Quadratic Drag f = —kv?

Taking the vertically downward direction as the positive direction,
mv=mg—kv? = (k/mV®+v=g

This is a Ricatti’s equation with one trivial solution being v = /mg/k.
mg/k + 1/z, where z is the solution to

Z' —(2y/mg/k)(k/m)z = (k/m). Now Z’ — 2,/g(k/m)z = O is the
homogeneous equation, 2™ = Ce?V9(k/M! and a particular solution
is given by zPa = — /k/(mg)/2, so the general solution for v is

2\/g(k/m \/ L
Now the initial condition is v(0) = 0, so C = —\/k/(4mg), the solution

1
- k 2 k k
/We 9( /m)t+ /W
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Force, Newton’s Laws, Linear Drag and Oscillators Simple and linearly damped Oscillator

@ Simple and linearly damped Oscillator

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 100/289



Force, Newton’s Laws, Linear Drag and Oscillators Simple and linearly damped Oscillator

Simple Harmonic Oscillator

Definition

A simple harmonic oscillator is a particle under a net external force
proportional in magnitude to its displacement from equilibrium, and
towards equilibrium in direction. Such an external force is called the
restoring force.

In the case of 1 dimension,

. . Kk
> F=—kx = LSV X+—x=0
m m

Characteristic equation s2 + % = 0, Characteristic roots sy 5 = ij\/%
General solution given by

x = C1€% + Cre®! = Acos(wot) + Bsin(wot)
where natural frequencywg = v/k/m, so period T =27 /w = 27w/ m/k
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Force, Newton’s Laws, Linear Drag and Oscillators Simple and linearly damped Oscillator

Harmonic Oscillator with Linear Damping
x is displacement from equilibrium, b > 0 is constant.

mx = —bx —kx
N~
Linear Drag

A linear, second order, homogeneous ODE with constant coefficients
is obtained:

. b . k
X+ —x+—=x=0
m- ' m
Characteristic Equation s2 + £s 4+ £ = 0, so Characteristic Roots
m m

_ 2 __ .
“bEVE_dkm it b2 > 4km

81,2 = —% if b2 =4km
—bEIV_PrAkm it g2 < akm
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Force, Newton’s Laws, Linear Drag and Oscillators Simple and linearly damped Oscillator

Three Regimes: b? vs. 4km

General solution
x = CieSt + Coe%lifsy £85 x=Cie5t 4 Cote®lif sy = s

J
Overdamped Regime: b? > 4km
x(t) = Cy e_<"'t’)"+ f”z_w‘%)t + cze_<"‘t’)"_ f”;_w‘%)t J
Critically Damped Regime: b? = 4km
x(t) = Ce~am! + Cote ant )
Under Damped Regime: b? < 4km
x(t):e‘%t [Acos (Mw%—fiﬂ) + Bsin < w? — b2 t>]

y
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@ Exercises
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Mass on a Car

Question

Mass m hangs on a massless rope in a car moving with (a) constant
velocity v, (b) constant acceleration a on a horizontal surface. What is
the angle the rope forms with the vertical direction?

Solution

Recall: tension on a massless rope is along the rope. (a) The mass is
moving with constant velocity, i.e., zero net force. Now gravity and
tension are the only two forces on this mass, so they are equal in
magnitude and opposite in direction. Hence the rope is parallel to the
vertical direction. (b) Now the net force on the mass is ma, horizontal,
so the horizontal component of the tension is ma, and the vertical
component of the tension is mg. The rope forms arctan(a/g) with the
vertical direction.

y
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Sliding car on an Inclined Plane

Question

Mass m hangs on a massless rope in a car sliding down an inclined
plane (frictionless) at an angle «. What is the angle the rope forms with
the vertical direction?

Solution

Consider the mass sliding down the same inclined plane. It slides in an
identical fashion as the car. Apart from gravity, a normal force is
exerted on the mass perpendicular to the surface of the plane. The
parallel component of net force is completely due to gravity. Therefore,
when the mass is attached to the rope, to follow a same motion, the
parallel component of net force is also due to gravity. The tension shall
only contribute to the normal component. Therefore, the rope forms «
with the vertical direction.
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Monkey and Pulley

A monkey with mass m holds a rope hanging over a frictionless pulley
attached to mass M. Discuss the motion of the system if the monkey

@ does not move with respect to the rope,

@ climbs up the rope with constant velocity vy with respect to the
rope,

© climbs up the rope with constant acceleration ag with respect to
the rope.

——

}._/_» monkey
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Monkey and Pulley (Solution)

In case a and b, the monkey and the mass have accelerations that are
equal in magnitude and opposite in direction. The acceleration a must
satisfy Newton’s second law for both the monkey and the mass. For
the monkey,

ma=T —mg

for the mass,
Ma=Mg—-T

Adding them together, we get a = M+mg For case c, let a denote the
acceleration of the mass.

ma+a)=T—-mg Ma=Mg—-T

Mg—m(g+ap)

so we get a = 5L
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Free Fall with Quadratic Air Drag (Continued)

Question

Consider fall of an object (mass m) without initial speed. Assuming
quadratic air drag. Find the time dependence of the object’s velocity
and position. Find the terminal speed (Sol. to Velocity on Slide 99).

Solution

Taking downward as positive. f = —kv> — a=g — %vz.

_ /mg 4mg 1
V(t)_\/ k V k NI

/mgt_\/WZN/gk/mtJran 2\/ gk/mt)
\/gk/m
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Separation of Variables Approach

It turns out that the ODE on Slide 99 can be solved using separation of
variables!
dv

v _g ke _ Kt
at ~ 9" m (vt /mg/K)(v— /mg/k)  m

d(v - Vmg/k) v+ mg/k) _ o perme

v —/mg/k v+ /mg/k
mail— e—2 kg/mt
v(t) = \/ TQ— = Vterminal tanh(\/kg/mt)

1+e—2 kg/mt

x(t) = X(0) + . [In(cosh(v/kg/mt)

where cosh(x) = €&~
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Oscillation at the bottom of a Pot

Question

Discuss motion of a particle that is placed on the inner surface of a
spherical pot, close to its bottom, and released from hold (no friction). )

Solution

The potential energy of the particle x from the axis of symmetry of the
potis U = —mgv/ R2? — x2. Our goal is to find the coefficient for the
guadratic term in the analytic expansion of the potential energy, and
conclude that it is a simple harmonic oscillation around the bottom of
the potential well. The bottom of the potential well is identified at
U'(x0) =0and U"(xp) > 0.

Coefficients of Series Expansion

Suppose within the radius of convergence around Xy f is analytic,
f(X) = Yoo an(x — %0)" )
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Coefficients of Series Expansion

f(x) = ao + a(x — Xo) + @ (x — x0)® + as(x — x0)* + . ..
f'(x) = ay + 2ax(x — Xg) + 3as(x — x0)? + 4as(x — xp)° + ...
f"(x) = 2a, + 6as(x — Xo) + 12a4(X — X0)° + 20a5(x — x0)% + ...

Our goal is to determine ap, and in fact we can calculate a, by
differentiating both sides n times and taking the value at xg.
f(x0) = ao; f'(x0) = a1; ""(x0) = 2ap; "”'(xp) = 6as. In general,

() (x0)
n!

fM(x) = nla, = ap=
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Oscillation at the bottom of a Pot (Continued)

Now in our case, U = —mgvVR2 — x2, U' = —mg—~2— \/W
VR —x2—x—=2
/A2 _x2 R2—x2)+x2 mgR?
U// = mg G LG mg((Rz_Xz))S/Z — (R2 gX2)3/2 SO Xp = 0.

U= 0an(x —x)" a =0, a = W — T Therefore, the

restoring force F = —U' = —ay — 2ax(X — Xo) + o Nan(X — Xo)" .
When x is close to xp, F = —2ax(x — Xp), S0 when the amplitude is
small, the motion is approximated by a simple harmonic oscillation with

natural frequency wg = \/2‘32 \/; and period T = 2—7; = 27r\/§
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A More Difficult Pot

Question

The same pot with cross-section in the shape of a cycloid placed
upside-down

x=R(y+siny), y=R( —cosy) where—7m<~y<m

Solution

We still want to find evidence that the oscillation is simple harmonic,
but this time we have to go with the parametrized form. Suppose the
particle is in such a position that v = 4 close to 0. We need to exploit

the Series expansion of sine and cosine: cosf = > ° ,(—1)" (gi"), and

sinf =Y 22 5(—1 )”% The potential energy of the particle is

U = mgR(1 — cosf) = mgR(1 — (1 — 362) + 0(62)) = 1mgR6? + 0(6?)
= R(0 + 0 + 0(6?)) = 2R6 + o(H?)

y
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A More Difficult Pot (Continued)

Now U = ImgR6? + 0(6?) and x = 2R0 + 0(6?). & = 2R + o(#), so by
the inverse function theorem (Use series expansion to see o(0)),

LS S
dx 2R+ o(9) 2R
~~
A polynomial
Restoring force
dUu dU do 1 mg#
"X Bk —[mgR6 + 0(0)][ﬁ + 0(0)] = % + 0(0)

F _—mgb/2+o0(6)  mg

X 2R9+o(f?) ~ 4R
so the natural frequency of the simple harmonic oscillation is

wo = |/ 7, and the period is T = 2& = 2, /48
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Driven Oscillations, Non-inertial FoRs

e Driven Oscillations, Non-inertial FoRs
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@ Driven Oscillations
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Driven Oscillations, Non-inertial FoRs Driven Oscillations

Driven Oscillations

Definition
A driven oscillation in our context is a linearly damped simple harmonic

oscillation under a periodic driving force. )

Equation of Motion

d?x b dx k Fo

2 T mar EX = Ecoswd,t

This is an inhomogeneous, second order, linear ODE with constant
coefficients. )

Applying Laplace Transform on Both Sides

s°X(s) - sx(07) - x'(07) + Z(SX(S) —x(07)) + ,I;X(s) = l,:;,)serswczj
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Laplace Transformed Equation

b k _FO S

(P+ s+ )X(s)= 2 +(s+ by + x(0)
m m m s? + w2, m

Suppose there are two distinct roots sy and s, for s2 + 25+ k£ =0,
then assuming zero state x(0~) = 0 and x’(0~) = 0, there are four
distinct first-order poles.
_h $

m (s + jwar)(S — jwar)(S — $1)(S — S2)

Fo E B C D
=— —  —— F +

m S+ jwgr S—jwgr S—S S—5

X(s)

X(s)

To perform Inverse Laplace Transform, we need to expand X(s) into a
sum of first order fractions.
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Driven Oscillations, Non-inertial FoRs Driven Oscillations

Partial Fraction Expansion, Inverse Laplace Transform

E= = !

s——jog  2As1S2+(s1+82)jwar—w)

s
(s—jwar)(5—51)(s—52)

B — S — 1
(stHjwar)(s=81)(s=82) [s—ju,, ~ 2(S1S2—(s1+82)jwar—w3,)
C — S S1
(s+wi)(s—%2) | g, = (SEaE)(s-52)
D= S SE . E—
(s24+w?,)(s—51) s=s T (S34w2)(s2—51)
F E B C D
X(s) = = [  +—— + + ]
m |S+Jwg S—Jwgr S— 54 S— S

Applying the Inverse Laplace Transform on both sides, for ¢ > 0,
FO —jw +jw, syt Sot
x(t) = e [Ee Jwarl 4 Bgtiwarl 1 CeSt +De2]

Be aware that Re{ss} = Re{sp} = — £ < 0, so Ces'! + De*! decays.
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Sinusoidal Steady-State Response

The other two terms are complex exponentials that are oscillating.

_ k —_b — I
Now s1sp = -, and sy +Sp = — 2,80 E = it and
_ 1 _oFk ;
B= EsET——at x(t) = 222|B| cos(wqrt + £B), so the amplitude of
the sinusoidal steady state response is A = Fo and

my/(k/m—wZ, )2+ (bwg, /m)?
the phase lag ¢ satisfies tan p = %. Therefore,
War—
x(t) = Acos(wgrt + ), Where the amplitude of the sinusoidal steady
state response is

Fo
myJ(k/m = w3 )2 + (bwe/m)?
and the phase lag (y takes value from 0 to —7) ¢ satisfies

A=

bwqr

tango = 7mw§r “k
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Driven Oscillations, Non-inertial FoRs Non Inertial FoR

@ Non Inertial FoR
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Driven Oscillations, Non-inertial FoRs Non Inertial FoR

Start with Position Vector

Einstein’s notation rafla = > ,_y  ; fafla.
T(t) =To(t) +7(1)

Differentiate both sides w.r.t. time,

dr —_ dro(t)  dr(t)y _  dr(

= V= = Vo

dt a Tt ot g
Now 0 — &1 ALY = P + farFrar = V7 4+ F
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Driven Oscillations, Non-inertial FoRs Non Inertial FoR
A

Derivative n,

A
De ny Q',-Hl/ & m@( ! /

d"ﬂ»'«g(C @e%weeul 'H‘{ “l's
O_J» \"OYL(Q,(T'OH %\A&{ ‘;\dl

|dh./| = dx|h.|sin a, so define vector dx as the vector along the
instantaneous axis of rotation, such that d is the angle that the tips of
Do (t), Do (t + dt) form over time dt. Then (w = d—t)
X A dny  dy
dny = dY x Ny d? %xn/_wxn
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Velocity and Acceleration in Non Inertial FoR

The upshot of all these calculations is that the motion of a particle
observed in one Inertial FOR OXYZ and one Non Inertial FoR
O'X'Y'Z" described by the relation 7(t) = To/(t) + r'(t) and that the
axes of O’ XY’ Z’ rotates with angular velocity @ in OXYZ around O
has velocity relation

V=Vo+V +(@wxr)
and acceleration relation
= = dw 5
a:aof—i—a’—|—2w><V’—i—d—txr’—i—wx(wxr’)

or, multiplying by mass m and noting that ma = F,

— dw — _ _
ma/:F—maO/—md—L:xr’—Zm(wx V) —mw x (w x r')

Pseudo Forces
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Driven Oscillations, Non-inertial FoRs Non Inertial FoR

Pseudo Forces

Term Name Cause

—mag d’Alembert “force” acceleration of O’

-m% xr Euler “force” angular acceleration of O’
—2mw x v/ Coriolis “force” motion in O’ and rotation of O’

—mw x (w x r')  Centrifugal “force” rotation of O’
On Slide 180, a comparison is made among solutions using Non
Inertial FOR and Lagrangian Mechanics.
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@ The Earth as a Frame of Reference
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Driven Oscillations, Non-inertial FoRs The Earth as a Frame of Reference

The Earth as a Frame of Reference

The Earth is a non-inertial frame of reference that performs orbital
motion and rotational motion.

ma =F — may — mw x (@ x r') — 2m(w x V')

The gravitational attraction of the sun F,, provides the mass m with
may, so for objects on the earth under gravity,

In general, the earth can be treated as an inertial frame of reference
with a good approximation, but when v’ is large (such as the velocity of
a missile), the Coriolis “force” becomes more significant.
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Driven Oscillations, Non-inertial F Discussion

@ Discussion
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Driven Oscillations, Non-inertial FoRs Discussion

Phase Lag of Driven Oscillation

x(t) = Acos(wgrt + ¥)
I L
| |

Figure: Relation between Phase Lag ¢ and Driving Frequency f. Notice how
x(t) is defined.
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Driven Oscillations, Non-inertial FoRs Discussion

Harmonic Oscillator in 2D: Lissajous Figures

The position coordinates of a 2D Harmonic Oscillator are given by

{x(t) = Acos(wxt — ¢x)
y(t) = Beos(wyt — ¢y)

A special case is wyx = wy, and ¢y = 0, in which case we can observe
the phase lag using Lissajous Figures.

Weisstein, Eric W. “Lissajous Curve.” From MathWorld—A Wolfram
Web Resource.
http://mathworld.wolfram.com/LissajousCurve.html
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Driven Oscillations, Non-inertial FoRs Discussion

yd i e ) \\\‘ 7 A
5‘ } / ) // | : //// /s
\\\ // ( //

N N B ~ \__ ///'

oy =7/2, /3, /4
N
\\
\‘ \
py =, 37/5, 2m.
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Driven Oscillations, Non-inertial FoRs Discussion

Consequences of Coriolis Force in Nature

http://csepl0.phys.utk.edu/astrlel/lect/earth/

coriolis.html The following diagram on the left illustrates the effect
of Coriolis forces in the Northern and Southern hemispheres.

Deflection to the Deflection to the left
right in the Northern in the Southern
Hemisphere Hemisphere

The Coriolis force deflects to the right in the Northern
hemisphere and to the left in the Southern hemisphere
when viewed along the line of motion.

the right.

C
Polar Easterlies

A A

Westerlies
N. E.Trade Winds

. - SgliTlud‘e\\l\ﬁnds

Westerlies ‘\ \

Qlﬂf:slellies 0
O

This produces the prevailing surface winds illustrated in the figure on
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Cyclones and anticyclones

The wind flow around high pressure (anticyclonic) systems is
clockwise in the Northern hemisphere and counterclockwise in the
Southern hemisphere. The corresponding flow around low pressure
(cyclonic) systems is counterclockwise in the Northern hemisphere
and clockwise in the Southern hemisphere.

Top Yiew:

N

N

Side Yiew:

Counterclockwise
Wind Flow

T
j’)"/
L.

/*('1

With Coriolis
Effects

Top View: )
T Wind Flow
l Hi i /—\
N Ve
Y Hi
Side View: ) U

Wlth Coriolis
ffects

Low pressure systems (left) and high pressure systems (right) in the Northern hemisphere
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Driven Oscillations, Non-inertial FoRs Discussion

Centrifugal force and Centripetal force

We CANNOT say that there is a centrifugal force and a centripetal
force acting upon a particle at the same time. When we state a
centrifugal force, we are describing the effect of a pseudo force in a
non-inertial FOR. When we state a centripetal force, we are describing
the effect of some concrete force in an inertial FoR.
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@ Exercises
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Driven Oscillations, Non-inertial FoRs Exercises

Particle Sliding down a fixed Hemisphere: Zero State

Question

A particle with mass m slides with 0 initial speed from the top of a fixed
frictionless hemisphere with radius R. Find the place where the
particle loses contact with the surface of the ball. What is its speed at
this instant?

Solution

The moment the mass loses contact with the surface of the ball, the
mass is just able to maintain a circular motion using the normal
component of gravity. Suppose it traverses ¢ from the top,

v =/29R(1 — cosf), and m"ﬁf = mg cos §. Therefore, § = arccos %,

and v = /2gR/3.
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Driven Oscillations, Non-inertial FoRs Exercises

Particle Sliding down a fixed Hemisphere

Question

A particle with mass m slides with 0 initial speed from the top of a fixed
frictionless hemisphere with radius R. Find the place where the
particle loses contact with the surface of the ball. What is its speed at
this instant?

Solution

The moment the mass loses contact with the surface of the ball, the
mass is just able to maintain a circular motion using the normal
component of gravity. Suppose it traverses ¢ from the top,

V= \/vg +2gR(1 — cos ), and m‘/—,q2 = mg cos §. Therefore,

6 = arccos [VSSL%]R} ,and v =/(v2 +2gR)/3.
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Angle the Surface of Liquid Forms

Question

A box is filled with a liquid and is placed on a horizontal surface. Find
the angle that the surface of the liquid forms with the horizontal surface
if we pull the box with acceleration a.

Solution

The surface of the liquid can only exert pressure on the liquid particles
at the surface of the liquid, so study the force along the surface. Either
an Inertial FoR or an Non-Inertial FOR works. a = arctan(a/g).
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Stay on a Rotating Plane

Question

A plane, inclined at an angle « to the horizontal, rotates with constant
angular speed w about a vertical axis (see the figure). Where on the
inclined plane should we place a particle, so that it remains at rest?

The plane is frictionless.

Solution

The plane can only support the particle in the normal direction, so

study the force along the plane. tana = “’ZTH, R= Ztana.

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 140/289



Driven Oscillations, Non-inertial FoRs Exercises

Bead on a Hoop

Question

A small bead can slide without friction on a circular hoop that is in a
vertical plane and has a radius R. Find points on the hoop, such that if
we place the bea}d there it will remain at rest. Acceleration due to

[He
ol

' \\)
gravity is g. K/ )
Solution
tan(p) = ‘”ZR%, S0 cos p = =, @ = arccos(g/(w?R))
v
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Driven Oscillations, Non-inertial FoRs Exercises

Foucault Pendulum on the Equator

Question

Will the oscillation plane of a Foucault pendulum, that is placed on the
equator, rotate?

Solution

No. The rotation of the oscillation plane is due to @ x v/. Now @ x v/
lies in the plane of oscillation.
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Driven Oscillations, Non-inertial FoRs Exercises

Mass inside a Rotating Pipe

Question

A particle with mass mis inside a pipe that rotates with constant
angular velocity w about an axis perpendicular to the pipe. The kinetic
coefficient of friction is equal to ux. Write down (do not solve!) the
equation of motion for this particle in the non-inertial frame of
reference of the rotating pipe.

There is no gravitational force in this problem.
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Driven Oscillations, Non-inertial FoRs Exercises

Mass inside a Rotating Pipe (Solution)

ma = F —mag — m%2 x r' —2m(w x V') — mw x (w x r’) There are
two concrete forces (normal force and friction) and two pseudo forces
(Coriolis “force” and Centrifugal “force”) in this non inertial FOR. Now
set O’ X’ along the pipe, O’Z’ along the axis of rotation. F = N + f.
Furthermore, there is no acceleration along O'Y’ and O'Z’. Now

w=why,and v/ = VA, s0w x V = wV'hy.

Furthermore, f = ff,/, so the balance in O'Y’ direction tells

N —2m(w x v') =0, i.e., N = 2mwVv’'f,,. Centrifugal force is

—mi X (why X riy) = —mw x wriyy, = —Mw?rhy x Ny = mw?riy.
As long as the mass is sliding (in which case it has to be sliding along
the positive direction of the O’ X’ axis), f = —2juxmwVv’fy, so the
motion of equation in this non inertial FoR is given by

a= (w2f — Zﬂkwvl)ﬁx/
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Work and Energy

e Work and Energy
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@ Work and Energy; Power
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Work

Definition
Elementary work 5 W done by F when particle moves from 7 to 7 + d7
SW :=Fodr

Total work wug when particle moves from A to B along curve Iy is
the line integral of the force field

Wap = F odr
Y] )

Line Integral Along Parametrized Curve (Discussed in Calculus Ill)

If we calculate the line integral using a concrete parametrization
v :1—C,weobtain [,. Fds = [, (F((t)),~'(t))dt

4
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Line Integral: Example

Example
Calculate

2
y _
d
?€J+ (3xy> °

where CT is the positively oriented curve

C:{(x,y)eR2:x2+y2:1,y>0}u

{(x,y)eRZ:yzo,—1§x§1}
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We choose these two parameterizations:

cos t t
71:[O,W]—>R3:t»—>(sint) 72:[1,1]—>R3:t'—><0)
0 0

y2dx + 3xydy
Cc+

4 sin® t —sint 1 0 1
_/o <<3costsin t) ’ < cost >>dt+/_1 <<O> ’ <O>>dt
:/ (—sin®t + 3 cos? tsin f)dt + 0

0
:/ —(—sin? t 4 3 cos? t)d(cos t)

0

:/ﬁ[(1 — cos® t) — 3 cos? t]d cos t
0
=—1-1+(-4/3)(-1-1)=2/3
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Kinetic Energy, Work-Kinetic Energy Theorem

Recall that 6w = F o d7, and exploiting v2 = Vo V,

ow = dr = _ _ 1 5
—t_Fod—t_Fov_maov_dEmv

so kinetic energy is defined as K = Y mv?

Work-Kinetic Energy Theorem

The work done by the net force on a particle is equal to the change in
the particle’s kinetic energy.

ow =dK

or, for finite increments,

w=AK )
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Power

Power characterizes how fast work is being done.
Definition
Instantaneous power

ow = _
— =Fov= P
dt ,
~~ instantaneous power
rate of work done
Definition
Average power
work done in the interval (¢,t+At)
w
7 = Pav
ot N
average power )
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Work and Energy Potential Force Fields

@ Potential Force Fields
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Work and Energy Potential Force Fields

Potential Force Fields

Definition
If there exists a scalar function u of x, y, z such that F = —Vu, then
the force field is called potential (conservative).

— (—9u _ou _ou
_vu B ( ox Xv.yvz’ 8}/ ’ 0z vavz)

X7y7z

Properties

Work done by F depends only on the final position and initial position.

w = U(Ffina) — U(Finitial)

Criteria

In a simply connected region, F is conservative if and only if rotF = 0. )
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Rotation (Curl) of F

= = o 90 0
rOtF_VXF_<aX,ay’aZ> X(FX,Fy7FZ)

0 0 0 0 0 0

The concept simply connected can be interpreted as being possible to

Simply Connected
retract a rubber band within the region to any point in the region. J
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Work and Energy Potential Energy

@ Potential Energy
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Potential Energy

To find the potential energy once we have proved that a force field is
conservative, we need to find a compatible v for all three integrations
[ Fxdx + Cx(y, z), [ Fydy + Cy(x, z), and [ F,dz + C,(x,y).

Example

Consider F = xf + yfy + zf, s0 [ Fxdx = 3x% + Cx(y, 2),
[ Fydy = 1y? + Cy(x, 2), [ Fzdz = }22 + C,(x, ), we decide
—u(x,y,z) = x2+%y?+ 322+ C
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Work and Energy Potential Energy

Conservation of Mechanical Energy in Potential Fields

Suppose F is the net force on a particle and F is conservative, then
dw = F o df = —dU. Now by the work-kinetic energy theorem,

dw =dK, sod(K + U) =0, K+ U = const. The constant is the
mechanical energy of the particle in this Potential Field.
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Work and Energy Non-conservative Forces

@ Non-conservative Forces
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Work and Energy Non-conservative Forces

Non-conservative Forces

If non-conservative forces present, then the work done by
non-conservative forces is equal to the change in the total mechanical
energy. In fact, wyp_cons = —Aujp, i.€., internal energy (other form of
energy). The sum of all these energies is constant. In other words,

AK+ AU+ AU =0

This is the law of conservation of total energy.
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Work and Energy Non-conservative Forces

Energy Diagrams

W = Ui —  sorie spoudn oteuhol
heage ; e’“’"f‘f‘; vF

-olu
F(x}ca ool E=k+u = court

ovéway; o e diredhog
— x o E(@CW_QD'AVP W
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Work and Energy Non-conservative Forces

1D Energy Diagram; Harmonic Approximation

(ongider 1D eudny die prat o
#s i'»(:) here | porhicte ,’ou;/
e N Fo%é*x-ﬁ}f el
Ve E—o P = s PN e
I e p-deeats [
tohal etapy A k-de [K[xy:ngu(r)]‘, / |
(;_{ Hee { ‘
oy bl I
porkcle w((“(,,\ X
| |
wity S s K
L = — {:.wl‘:'c[( ca.tty, f|
/ V 74
~ ~ ove here
Tl r vg o becowge here

forkicle  movs bock and fortt betueen Hie ur i gl e
poind) .

Harmonic approximation of oscillation in the vicinity of a stable
equilibrium xp:

U(x) = Ul) + 3U" () (x — o)

U"(xo)
m

, X(t) = x(0) + Acos(wot + ¢).

wo —
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Work and Energy Exercises

@ Exercises
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Pull a Cylinder out of Liquid

Question

A uniform cylinder of mass m, radius R, and height his floating
vertically in a liquid, so that it is half-immersed in the liquid. Find the
density of the liquid and minimum work needed to pull the cylinder
completely above the liquid’s surface.

Solution

mg = pgmR2h, so the density of the liquid p = -22-. The minimum
work is attained when we pull the cylinder slowly so that the kinetic
energy is always almost 0.

Consider the cylinder has been pulled up by x. The pulling force F is

F=mg— h§72/2xmg = Mg, $0 by definition,

h/2
w=Jy'* Fax = 272} (h/2)? = G
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Find Work

Question

Find work done by the force F1(x,y) = —xhx — yh, and by the force
Fa(x,y) = (2xy + y)hx + (X2 + 1)N, if the particle is being moved from
(—=1,0) to (0,1) along

@ the straight line connecting these points
@ the (shorter) arc of the circle x2 + y? = 1

© the axes of the Cartesian coordinate system: first from (—1,0) to
(0,0) along the x axis, then from (0, 0) to (0, 1) along the y axis.

Parametrization

Q@ 1:[0,1] = R% 4(t) =(t—1,1)

Q v :[r,7/2] — R?, ~(t) = (cost,sint)

Q t€[0,1], ()= (t-1,0), 72(t) = (0,1)

W.Peng (UM-SJTU JIy

4

VP160 Honors Physics | Recitation Class Summer 2018 164/289



Find Work (Solution)

Q w =fJ (5. () ) dt = fi 2t +1dt = —2 4 1]} =
= Jy (G () de = fg 32 — 3t + 2at = 3/2
@ w I (Csh. (i par=o
7r/2 (2smtcost+smt (—sint)>dt:

cos? t4-1 cost

/2
55'"(0 + Tsin(2t) + 4sm(3t‘)’7r =4

QO w (—x)dx + [ (~y)dy =1/2—-1/2=0
(2xy + y)dx‘y:0 + fo1 (x? + 1)dy’X:0 =
(r

Notice that F1(r) = —r, F is central force, so the work done is path
independent (proved in a later section).

=%
fo
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Visualized Force Field F; (Left) and F» (Right)
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Figure: Force Field Fy (Left) and F» (Right)
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Work and Energy Exercises
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Figure: 3D Vector Plot of F3 on the left, and 2D Vector Plot of F4 on the right.
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Work and Energy Exercises

Find Work

Question

Find the work the force F(r) =
being moved from (0,0,0) to (1,1, 1) along
@ straight line connecting these points
© the curve given in the parametric form:
x(t)=t,y(t) =12, z(t) = Jt(t + 1), where 0 < t < 1.

Solution

@ A parametrization is given by v : [0, 1] — R3,

(x2 — y,z,1) does on a particle that is

’7(2‘) = (ta ta t)!
w=[J(2—tt,1)o(1,1,1)dt =%
Q w:fg(tz—t2,;t(t+ ), 1) 0 (1,2t t + 1)dt=
144 143 1 2 9
s+ 3P+ 3P+ t\o
W.Peng (UM-SJTU JI)

VP160 Honors Physics | Recitation Class Summer 2018

168/289




Check whether Conservative

Question

Check whether the following force fields are conservative. Find the
corresponding potential energy for those that are.

Q@ F(r) = (—y?z -3y, —xz? + 4yz — 3x, —2xyz + 2y® + 1)
Q F(r) = (x* +y?,y? + 2%, 2)

Solution
Q@ VxF=

((—2xz-+4y)—(—2xz+4y), (—y?)—(-2y2), (- 2°-3) - (—2yz-3))
not conservative.

@ V x F=((0) - (22),(0) — (0),(0) — (2y)) not conservative.
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Work and Energy Exercises

Central Forces are Conservative

F(r) = f(r)h, is an expression given in the spherical coordinate. http
//hyperphysics.phy-astr.gsu.edu/hbase/curl.html, SO
Ay Ay

— r2 sé'ne rsin6
— 0
VxF= 5= b
f(r) 0

O Fo~|&
I
o

Otherwise, we need to convert to the Cartesian Coordinates and use

chain rule on f(r).

Pix Ay P,
— 9 9 9
V x F = ox oy 0z
Xf(\/X24y2+22)  yf(\/XP+y?+22)  zf(\/X2+y?+22)
\/x2+y2+22 \/x2+y2+z2 \/x2+y2+z2
Summer 2018 170/289
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Work and Energy Exercises

Central Forces are Conservative (Continued)

\/ﬁ 2y
<v E s zf(r X2+y2+22 +y-+z B zf(r)2 g
’ X X2+y2+22) (X2+y2+22)
/x2 1 y2 &+ 72
\/m Xty itz B yf(r)Z x2+y2+22
X2 _|_y2+22) (X2 +y2+22)
=0
where f,(r) = % , and the other three components can also be

shown as 0 in an identical manner.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR

e Lagrangian Mechanics, Momentum, Center-of-Mass FoR
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

@ Elements of Lagrangian Mechanics
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Generalized Coordinates and Velocities; Degrees of
Freedom

Definition
Generalized Coordinates are any coordinates describing position of a
particle (or a system of particles). Usually denoted by g4, g», .... Then

g; denote generalized velocities. )

Definition

Number of degrees of freedom of a particle (or a system of particles):
the minimum number of independent generalized coordinates needed
to uniquely describe position of a particle (or a system of particles).
Usually denoted by f.
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Elements of Lagrangian Mechanics
Example for Generalized Coordinates and DoF

A uniform disk with radius R is rolling without sliding along the x axis.
A uniform thin stick with length 2/ stays in contact with the disk without
sliding. One end of the stick is sliding along the x axis. When the
system is in motion, the disk and the stick stay in the same vertical
plane. Choose appropriate coordinates, write down the constraint
relations, and state the number of degree of freedom of this system.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Use (x1, y1) to express the position of the center of mass of the stick,
the angle 01 the stick forms with the x axis to express the inclination of
the stick, xo to express the position of the center of mass of the
disk,and s to express the distance from the tangential point of the stick
and the disk and the center of mass on the stick.

y1 = Isin 64
Xo — Rf> = 0 due to pure rolling = xo — Rt = C
Since there is no sliding between the stick and the disk,
xthy + y1hy + 01z x s(cos f1 Py + sin 64 ny)
= Xohiy — B0, x R(— sin 64 Ay + cos 64 ny)

SO X1 — SOy sinf1 = X» + Rbs cos by and y3 + 61 cos By = Rés sin b5
Geometrically, xo — x; + /cos#1 = | + s, so there are only three
independent generalized coordinates.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Expressing K Using Generalized Coordinates

A particle with mass m is moving on a plane. Use r and sin ¢ instead of
the polar coordinates r and ¢ to express the kinetic energy of this
particle.

X =rcosp, y = rsinp. Use rand g = sin ¢ as generalized
coordinates. x = rcosy = ry/1— @2, y = rsiny = rq, so
x=ry/1-qg2— L’qz,andy—qurrq

r2q2
1—q2)

K= %m()'(2 +y?) = %m('r2 +
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Lagrangian, Hamilton’s Action, Hamilton’s Principle

Definition

Lagrangian L .= K — U

For any trajectory g = q(t) = (q1(t), g2(1), - . ., g¢(t)) we can define
Hamilton’s Action

t .
S=8[@ = [ L@g bt

ta y

Hamilton’s Principle The real trajectory extremizes Hamilton’s action.
0S = 0. Similar to chain rule in ordinary differentiation, (Noticing that
variation of trajectory is independent of time)

f f
oL oL _.
(st sesa)

17z} . s . s
5 ["L@ane- [ oL@ana— [

ta ta ta
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Euler-Lagrange Equations

The f equations
d(oLy_oL g
dt \ag;) o0g

are called the Euler-Lagrange Equations
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Mass, Rope and Cylinder

A particle with mass mis tied to the edge of a fixed cylinder with radius
R via a weightless, non-elastic rope. Initially, the rope is winded on the
cylinder tightly where the particle is in contact with the cylinder. Now
we give the particle an initial radial velocity vy, and the particle is
constrained on a smooth horizontal surface. Find the relation of length
I of the rope that is not winded on the cylinder with time ¢.

As was promised on Slide 126, a comparison is made in this exercise.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Solution using a Non Inertial FoR

Recall that the acceleration in Cylindrical coordinates is given by
a=(p— p®)n, + (p$ + 2p)N, + 20,

and that the acceleration in Non-inertial FoR is given by

mad = F — map —m% X r'—2m(w x V') — mw x (w x ')
Consider the non inertial FoR: origin O’ is the intersection of straight
rope and winded rope, and O'Y” is along the straight rope. n, = ny,
n, = n,, and ny = h, The position of the particle in this non-inertial
FoR is y’ = —1. Geometrically, | = Ry, so I = Ry, and | = R.

Furthermore, ma = mi(—fy/), F = Thy,,
—mao = —m[(—R*)Ar + (RG)A,]
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

d* *_ A ~ _ A A _ A
—mGE x r' = —mgh; x (=Ihy) = mplng x y = —mplhy

—2m(@ x V') = —2m(ph; x (=I7,)) = —2mln,
—mw x (W x r') = —m(phz) x (9hy x (=1)hy) = —m(ohz) x (@If) =

—my?1f,, Now look at the x’ direction (7, and fiy):
mR? — mpl —2mpl =0 = P+1i=0

Using 7 = 4] (by chain rule), we get | + /14 = 0, id/ + Idl = 0, so Il = C.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Tofind /l = C at t = 0, we need to use | = R¢. Il = IRy = Rly. Now
V=Vo +V +@wxr).Att =0, V= vh, is perpendicular to 71/, and
wx = ph, x YAy, = p(—1)(—hy) is also perpendicular to .
Besides, V' is along h’y because our choice of the non-inertial FoR
ensures that the particle is always on the O’ Y’ axis. Furthermore, O
slides on the edge of the cylinder, so vV is also along 7/, so

vV +Vo =0,and v =w x r'. vy = . Furthermore, Vo = R¢h, by the
velocity in the polar coordinates, so v/ = —Rh,,. Therefore,

C=1 o™ Rvo. Il = Rvy, so Idl = Rvydt, 317 = Rvot, | = /2Rvol.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Solution Using Lagrangian Mechanics

Use the length / of the straight component of the rope as the
generalized coordinate. L = K — U = Jmv2. v consists of two
components: v,, (along the straight rope) and v; (perpendicular to the

rope). v, = Rp—1=0,and v, = Ip = . L = ImPPIP/R2.
oL_mPi doL_2mif  mPi
ol  R? dtyg] R R2
oL _ mP|
ol R?

so by the Euler Lagrange Equations, %f + %57 =0,”+1i=0.

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 184/289



Lagrangian Mechanics, Momentum, Center-of-Mass FoR Momentum

@ Momentum

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 185/289



Lagrangian Mechanics, Momentum, Center-of-Mass FoR Momentum

Momentum

Definition

Momentum P = mv B
Newton’s second law in terms of linear momentum: F = %

Conservation of Momentum

If the sum of all external forces on the system is equal to zero, then the
total momentum of the system is constant.

The total momentum of a system can only be changed by external
forces. J
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Collisions

Two objects interact (directly or non-directly) over a finite time interval.

Elastic

Internal forces involved are potential, hence mechanical energy is
conserved. Approach speed is equal to departure speed.

Inelastic

Internal forces are non-conservative, so mechanical energy is not
conserved. Departure speed is zero.

In both cases, the total momentum is conserved.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Momentum

Center of Mass

Discrete distributions of mass 7¢m = iy miT; SR

ZI 1ml
Continuous distributions of mass
X — 12 _nydmz ~ Jqzdm
om = - dm Yem = odm Zem = [ am
The total momentum of the system is equal to the momentum of a

hypothetical particle of mass M moving with velocity V¢m

N
MVem = P =P
i=1

This property of the center of mass motivates a new Frame of
Reference: the center-of-mass Frame of Reference.

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 188/289



Lagrangian Mechanics, Momentum, Center-of-Mass FoR Momentum

Rocket Propulsion

+ t+tole (mmaobile Fop

IR - ol
[ m > P mrdm o vt dw 7}‘*“
w -

(retahve 4o vockef )
dm const.)

L’_u (rekahive +o iy b\zw‘»c of vefernce (U, dm

By the conservation of momentum in the immobile frame of reference,
mv = (m+dm)(v +dv) —dm(v — u)
mv =mv + vdm+ mdv — vdm + udm

0=mdv+udm — dv—_Ud?m — V(t)_V(O):—Uln <Z;7(t)>
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Center-of-Mass FoR

@ Center-of-Mass FoR
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Center-of-Mass FoR

Center-of-Mass FoR

It is often convenient to consider impacts in a translational FOR whose
origin is attached to the center of mass of the system. The kinetic
energy of the system can be decomposed into the translational kinetic
energy of the center of mass and the kinetic energy of the mass in the
system with respect to the center of mass.

Proof.

N1 2 N 1.~ o \2_
K=> 2y amivi =3 i 3Mi(Ve + Vi) =

N 1,2 N 1,2 N o
Dlim1 2MiVe + Ximt 2MiVie + Ximy MiVeo Ve =

N N
1 5 1 P _
EMVC + E Em,'v,-yc+ Ve O E miVic O
~—— =1 i=1
K CoM
Kw.r.t. CoM Zero )
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Exercises

@ Exercises
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Exercises

Particle down a Wedge

Question

A point particle of mass m moves without friction down a wedge of
mass M that is free to slide on a frictionless table. The wedge is
inclinded at the angle « to the horizontal. How many degrees of
freedom does the particle have here? Identify the generalized
coordinates here.

Solution

We need two independent generalized coordinates:
@ Position of the tip of the edge x
@ Height of the particle h

Now let’s solve this problem using Lagrangian Mechanics.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Exercises

The Power of Lagrangian’s (over Newton’s) Mechanics

K = 3MX2 + Im((X + h/tan a)? + (h)?)
U = mgh

L=K— U= IMs®+Im((x + h/tana)? + H?) — mgh

oL — _mg
% = Mx + mx + mh/ tan o
g—-L = mh+ mx/ tan a + mh/ tan? o

ence using the Euler-Lagrangian Equations,

(M+m)x + 2 — 0

tan o

" 3 k¢ 5 B
mh + 2~ 4 mh/ tan a+mg=0
It is then easy to solve for X and h:
Lo gtan? o
h= wim—1—tanZa
X = mg cos asin «

T M+msin®a
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Exercises

Simple Pendulum on a Rim

A simple pendulum of length b and mass m moves on a massless rim
of radius a rotating with constant angular velocity w. How many
degrees of freedom do we have here? Find the Lagrangian.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Exercises

Simple Pendulum on a Rim

There is only one degree of freedom 6 for this particle on the end of
the simple pendulum.

U = mg(asin(wt) — bcos )

K= %m[(éb)z — 20bwasin(wt — 0) + (wa)?]

Now L = K — U. Here the constraint is more complicated and requires
some more sophisticated knowledge to obtain the EoM.
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Particle on the Surface of a Sphere

Question

Find the equations of motion of a particle of mass m constrained to
move on the surface of a sphere, acted upon a conservative force
F = Fyny, with Fy a constant.

Solution

On this particular sphere, we are able to define potential for this force F
(similar to the proof of central force). Now in the spherical coordinates,
vU=9%n 4+ 19Up, + ,s]ngawng,, so U= —r [ Fodf = —rFof + C.
Furthermore, K = ém[(re) + (rsin 6¢)?], so the Lagrangian

L=K-U= %m[(ré)z + (rsin 0)%] + rFof + C
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Exercises

For the general coordinate ¢,

g; =0 g: = m(rsin0p)rsin @ = mr?sin? 0y
d

dt (gé> = mr?[2¢sin 6 cos 00 + sin® )] =0

For the general coordinate 6,

oL _r 9L g d(ﬂ):mrzé

96~ "° 20 B dt \ 0¢
o) F
mrzé—rFO:O 9:70
mr
The conclusion is that ¢ = 0 and 6 satisfies 6 = %
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Double Pendulum

The generalized coordinates are 61 and 6».

U= —-miglicosby — mgg(/g cosbs + I C0591), K= %m1 V12 + %mgvzz
where vy = Iy, V3 = V3 _+ V3,
Vo= /1 91 COS(91 + g — 92), and
Vo, = I 91 sin(61 + g —062) + /292.
Hence L = K — U, and the
calculations can be done.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Exercises

Block Mass Oscillation After Impact with Suspended
Scale

Question

A block with mass my falls down from height h on a horizontal plane
with mass m» suspended on a spring with spring constant k, and
remains on the plane. Find the amplitude of resulting oscillations.

Solution
Upon the non elastic impact, the speed v, of the two masses become

the speed of their center of mass right before impact. vy = mei’;'g‘ .B
aware that when the two masses come together, the equilibrium
position changes. Initial displacement from equilibrium xo = 1<, so

the amplitude of resulting oscillation is
2
2 2 2ghm +
A= (2 = (7 (Y
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Find the Center of Mass

Question

Find the center of mass of a non-uniform cylinder with the z axis as the

axis of symmetry and p(r) = az? )

Solution

(@ (aB)rRPdz

Due to symmetry, xcom = Ycom = 0. Now zgoy = ez Fedz

=3H

4
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Angular Momentum, Rigid Body Dynamics

o Angular Momentum, Rigid Body Dynamics
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Angular Momentum, Rigid Body Dynamics Particle: Angular Momentum, Torque, and Moment of Inertia

@ Particle: Angular Momentum, Torque, and Moment of Inertia
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Angular Momentum, Rigid Body Dynamics Particle: Angular Momentum, Torque, and Moment of Inertia

Angular Momentum

For a single particle, the angular momentum is defined as L =7 x P.
Torque isdefinedas7=rx F.Nowr=Vv,P=mv,dr x P=0, so

dL

i (1)

T =

Now consider central force F(7) = f(r)r. They are conservative, as is
proved on Slide 170. They also produce zero torque, because

7 =T x F = 0. These two characteristics give rise to the two
conservation properties of central force

@ Mechanical Energy is preserved
@ Angular Momentum is preserved

Aerial Velocity 7 = %(? X V) is equivalent to angular momentum for
constant-mass heavenly bodies.

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 204/289



Particle: Angular Momentum, Torque, and Moment of Inertia
Momentum of Inertia for a Particle About a Point

The angular momentum and angular velocity has the following relation:
L=z

Here I, moment of inertia, is a one-by-one tensor quantity (a scalar).
I = mr?. If | = const (particle in circular motion), then 7 = Iz

For a system of particles, the total angular momentum can only be
changed by a non-zero external torque.

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 205/289



Angular Momentum, Rigid Body Dynamics Angular Momentum of a Rigid Body

@ Angular Momentum of a Rigid Body
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Rigid Body
Definition

A body is called rigid if |7 — r’| = const for any two points on the body. J

Momentum in Lab FoR

P = Mvo + Mz X Ty
N e’

translational motion  rotational motion
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Rigid Body
Definition

A body is called rigid if |7 — r’| = const for any two points on the body. J

Momentum in Lab FoR

P = Mvo + Mz X Ty
N e’

N——
translational motion  rotational motion
Angular momentum about the origin of Lab FOR L = 3-N . m% x v;

N
L= Mro x Vor + Mror X (@ X Tepy) + Mfgny X Vor + Z m,-r,.’ x (W x r,’)
i=1

where in the FoR associated with the rigid body, 7,’ is the position
vector of point mass 7,y is the position vector of the center of mass.
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Rigid Body with Pure Rotation

If we choose v = 0, O at the center of mass of the body, and

O = O/, then using the back-cab identity of vectors (i.e.,

ax (bx¢)=b(@aoc)—c(ao b)), The angular momentum with pure
rotation L = Y"1, mir! x (@ x r]) in the CoM FoR is rewritten as

N
L= mwr? —ri(@or])]
i=1
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Rigid Body with Pure Rotation

If we choose v = 0, O at the center of mass of the body, and

O = O/, then using the back-cab identity of vectors (i.e.,

ax (bx¢)=b(@aoc)—c(ao b)), The angular momentum with pure
rotation L = Y"1, mir! x (@ x r]) in the CoM FoR is rewritten as

N
L= mwr? —ri(@or])]
i=1

Decomposing the linear terms in the CoM FoR of the rigid body (i.e,
W =Wy + Wy + Wz, I[ =l + Gy +Tzr), for o/ = x', y', 2/

N
L, = IN DT m; | w /r-'2 — Tio wpgrtigr
\ y Hey i o'l I B!l

Next: Try to find / that L = I, where [ is a tensor quantity.
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Angular Momentum, Rigid Body Dynamics Angular Momentum of a Rigid Body
Ly = Z,’L m (wafr,.’z — Ty (ZB’ wﬁfr,-ﬁf)) To sum over /', rewrite
1 o=p
0 o#p

so that La’ = Z:\L1 m; (Z/ﬁ/ wgr ”,-’25a/,3/ — Lo (Z@; wegr I’,'/g/))

)

wa/ri’z = Zwﬁ/rilzéa/ﬁ’((so/ﬁ’ =
B
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Angular Momentum, Rigid Body Dynamics Angular Momentum of a Rigid Body

o =Ny m (wafffz — lio (ZB, wgzr,-gf)) To sum over 3, rewrite
1 o =p
= NP oom =10 0 )

sothat L, = SN, m; (ZB/ w2805 — ligy (ZB, wﬁ/ri@)) Taking out
the sum iterator 5’ (both > and wg),

L, —Z Zm, r (5 o' B —r,a/r,bu) wgr

g Li=1
LO/ g Z /a/B/wB/
BIZX/J’/J/
The 3 x 3 matrix /.4 is called the tensor of the moment of inertia

2
lorpr = Zm/ oap = lalip )
N—— N——
Diagonal Terms  Off-Diagonal Terms

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 209/289



Angular Momentum, Rigid Body Dynamics Tensor of Inertia

@ Tensor of Inertia
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Angular Momentum, Rigid Body Dynamics Tensor of Inertia

Tensor of Inertia [lus] 5y »

Note that /g = lg/o/, SO this tensor quantity is symmetric. In the
Center-of-Mass Frame of Reference,

Lx’ /x’x’ Ix’y’ /x’z’ Wy
Lyl =ty dyyr pzr| wyr
Lz’ lz’ x/ lz’ 1% /z’ z/ Wz

where [/, is explicitly given as

al?BI:X/Ly/?zl

N 2 2 N N

> it n;l\;'(y{ +2;%) ; > it ”;ixl}’/2 - Z/I'V:1 mix'z’
- ZIAT1 miy'x" iy ’%’(X; +2%) " D i ”270’/2,2
= D=y MiZ'x’ —imamzly’ Ly mi(xiT + )

In case of a continuous mass distribution, the summations are
replaced by integrations.
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Angular Momentum, Rigid Body Dynamics Tensor of Inertia

Physical Significance of Diagonal Terms and Off
Diagonal Terms

It is instructive to assume you have an axis along O’ X’ so that the rigid

Wy
body is rotating along it at w = ( 0
0
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Angular Momentum, Rigid Body Dynamics Tensor of Inertia

Physical Significance of Diagonal Terms and Off
Diagonal Terms

It is instructive to assume you have an axis along O’ X’ so that the rigid
Wy
body is rotating alongitateo = | 0 |.The angular momentum is
0

B IX/X/WX’
L = Iy’x’wx’

lz/X/wX/

Notice that the y’ component and the z’ component are rotating with

the rigid body, whereas x’ is in a fixed direction. The axis is providing
torque to change the direction of the angular momentum, causing the
axis to wear out.
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Angular Momentum, Rigid Body Dynamics Principal Axes Transformation

@ Principal Axes Transformation
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Angular Momentum, Rigid Body Dynamics Principal Axes Transformation

The Spectral Theorem
Reference: Page 222 Vv286 FA2015. Eigenvalue )\ and eigenvector u
satisfies: Au = Au.

Spectral Theorem

Let A= A* € Mat(n x n; R) be a self-adjoint matrix. Then there exists
an orthonormal basis of R” consisting of eigenvectors of A.

Corollary

Every self-adjoint matrix A is diagonalizable. Furthermore, if
(v1,...,Vn)is an orthonormal basis of eigenvectors and

U= (v1,...,Vvp),then U~" = U*. Hence, if A is self-adjoint, there
exists an orthogonal matrix U such that D = U*AU is the
diagonalization of A.

Notice that our tensor of inertia / is real and symmetric, so it is
self-adjoint. We can always diagonalize it.
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Principal Axes

Definition
For any tensor of inertia we can find three axes x’, y’, and z’ such that
[/;/ 5] only has diagonal terms. Then we have L;, = I ;w;,, where

L || w. Such axes are called principal axes of the tensor of inertia. The

corresponding values of /-, -, are called principal moments of inertia.
v

General Steps

@ Find the Center of Mass of the rigid body
@ Set up a Cartesian Coordinate whose origin is at the CoM
© Find the tensor of inertia

© Diagonalize the tensor of inertia (find the eigenvalues and
eigenvectors)

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 215/289



Angular Momentum, Rigid Body Dynamics Principal Axes Transformation

Eigenvalues and Eigenvectors

Eigenvalues )\; and eigenvalues u; for matrix I come in pairs: 1u; = Aju;.

Theorem
Eigenvectors u; define directions of principal axes, and in the new

coordinate system of principal axes (unit vectors are i, U», and Us),
tensor of inertia is diagonal, and the eigenvalues line up on the main

AM 0 O
diagonal (ie., D= {0 X» 0]).
0 0 X3

To find these eigenvalues, we need to solve
(I-A1)u;=0 (2)

i.e., Ui € ker(I — A1)
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Angular Momentum, Rigid Body Dynamics Principal Axes Transformation

Finding Eigenvalues

By Fredhom Alternative 1.7.21 on Slide 233 of Vv 285 SU 2016, for our
matrix A =1— A1, either
@ detA = 0, in which case Ax = 0 has a non-zero solution x € kerA,
or
@ detA # 0, then Ax = b has a unique solution x = A~'b for any
b e R".
Since we need to find eigenvalues, we need the first case, i.e., we
need to find such A that det(I — A1) =0
Then we plug back each \; into Egn. 2 to find its corresponding
eigenvector.
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Angular Momentum, Rigid Body Dynamics Principal Axes Transformation

Finding Eigenvalues

By Fredhom Alternative 1.7.21 on Slide 233 of Vv 285 SU 2016, for our
matrix A =1— A1, either
@ detA = 0, in which case Ax = 0 has a non-zero solution x € kerA,
or
@ detA # 0, then Ax = b has a unique solution x = A~'b for any
beR".
Since we need to find eigenvalues, we need the first case, i.e., we
need to find such A that det(I — A1) =0
Then we plug back each \; into Egn. 2 to find its corresponding
eigenvector.If at least two principal moments are equal, the rigid body
is called a symmetrical top; If all three principal moments are equal, it
is called a spherical top.

Theorem
Kinetic Energy of a Rigid Body is given by
K = %Za’,ﬁ/ /ag/g/wa/wfg/ = % (E, @}
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Angular Momentum, Rigid Body Dynamics Rigid Body: Rotation Around Principal Axes

@ Rigid Body: Rotation Around Principal Axes
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Angular Momentum, Rigid Body Dynamics Rigid Body: Rotation Around Principal Axes

Moment of Inertia and Angular Momentum

After choosing the principal axes x, y, z, we omit the ’.

N N
b= > mE+28) by =S mi(xP +22), bz = Zm, P+ yF)
i=1

i=1

Given w = (0,0,w;) (no translational motion),

L = lw,and K = %lzzw';‘
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Angular Momentum, Rigid Body Dynamics Rotation of the Rigid Body Around a Fixed Axis

@ Rotation of the Rigid Body Around a Fixed Axis
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Angular Momentum, Rigid Body Dynamics Rotation of the Rigid Body Around a Fixed Axis

Easier Configuration: Fixed Axis

For rotation of the rigid body around a fixed axis, we are only
interested in the torque and angular momentum along the axis. The
moment of inertia is a scalar defined by / = [, rdm because now the
angular momentum has a fixed direction, all elementary mass are in
planar motion, the speed given by wr, , and angular momentum

L= [qwrddm =w [, r?dm, where r, is the distance from the
elementary mass to the axis.

Steiner's Theorem (Parallel Axis Theorem)

Suppose A is an axis through the center of mass, and A’ is an axis
parallel to A and b from A.

Iy = s + mb?

Useful because we can traverse the rigid body more easily in a
symmetric coordinate system (e.g., a torus).

y
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Angular Momentum, Rigid Body Dynamics Rotation of the Rigid Body Around a Fixed Axis

2nd Law of Dynamics, Kinetic Energy

For rotation @ = (0,0,w), L = L,w. But & = 79, s0

dw
lzzi — 7_ext

dt

CAUTION: ‘(% = 7% s generally valid, but /,,% = 78 is valid only
when the rigid body is given a fixed axis z, so that @ does not change
its orientation.
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Angular Momentum, Rigid Body Dynamics Rotation of the Rigid Body Around a Fixed Axis

Work and Power in Rotational Motion (Fixed Axis)

In a rotational motion, Fap || d7, so

02
(5W — Tzd9 w = / Tzdg
01

Note: Axis and radial components do no work. Nor do they contribute
to torque.
Rotational Analogue of work-kinetic energy theorem

ow=d (;/wg) =dKt W= Ko — K;

Power
P = Tz&)z
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Angular Momentum, Rigid Body Dynamics Combined Translational and Rotational Motion

@ Combined Translational and Rotational Motion
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Angular Momentum, Rigid Body Dynamics Combined Translational and Rotational Motion

Combined Translational and Rotational Motion

Kinetic Energy

For a rigid body in combined translational and rotational motion at
angular velocity w whose center of mass is in a translational motion
Vem

1

1

Compare with the kinetic energy in Center-of-Mass FoR given on
Slide 191.

Angular Momentum Theorem
Tz — IEZ

still holds true if axis
@ passes through center of mass
@ axis does not change orientation )
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Angular Momentum, Rigid Body Dynamics Exercises

@ Exercises
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Rigid Body Hitting a Wall, Inducing a Rotation

Two light rigid rods AB and BC one instant, ball C hit the wall,
are glued together at B. AB and and right after impact, ball C has
BC form angle a € (0,7/2), a zero velocity component

|BC| = I,and |AB| = Icosa. One  perpendicular to the wall. Ball C
small ball with mass m is fixed at  does not stick to the wall. If after
each of A, B, and C. The balls ball C hitting the wall, ball B hits
and the rods form a rigid body. the wall before ball A does, what
The entire system is placed ona  condition does « satisfy?
smooth horizontal desk, and there

is a fixed smooth vertical wall on = @ueeg—'—--- o
the desk. Initially, AB is e
perpendicular to the wall, and the

system is in a translational motion c
at v along AB toward the wall. At
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Rigid Body Hitting a Wall, Inducing a Rotation (Sol.)

Suppose upon impact, the wall provides impulse J to the system at C.
The effect of this impulse is to reduce the velocity of the Center of
Mass of the system and to provide an angular momentum around the
center of mass.

3mvy —J =3my, J-(glsin a) =lw (3)

In order that B hits the wall before A does, consider the situation where
they hit the wall at the same time, i.e., the system has rotated /2, and
the center of mass has traveled /cos o — %Isin «. B hitting earlier
means the time it would take the system to rotate 7 /2 is longer than
the time it would take the center of mass to travel / cos o — %/sin a,
should there be no secondary impact (which is possible if J is large).

(4)

17 T
|cosa — §/sma _z
Ve w
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Rigid Body Hitting a Wall, Inducing a Rotation (Sol.)

Now we do not know J, but there is a constraint on it: the velocity of C
after impact, which is the sum of the velocity of the center of mass and
the velocity of C in the center of mass FoR.

Ve — w(glsin a)=0

The moment of inertia is contributed by the three balls. Ball A
contributes m {(%/sin a)2 + (I cos a)ﬂ, Ball C contributes

m [(%/sin a)? + (I cos a)z}, and Ball B contributes m (1/sin )

2 4
| = m/2(§ + 5 COS2 OL)
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Rigid Body Hitting a Wall, Inducing a Rotation (Sol.)

it then follows that (plugging I into Equation 3)
3sina(vy — Vo) = wl(1 + 3cos? )

2v05|n « andw 3Vvg sin

SO Ve = 4—sin® o (4—sin® @)/

Plugging these into Equation 4,

(m+1)sina > 3cosa
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Principal Axes Transformation

Question
A square with side length a lies in giving directions of the
plane z = 0 and has masses m principal axes.

and ms in its vertices. J
@ Find the components of the
tensor of inertia with respect

to axes x, y, z.

@ Diagonalize this tensor,

Tensor of Inertia

2(ma +m)(§)? 2(my — mp)(3)? 0
= |2(my —mp)(5)? 2(mz+ my)(5)? 0
0 0 2(my + mp)% )
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Angular Momentum, Rigid Body Dynamics Exercises

The characteristic equation is

2(mp+m)(§)7 — A 2(my — mp)(5)? 0
det | 2(m —mg)(3)?  2(mz+m)(5)° — A 0 =0
0 0 2(m1 + m2)§ Y

The eigenvalues are

a
A =2(my + mg)? Ao = m2a2 Az = m1a2

and their corresponding unit eigenvectors are

1 a1
: % 2
uu=10 U = — /3 Uz = VA
1 0 0

The tensor of inertia in the principal axes FoR is given by the
eigenvalues on the diagonal:

D = diag(\1, X2, A3)
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Angular Momentum, Rigid Body Dynamics Exercises

Degenerate Eigenvalues

Albegraic Multiplicity

Then the multiplicity of the zero in p(A) = 0 is called the algebraic

multiplicity of A.

y

2m

(-a,a,0)

(2a,-2a,0)
m

Using symmetry, the three unit
eigenvectors are

W.Peng (UM-SJTU JIy

VP160 Honors Physics | Recitation Class

a1 _1
o) (7 %
0], 7 | and 7
1 0 0
The tensor of inertia is

6ma® 6ma? 0
|= |6ma® 6ma® 0

0 0 12ma®

Characteristic Equation
p(\) = (6ma® — \)?(12ma? — \) —
(12ma? — \)(6ma?)? = 0
A\ =12ma?, o = 12ma?, A3 =0

Summer 2018 233/289



Angular Momentum, Rigid Body Dynamics Exercises

Eigenspace and Geometric Multiplicity

Geometric Multiplicity

The subspace V) = {x € V : Ax = Ax} is called the eigenspace for
eigenvalue \. The dimension dim V), is called the geometric multiplicity
of \.

Notice that with A = 12ma® we get uy — u, = 0 and no control over u;.

Remarks
Since we can always diagonalize the tensor of inertia, we anticipate
the algebraic multiplicity of each eigenvalue to be equal to its
geometric multiplicity, in which case we choose orthonormal vectors
that span the eigenspace as the direction of our principal axes.

1

0\ vz
With A = 12ma? you can get two eigenvectors: | 0 |, %
1 0
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Cylinder down a Movable Wedge

Question

A wedge with mass M and angle « rests on a frictionless horizontal
surface. A cylinder with mass m rolls down the wedge without slipping.
Find the acceleration of the wedge.

&
B> fa
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Cylinder down a Movable Wedge (sol.)

Solution

The cylinder: No slipping constraint: ¢ = &2

Rotation around the center of mass: fyR = (3 mR?)

Translational force along the surface: may, cos a + mgsin o — fyy = man
Translational force perpendicular to the surface:

Ny + may, sin e = mg cos «

Notice we don’t have fyy = Ny, in these rolling without slipping
problems. Instead, we use the no slipping constraint.
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Cylinder down a Movable Wedge (sol. contd.)

Then we analyze the wedge in the FoR attached to the ground.
Horizontal forces: May = Ny sin o — fyy cos «

We get fyy = 3 map, from the first two equations,

Ny = mg cos o — mayy sin o from the fourth equation, and

may cos o + mgsin o = gmam from the third equation. Finally, plugging
in everything into the last equation, we get

. : 1 2 ,
May = (mg cosa — may sin a) sina — Em(§(a"” cos a + gsin a)) cos o
(M + msin? a + %mcos2 a)ay = %mgsin acos a,
mg sin 2«
M-+msin? a+3mcos? a)

aM:3(
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Ball hitting a Fixed-Axis Box

Question
A ball with mass m, moving within the horizontal
Y — direction with speed v, hits the upper edge of a
) rectangular box with dimensions / x / x 2/. Assuming

that the box can rotate about a fixed axis containing
the edge AA’, and the collision of the ball with the
box is elastic (and the ball moves back in the horizontal direction), find

@ angular velocity of the box starts moving at the moment of collision
@ equation of motion of the box after the collision
© the minimum speed of the ball needed to put the box in the upright
position
The angular momentum of the box around axis AA’ is I44, and the
mass of the box is M (uniform distribution).
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Angular Momentum, Rigid Body Dynamics Exercises

Conservation of angular momentum around AA’
Iapw — mvil = myyl
Conservation of mechanical energy
1 2

1 1
EIAA/WZ + émv12 = EmVO

Get a quadratic equation about w:

IE\A’ 2 2/AA/mVo/

mR! T @+ C=0

Mathematically, sum of the two roots of w for aw? + bw + ¢ = 0 is equal
to —‘—a’. Since the two solutions of w corresponds to the angular velocity
of the box before and after the collision, and we already know that
before the collision, w = 0, it follows that after the collisiion,

(law +

2Vo
w=
|4 o

ml
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Angular Momentum, Rigid Body Dynamics Exercises

After the collision, the box is under the torque of gravity. Torque
changes the angular momentum following Eqgn. 1, so

Laprcv + Mgl\g5 cosax =0

After the collision, the mechanical energy of the box is conserved.

Initial: Ky = X lan <2

e

2
> Maximum height: K> = 0 (when the
ml

center of mass is above AA’). Increased potential energy:
AU = —Mg} + Mg¥2 1. Therefore, using AK + AU = 0,

2
_;IAA’< 2V ) +Mg\F52_1/:O

Laar
I+ “ml’

The minimal required speed vy = + AA \/m
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Angular Momentum, Rigid Body Dynamics Exercises

Simple (maybe not) Calculations

Problem
Using symmetry, find the principal axes and corresponding principal
moments of inertia for:

@ thin disk

@ thin-walled hollow sphere

© torus with mean radius R and the radius of cross-section r
assuming total mass is m and is distributed uniformly across the
body.
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Thin Disk, Axes in the Disk

Thin disk has two axes contained in the disk through the center and a
perpendicular axis through the center.
Aerial mass density o = —Z. For the two axes contained in the disk,

=2 [f 2R = x2ox?dx
= 40 [ VRZ = x2x2 dx

= 40Rf0R /1= ,’%xz dx

Ix
=40R f02 cos OR? sin® OR cos 0 df

1x
= oR* [2" sin?(20) d¢
1, 1n
=oR* [2" 5 d0 — oR* [#"  cos(46)dd
=oR*(7) -0
= 1mR?
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Thin Disk, Perpendicular Axis

For the perpendicular axis,

R
:0'/ 2rpdp
0
1 i
—0 (2
04( m)p .
Anrt
=0 27T
1 2
_EmR
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Angular Momentum, Rigid Body Dynamics Exercises

Thin-walled hollow sphere has three mutually perpendicular axes

through the center. Aerial mass density o = ;5.

= 2/2 o27(Rsin9)°Rd6
0

-

:47TUR4/2 sin O sin 0 dO
0

T

:47701:1’4/ (1 — cos? 0)(— d cos 0)
0

1 1
3™ T,
/ —dc059+/ cos 9dcos€]
0 0

= 4roR* [—(o —1)+ ;(o — 1)}

nl=

— 4rcR*

= 47TUF1’4(§) = ngy’z
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Angular Momentum, Rigid Body Dynamics Exercises

Torus has two axes crossing the torus and the center and one
perpendicular axis through the center. We need to calculate its volume
first. The coordinate system is shown in Figure 10.

R

Figure: Coordinates for torus on Slide 241.
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Angular Momentum, Rigid Body Dynamics Exercises

Torus Geometry

2 r 2m 2
V= [/ dgp]/ [ R/de+/ /2c050d0] dl
0 0 0 0

~ (2n) /O 1RI2) dl

= (47%)R %/2

r

0
= 4772R(%)r2
= (27R)(nr?)

. m . m
P=V = @rR)(xr?)
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Angular Momentum, Rigid Body Dynamics Exercises

Torus, Perpendicular Axis
For the perpendicular axis,

dl = p(R + I cos 0)31d/ df dp

2 r 27
/—,0/ dy /[ R31d6 + ...
0 0 0

+ /027r 3R212 cosfdf + /027r 3R cos® 0 do + /027r I* cos® 9 d6] d/
_ p(27) /o ‘[2n BP0+ 3P + 0] d/

= p(2m)[7R%r? + %Rwr“]

=m [RZ + 2r2}
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Angular Momentum, Rigid Body Dynamics Exercises

For the axis through the torus,
d? = (Isin0)2 + [(R + I cos 8) sin ]2
dl = p(R + I cos 0)/[(Isin 0)? + [(R + I cos §) sin p]?] d/ df dy

r pr2m 2w
I= / / / p(R + Icos0)I[(Isin8)? + [(R + I cos §) sin ¢]?] dp df d!
oJo Jo
r r2mw
:/ / p(R + Icos0)I[/? sin? 6(2r) + (R + I cos 0)°x] d6
0 JO

_ / (R [P(2r)(r) + wR2I(27) + 27 RR(0) + P(x)] + ...
0
+ (ph[P(27)(0 )+7TR2/c059(0) —|—27rH/2( ) 4 w3(0)] d/

= (pR)(2m*)(4r )+27T2/?2( r )+7T( )]+p[2772/? r*]

1 55
m[zFx’ +8r]

—_

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 248/289



Equilibrium and Elasticity, Fluid Mechanics, Gravitation

e Equilibrium and Elasticity, Fluid Mechanics, Gravitation
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Conditions for Equilibrium

@ Conditions for Equilibrium
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Conditions for Equilibrium

Conditions for Equilibrium

The two conditions required for the rigid body to be in equilibrium:

@ Net external force is equal to zero (translational motion of the
center of mass):
FeXt =0

©@ Net external torque is equal to zero (rotational motion around the

center of mass):
7_eXl‘ -0
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation

R=N+f

11.70 <<+ One end of a uniform
meter stick is placed against a
vertical wall (Fig. P11.70). The
other end is held by a light-
weight cord that makes an
angle 6 with the stick. The
coefficient of static friction
between the end of the meter
stick and the wall is 0.40.
(a) What is the maximum value
the angle 6 can have if the stick
is to remain in equilibrium? (b) Let the angle 6 be 15°. A block of
the same weight as the meter stick is suspended from the stick, as
shown, at a distance x from the wall. What is the minimum value
of x for which the stick will remain in equilibrium? (c) When
6 = 15°, how large must the coefficient of static friction be so that
the block can be attached 10 cm from the left end of the stick with-
out causing it to slip?

Figure P11.70

I

W.Peng (UM-SJTU Jly

VP160 Honors Physics | Recitation Class

Conditions for Equilibrium

When f = uN, the direction of the
total reactive force R is governed
by the coefficient of friction p. The
balance of gravity, tension, and
reactive force requires torque

7 = 0 about any point, so the lines
of the three forces have to
intersect at the same point.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Conditions for Equilibrium

Pull Wheel upstairs

1176 +- You are trying (o Figure P11.76 Be aware that as the wheel

raise a bicycle wheel of mass m

and radius R up over a curb of V2 i

height 4. To dorZh’is, you apply a % x\ F Creeps up the Stalr’ the moment
AR arm of gravity is reducing, and the

moment arm of F is increasing.

horizontal force F (Fig. P11.76).
What is the smallest magnitude
of the force F that will succeed

e o Therefore, the minimal constant
(a) at the center of the wheel Fj P11.77 i i

i Afoparmiririiigy force of is given by a balance of
(©)In which case is less force torque initially with respect to the
required?

contact point on the stair.
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Torque Balance and Force Balance

T oy st 1> b Figure P11.82 (a) Torque balance with respect to

cal uniform metal pole by a thin & the hinge. (b) Force balance of
cord passing over a pulley hav- VA
the pole.

ing negligible mass and friction.
The cord is attached to the pole
40.0 cm below the top and pulls / :
horizontally on it (Fig. P11.82). / o
The pole is pivoted about a
hinge at its base, is 1.75 m tall,
and weighs 55.0 N. A thin wire
connects the top of the pole to a - _-Hinge
vertical wall. The nail that ———
holds this wire to the wall will

pull out if an outward force greater than 22.0 N acts on it. (a) What
is the greatest weight W that can be supported this way without
pulling out the nail? (b) What is the magnitude of the force that the
hinge exerts on the pole?
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

@ Elasticity
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Strain, Stress, and Elastic Modulus

Stress is the force per unit area.

Strain is the fractional deformation due to the stress.

Elastic modulus is stress divided by strain.

Hooke’s Law: Stress and strain are proportional (small deformation).

stress
strain

= elastic modulus
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Tensile and Compressive Stress and Strain

Inidal state —Arca A
of the object

Ie l'() %{
—> Al <
; Fy ! F|
Object under N

tensile stress

fe—1—>

F
Tensile stress = — Tensile strain = Al
A Iy

Area A

Initial state

i ovhiect
T TTYEC YT = ' onors Physics | Rectation Class Summer 2618 2871269



Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Young’s Modulus

Young’s modulus Y is tensile stress divided by tensile strain:

FL

- A
Y_A/
lo
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Bulk Stress and Strain

Pressure = py Pressure in a fluid is force per unit
areap =t
Tnitial state Volume Bulk stress is pressure change
of the abject @ Ap upon volume change from V,
toV=VW+AV
Pressure = p = pg + Ap Bulk strain is fractional volume
Fil/i change 4
Object under 7, § e il . B.ul_k modulus is buI.k stress
bulkestress - ==¥{Volume|i<— divided by bulk strain:
' - [0 B_ __24p
VN

FLT V=V, + AV
(AV < 0)

Bulk stress = Ap Bulk strain = %
0
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Shear stress and strain

. F
Atca A Shear stress is -
Shear strain is £
Shear modulus is shear stress

Initial state
of the object AIL

"

divided by shear strain: S =

r\x‘h‘

Object under
shear stress

F, - . X
Shear stress = —  Shear strain n
/ h
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Elasticity and Plasticity

Table 11.3 Approximate Breaking

Elastic limit or yield point

Stresses
Plastic Breaking Stress
deformation et § 2
Proportional Material (Pa or Nfm?)
limit , ¢ i i
b Frac Aluminum 2.2 X 10
racture
gla ER Brass 4.7 x 10®
Lo
\ Glass 10 X 10
Elastic = | Plastic
behavior } behavior Iron 3.0 X I()S
P a
} S:lrm Lt Phosphor
, . bronze 5.6 X 108
01 <1% Strain 30%
Steel 5 —20x 10%

Hooke’s law applies to point a. Beyond elastic limit, the material
demonstrates plastic behavior. You may try this with the spring in your
used pens.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid Statics

@ Fluid Statics
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid Statics

Pressure in a Fluid

For a fluid at rest,

AFL
T AA
Pressure at depth h:
p = po+ pgh

Pascal’s law

Pressure applied to an enclosed incompressible fluid is transmitted
undiminished to every portion of the liquid and the walls of the
container.

Cause: work done on the fluid is zero.

Absolute pressure: total pressure p = Patm + Pgauge- (€.9., gauge
pressure at depth pgauge = P — Po = pgh)
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid Statics

Buoyancy and Archimedes’s law

When a body is immersed in a fluid, the fluid exerts an upward force on
the body equal to the weight of the fluid displaced by the body.
Justification: the liquid was originally there in static, so the buayancy
force has to balance the weight of that portion of liquid (replaced by the
body).
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Block in Fluids

12.31 ++ A cubical block of wood,  Figure E12.31 _

10.0 cm on a side, floats at the inter- ¢ - (a) pgauge7upper - pOilghUpper
face between oil and water with its ] -
lower surface 1.50 cm below the
interface (Fig. E12.31). The density
of the oil is 790 kg/m?. (a) What is
the gauge pressure at the upper face
of the block? (b) What is the gauge
pressure at the lower face of the
block? (c) What are the mass and
density of the block?

(b) Pgauge,lower =

—— Poit9Noir + pwater FNiower

10.0

an (C)

100 mg = (Pgauge,lower — Pgauge,upper)S;
Som= Pwood Vbiock
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

@ Fluid in Motion
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Ideal Fluid, Flow lines, Stream lines

Ideal Fluid

Fluid density does not change, experiences no internal friction
(incompressible and no viscosity). )
Flow Lines

Trajectories of individual particles in a fluid. )
Stream Lines

Family of curves that are instantaneously tangential to the velocity
vector field. )
Steady Flow

The Flow lines coincide the stream lines. )
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Continuity Equation

Flow Tube

A tube formed by flow lines passing through the edge of an imaginary
element of area. In steady flow

@ No fluid can cross the side walls of a flow tube
@ fluids in different flow tubes cannot mix J

Continuity Equation
For homogeneous incompressible fluid:

A1 Vi = A2V2

Bernoulli’s Equation

L
p+ 5pV° + pgy = const

y
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation

Bernoulli’'s Equation

vy

T oy
c\ e
Ay dV

¥
7 )

Flow
ogy
“/j,\, Yy

Work-Kinetic energy theorem:

Fluid in Motion

Work done by pressure
difference: (py — pp)dV
Work done by gravity:
pdVg(y1 — y2)

Change in Kinetic energy:
3pdV(v3 — v8)

1
EPdV(Vé2 —v2) = (p1 — p2)dV + pdVg(y1 — y2)

Bernoulli’s Equation:

2

L
—pV° + p+ pgy = const
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Continuity Equation and Bernoulli’'s Equation

Question

At one point in a pipeline the water’s speed is 3.00 m/s and the gauge
pressure is 5.00 x 10* Pa. Find the gauge pressure at a second point
in the line, 11.0 m lower than the first, if the pipe diameter at the
second point is twice that at the first.

Solution

v1A1 = Vs A due to the continuity equation. The speed vy = 3.00 m/s,
and down there, speed is vo = 0.75 m/s.

1 1
5PVE +P1+pght = 5pVE + p2 + pghe

h1—h2:11 m, P1 :5.00><1O4Pa

y
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Water out of an Open Tank

12.89 - CP Water stands at a depth H in a large, open tank whose (a) V= \/@

side walls are vertical (Fig. P12.89). A hole is made in one of the

walls at a depth & below the water surface. (a) At what distance R R — \/2gh\/2(H _ h)/g

from the foot of the wall does the emerging stream strike the floor? " . .
(b) How far above the bottom of the tank could a second hole be (b) h = H — h W|” glve the same
cut so that the stream emerging from it could have the same range

as for the first hole? range
Figure P12.89
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Bucket with Hole

Question

A cylindrical bucket, open at the top, is 25.0 cm high and 10.0 cm in
diameter. A circular hole with a cross-sectional area 1.50 cm? is cut in
the center of the bottom of the bucket. Water flows into the bucket from
a tube above it at the rate of 2.40 x 10~* m?/s. How high will the water
in the bucket rise?

Solution

At stabilized height, flow out rate is 2.40 x 10~% m?/s, and flow speed

: VR 2.40x10—*
at the top is equal to zero. Hence h = 25 with v = $5070-5 m/s.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Tube with Open Experimental Segment

Question

alcohol (density p')
meter. When ideal i

pressure meter has

the liquid in the ope
The open segment has

cross-sectional diameter d, and
the thick segment (cross-sectional
diameter D) is connected to an

fluid (density p) flows through, the

height h. The atmospheric
pressure is pg. Find the speed of

pressure
ncompressible

a reading of

n segment.

Solution

p2 =0, p1 = p'gh, viD? = vuod?, pv2 + p1 = Spv2 + po.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Water from Container to Conduit

Question

container to a trumpet-shaped
conduit. The cross-sectional area
k of entrance and exit are Sy and
$ S», and the conduit has a length
H‘L of H. The atmospheric pressure is
/5 \ Po, and the flow is steady. For
Vi what length of H will the pressure

of the liquid at the entrance of the
conduit be zero?

il
III

Water (p) flows from a large

Solution
By equation of continuity, S;vy = S>v»; by Bernoulli’s equation,

1 1 1
Po + pg(h+H) = po + §PV22 P2 + EPVZZ = §pv12 + pgH
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

@ Gravitation
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

Newton’s Law of Gravitation

The particle my at 74 exerts gravitation force F1» on particle my at 7, is

myms ri2

?12 == —G p—
rt |2l

where r1o = 71 — I'>. Gravitation force is a central force, so it is
conservative and conserves angular momentum. Conservation of the
angular momentum means planar motion (e.g. planets). Define
gravitation interaction due to M on unit mass as a vector field in space:
MTr

E - — =
¢ r2 ||

W.Peng (UM-SJTU JI) VP160 Honors Physics | Recitation Class Summer 2018 276/289



Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

V o Eg Due to Point Mass at the Origin

For a point mass at the origin, the divergence of E g everywhere else is

-~ R 2 .,
Foha=0,50 2% = hta(-8) 2o =1 % itfollows
N

32&:)(, ,Z a2
that > Xyzdaraz%_irsy =0
Nowﬁchooge a sphere ¥4, radius R, centered at the origin, so
Js,EgodS= ——(47rR2) = —47GM, and by the theorem of Gauss

that [z Ego dS = Jo, (Vo Eg)d%r, (Q4 is the region enclosed by
surface ¥1), so the divergence of E at the origin satisfies

/ (VoEg)| _ *(0)dr = ~4nGM
Q4 r=0

Now rewrite M = [, p(0)53(0)d3r (point mass at the origin), we get
(Vo Eg) = —47Gp(0).
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Gauss’ Law for Gravitational Field

(V o Ec.;) = —47p(0) generalizes to a mass distribution p(r) as
V o Eg(r) = —4nGp(T) which is the differential form of Gauss’ Law for
Gravitational Field. Back into the integral form,

/ EgodS= | (VoEg)d®r= / (—4nGp(T))d3r = —4rGMs,
P 197 2,

where My, is the mass enclosed by surface Xo.
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Potential Energy and Potential

Potential Energy U(r) = —G@ + C where C depends on the choice
of zero potential. Gravitational potential (potential energy of unit mass)

with U(o0) = 0:
M
V(r)=-G—
(n=-6-
Note: there is a useful fact about the gradient of 1:
1 10r, 1 2a 5
vie 3 LT = Y - P
r a=X,y,Z r (304 a=X,y,Z r 21/2/3:)(7}/72 52
but Y5, , .82 =r?and X", ,ah, =T, s0
vl__1r1
rorer

which conformsto F = —VU and Eg = -V V
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Satellites on Circular Orbits

Gravitation force provides centripetal force:

GMmr B mv &
r2r
GM
vV = —_—
r
Period on a circular orbit:
orr r3/2
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Kepler's Laws

A planet P follows an elliptical orbit.

The sun S is at one
focus of the ellipse.

Perihelion

¥

P Aphelion

~

H N
’ v \
\,S //U\S,\/
H 0 Yo

W.Peng (UM-SJTU Jly

\ 7,
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~< 7~ B
a <—a

There is nothing at
the other focus.

VP160 Honors Physics | Recitation Class

Gravitation

@ Each planet moves in an
elliptical orbit, with the sun at
one focus of the ellipse.

© Aline from the sun to a given
planet sweeps out equal
areas in equal times
(constant aerial velocity

%(TXV)).

T =
T2 _ 472
o B — Gms
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Ellipse’s a, b, ¢ versus planet’s E and L

Given the mechanical energy E < 0 of the planet and the angular
momentum L of the planet, we need to find the parameters semi-major
axis length a, semi-minor axis length b, and semi-focal length c of the
ellipse (e = £ is the eccentricity).

When the planet is on one end of the minor axis, v = /2 [E + G";’m].
The angular momentum is L = mvb, so

L \/2 [ GMm]
— = E+
mb m a

Then when the planet is at its perihelion or at its aphelion,

L GMm 1, GMm
Emvp_EJr 2 C Emva_EJr P
smva(a—c)? = E(a— c¢)?> + GMm(a— c)
Imv2(a+ c)? = E(a+ ¢)? + GMm(a + c)
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;mv (a—c)? = E(a—c)® + GMm(a— ¢)

tmv2(a+ c)? = E(a+ ¢)? + GMm(a + c)

Using (a+ c)va = (a — ¢)V, by constant aerial velocity, we subtract
one equation from the other and get

M M
E(—4ac) + GMm(—2c) =0 — E = _GZam — a= _GZEm
Plugging this back to ;5 = /2 [ G"g’"}, wegetb= /L1t

then follows that ¢ = Va2 — b2 = \/(Gé\ém) + 255
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Tunnel through the Earth

Question

A shaft is drilled from the surface through a straight tunnel d from the
center of the earth. Assume the mass distribution of the earth is
uniform, find the time it takes an object that is released from one end
of the tunnel to travel to the other end (frictionless).

Solution

Suppose the object is x from equilibrium. The net force on the object

MEm(P+x*)2  Gmx  _ GMmx
DR (FepE T R

has a magnitude of , S0 the motion is

simple harmonic.
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A Little Line Integral

Question

A thin, uniform rod has length L and mass M. A small uniform sphere
of mass mis placed a distance x from one end of the rod, along the
Figure E13.32

M m

¢ D-----; -
| L }

axis of the rod.

Calculate the gravitational potential energy of the rod-sphere system.
Find the force exerted on the sphere by the rod.

Solution

U= [}~ 8m(-dr) = Gamin (327),
F=-VU=-G\m (} - ﬁ) Py

y
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Halley’'s Comet

Halley’s Comet is on an ellipse trajectory around the sun in a counter
clockwise motion, whose period is 76.1 years. In 1986, when it was at
its perihelion Py, it was ry = 0.590 AU from the sun S. Some years
later, the comet reached point P on the orbit, and the angle it has
traversed is 6p = 72.0°. The following quantities are known:

1 AU = 1.50 x 10"" m, gravitational constant

G=6.67x10"" m?. kg~ !.s72, the mass of the sun

ms = 1.99 x 10% kg. Find the distance r, of P from S and the velocity
of the comet at P.

S
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3 GT ms

2 Gmsm
Mechanical energy E = 2mv0 =0

Kepler’s third law:a =

Then using x = ¢ + rpcosep and yp = rpsintp in ? + £ ? =1, we get

(& sin? 0 + b? cos? Hp)rs + 2b%crycos b, — b* =0

_ —bPccosfp+ba P _ 12
b= 2oz 6 D2 cos? Plugging in data, a=2.685 x 10'“ m

= /@ —(a—1y)2 = 6.837 x 10" m, ¢ = 2.597 x 10'2 m, s0
r,=1.340 x 10" m
Aerial VeIOCity g = ;rpvp,transversal = Lab, SO

2rab 4
Vp, transversal = Tra = 3.587 x 10" m/s

Vo= \/fGTms—ﬁ% — 4.395 x 10* m/s Hence

Vi, radial = \/Vg - V,g,transversa/ =2.540 x 10* m/s
arctan(Vp radial/ Vp,transversal) = 35.3°, s0 the velocity has a direction that
forms 126.7° from ny
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Two Rods Static Balance

S———

NS

Two uniform rods AB and CD are
placed as are shown in the figure.
The vertical wall which B and D

W.Peng (UM-SJTU Jly
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Additional Exercises

are in contact with are smooth,
and the horizontal ground which A
is in contact with has static
coefficient of friction 4. The point
where AB and CD are in contact
has static coefficient of friction uc.
Both rods have mass m and
length /. Suppose AB forms 6 with
the vertical wall, find the
constraint « that CD forms with
the wall so that the system is in
static balance.
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