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Vectors, Coordinate Systems, and 1D Kinematics Notions of Units

Scientific Notations

Definition
Scientific notation expresses numerical values in powers of 10. It is
used to represent very large numbers or very small numbers, giving
the correct number of significant figures.

Example
The distance from the earth to the moon is denoted as

3.84× 108 m
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Vectors, Coordinate Systems, and 1D Kinematics Notions of Units

Unit Prefixes

Definition
SI (Système International) units are used to keep measurements
consistent around the world. By adding a prefix to the fundamental
units, additional units are derived.

Example

1 nm = 10−9 m 1 µm = 10−6 m 1 mm = 10−3 m

1 cm = 10−2 m 1 km = 103 m
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Vectors, Coordinate Systems, and 1D Kinematics Notions of Units

Unit Conversions

Definition
Expressing the same physical quantity in two different units forms a
unit conversion factor.

Example

3 min = (3 min)

(
60 s

1 min

)
= 180 s
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Vectors, Coordinate Systems, and 1D Kinematics Uncertainty and Significant Figures

Uncertainty

Definition
Uncertainties exist in all measurements. They are the maximum
possible deviation (to some confidence level) of the true value of the
quantity from the measured value. The significant figures are
composed of one or two uncertain digit with all the digits preceding it
being certain.

Example
In my Vp 141 lab report for Exercise 1, I wrote:
The moment of inertia for cylinder B in hole 2 is calculated as

IB,2,math = IB,principal,math + mBd2
2

= 1.860× 10−5 + 0.1656× (45.09× 10−3)2

= 3.5528× 10−4kg ·m2 ± 0.0025× 10−4kg ·m2
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Vectors, Coordinate Systems, and 1D Kinematics Estimates and Orders of Magnitude

Back-of-the-Envelope Calculations

Definition
Order-of-magnitude estimates are calculations where we make
some rough approximations to carry them out quickly. Since they are
carried out so quickly that they can be calculated at the back of an
envelope, they are also called back-of-the-envelope calculations.

Example
How many gallons of gasoline are used in the United States in one
day? Assume that there are two cars for every three people, that each
car is driven an average of 10,000 mi per year, and that the average
car gets 20 miles per gallon.
The US Population on 05/06/2016 is around 323,496 thousand, which
we approximate to 323 million.

323× 106 × (2/3)× 10,000/20 ≈ 1011 gallons
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Vectors, Coordinate Systems, and 1D Kinematics Vectors and vector operations

Vectors

Definition
Vectors are quantities that have both magnitude and direction. A
vector in an n-dimensional real vector space is denoted as

X ∈ Rn : X =


x1
x2
x3
...

xn

 = (x1 x2 · · · xn)T = (x1, x2, . . . , xn)

Example

Displacement s, velocity v , acceleration a, force v , momentum P,
angular velocity ω are vectors in R3.
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Vectors, Coordinate Systems, and 1D Kinematics Vectors and vector operations

Vector Addition and Scalar Multiplication

Definition
The addition and subtraction of vectors follows the “parallelogram
rule”. The scalar multiplication changes the magnitude (perhaps
reserve the direction) of the vector.
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Vectors, Coordinate Systems, and 1D Kinematics Vectors and vector operations

Dot Product in Rn and Cross Product in R3

Definition
The dot product of two vectors u, v in Rn is denoted as u ◦ v .

u ◦ v =
n∑

i=1

uivi = |u||v | cos∠(u, v)

Definition

The cross product of two vectors u, v in R3 is denoted as u × v .

u × v =

(∣∣∣∣u2 u3
v2 v3

∣∣∣∣ , ∣∣∣∣u3 u1
v3 v1

∣∣∣∣ , ∣∣∣∣u1 u2
v1 v2

∣∣∣∣)

where
∣∣∣∣a b
c d

∣∣∣∣ = ad − bc
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Vectors, Coordinate Systems, and 1D Kinematics Vectors and vector operations

Dot Product: Perpendicular (Orthogonal) Projections

Unit Vector

The unit vector in the direction of ω is given by ω
|ω| .

Magnitude of Projection
The magnitude of the projection of vector v on vector ω is

|u| · cos∠(u, v) =
u ◦ ω
|ω|

Orthogonal Projections
The orthogonal projection of vector v on vector ω is

u ◦ ω
|ω|

· ω
|ω|
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Vectors, Coordinate Systems, and 1D Kinematics Vectors and vector operations

The direction of the cross product follows the right-hand rule. The

length of the cross product |b| = |u||ω| sin∠(u, v)

Properties
The Cross Product has the following properties:

1 ω × u = −u × ω
2 u × ω ⊥ u; u × ω ⊥ ω
3 u × ω = 0⇔ u ‖ ω
4 u × u = 0W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 16 / 289



Vectors, Coordinate Systems, and 1D Kinematics Vectors and vector operations

Examples for Dot Product and Cross Product

Example

The elementary work δw is defined as the dot product of force F and
infinitesimal displacement dr : δw = F ◦ dr

Example
Torque τ is defined as the cross product of position vector r and force
F : τ = r × F
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Vectors, Coordinate Systems, and 1D Kinematics 3D Curvilinear Coordinate Systems

Cylindrical Coordinates

Coordinates: ρ, ϕ, z

Unit vectors: n̂ρ, n̂ϕ, n̂z

Versors are NOT Fixed:

Careful with derivatives

ρ =
√

x2 + y2,

ϕ = arctan(y/x), z = z

x = ρ cosϕ, y = ρ sinϕ

r = ρn̂ρ + zn̂z , where n̂ρ carries information about ϕ

Polar coordinates is the special case z = 0.
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Vectors, Coordinate Systems, and 1D Kinematics 3D Curvilinear Coordinate Systems

Spherical Coordinates

Coordinates: r , θ, ϕ

Unit vectors: n̂r , n̂θ, n̂ϕ

r =
√

x2 + y2 + z2,

θ = arctan

√
x2+y2

z ,

ϕ = arctan(y/x)

x = r sin θ cosϕ,

y = r sin θ sinϕ, z = r cos θ

r = r n̂r , where n̂r carries information for θ and ϕ.

Polar coordinates is the special case θ = π/2.
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Vectors, Coordinate Systems, and 1D Kinematics 3D Curvilinear Coordinate Systems

Gradient, Divergence, and Curl

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 21 / 289



Vectors, Coordinate Systems, and 1D Kinematics 1D Kinematics

Notions of Units
Uncertainty and Significant Figures
Estimates and Orders of Magnitude
Vectors and vector operations
3D Curvilinear Coordinate Systems
1D Kinematics
Exercises

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 22 / 289



Vectors, Coordinate Systems, and 1D Kinematics 1D Kinematics

Motion Along a Straight Line

Define positive direction first. As a convention, the vectors x , v and a
are written as positive if they have the same direction as the positive
direction of the axis, and are written as negative if their direction is
oppositve to the positive direction of the axis.

Here we assume that x is twice differentiable if there are no impulses.
The reasons will be clear when we study the Newton’s laws.

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 23 / 289



Vectors, Coordinate Systems, and 1D Kinematics 1D Kinematics

Average and Instantaneous Velocity

Average Velocity over (t , t + ∆t): vav ,x = x(t+∆t)−x(t)
∆t

Instantaneous Velocity at t : vx (t) = dx(·)
dt

∣∣∣
t
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Vectors, Coordinate Systems, and 1D Kinematics 1D Kinematics

Average and Instantaneous Acceleration

Average Acceleration over (t , t + ∆t): aav ,x = v(t+∆t)−v(t)
∆t

Instantaneous Acceleration at t : ax (t) = dv(·)
dt

∣∣∣
t

Newton’s notation for derivatives W.R.T time: vx = ẋ , ax = v̇x = ẍ

Average Speed vs. Average Velocity

Average speed=(distance traveled)/(time interval)
Average velocity=(displacement)/(time interval)
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Vectors, Coordinate Systems, and 1D Kinematics 1D Kinematics

Obtain Displacement from Acceleration

Obtain Velocity from Acceleration

v(t) = v(0) +
∫ t

0 a(τ)dτ v(0): Initial (t=0) Condition

Obtain Displacement from Velocity

x(t) = x(0) +
∫ t

0 v(τ)dτ

Special Case: Constant Acceleration a

x(t) = x(0) + v(0)t + 1
2at2

General Case: Varying Acceleration a

x(t) = x(0) +

∫ t

0
v(τ)dτ = x(0) + v(0)t +

∫ t

0
dτ
∫ τ

0
a(s)ds
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Vectors, Coordinate Systems, and 1D Kinematics 1D Kinematics

Relative Motion

Relative Velocity
Velocity of Particle in FoR A
=Velocity of Origin of FoR A’+Velocity of Particle in FoR A’

vx = vO′x + v ′x

Analogously, ax = aO′x + a′x for acceleration.

Galilean Transformation (VO′x = const , xO′(0) = 0)
ax = a′x
vx = vO′x + v ′x
x = vO′x t + x ′

where vO′x t = x ′o
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Planck’s Units
Given the Dirac’s constant ~ = h/(2π), gravitational constant G, and
the speed of light in vacuum c, use dimensional analysis to construct
the so called natural units of time, length, and mass. These are also
called Planck’s units: Planck’s time tp, Planck’s length lp, and Planck’s
mass mP . Find their values in the SI units. How do they compare to
the time, distance, and mass that we are able to measure nowadays?

Hints
From Chapter 6 in Vc 210, we learnt the uncertainty principle
∆x ·∆(mv) ≥ h/(4π), so ~ has dimension
[m] · [kg] · [m/s] = [m2 · kg · s−1]

c is the speed of light, so it has dimension [m/s]
The gravitational force F = GMm/r2, so G has dimension
[kg ·m/s2] · [m2] · [kg−2] = [m3 · s−2 · kg−1]
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Constants

~ = 1.054× 10−34 m2 · kg · s−1

G = 6.674× 10−11 m3 · kg−1 · s−2

c = 2.998× 108 m/s

Solution

Express mP as mp = ~αGβcγ , so the power for m, kg, and s shall
match. 

2α + 3β + 1γ = 0
α− β = 1
−α− 2β − γ = 0

=⇒


a = 1

2

b = −1
2

c = 1
2

=⇒

=⇒ mP =
√

c·~
G = 2.176× 10−8 kg

Similarly, tP = c−5/2G1/2~1/2 = 5.391× 10−44 s, and
lP = c3/2G1/2~1/2 = 1.616× 10−35 m
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Dimension Analysis on a Simple Pendulum

Question
A simple pendulum consists of a light inextensible string AB with length
L, with the end A fixed, and a point mass M attached to B. The
pendulum oscillates with a small amplitude, and the period of
oscillation is T . It is suggested that T is proportional to the product of
powers of M, L, and g, where g is the acceleration due to gravity. Use
dimensional analysis to find this relationship.

Solution

T = MαLβgγ =⇒ [s] = [kg]α[m]β[m/s2]γ

=⇒ α = 0, β = 1/2, γ = −1/2 T = k
√

L/g
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Chain Rules in v -x Relations
Suppose a particle in 1 dimensional motion has the following v -x (SI)
relation:

v =
√

x + 1

Determine v(t).

Solution
By the chain rule of differentiation,

a(t) =
dv
dt

=
dv
dx

dx
dt

=
1

2
√

x + 1

√
x + 1 =

1
2

m/s2

v(t) =
1
2

t + v(0)

Now v(t)2 − v(0)2 = 2a(t)x(t), we obtain v(0) = 1 m/s
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Dot Product in Cartesian Coordinates
Check that in the Cartesian coordinates, the dot product of two vectors
u = (ux ,uy ,uz) and w = (wx ,wy ,wz) can be equivalently found either
as u ◦w = uxwx + uywy + uzwz , or as u ·w = uw cosα, where α is the
smaller angle between u and w.

Solution

|u−w|2 = u2 + w2 − 2uw cosα

uw cosα =
u2 + w2 − |u−w|2

2

=
2(uxwx + uywy + uzwz)

2

where u−w = (ux − wx )n̂x + (uy − wy )n̂y + (uz − wz)n̂z
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Inverse Cross Product

Question
Is it possible to find a vector u, such that (2,−3,4)× u = (4,3,−1)?
What is a quick way to check it?

Solution
Suppose u = (ux ,uy ,uz) satisfies this relation.

−1 = 2uy + 3ux

4 = −3uz − 4uy

3 = 4ux − 2uz

=⇒


−1

3 = 2
3uy + ux

1 = −3
4uz − uy

3
4 = ux − 1

2uz

=⇒

13
8 = −uy − 3

4uz and 1 = −3
4uz − uy =⇒ 5

8 = 0, i.e., not possible.
Quick way: (2,−3,4) ◦ (4,3,−1) = −5 6= 0
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Pulling a Boat at Constant Speed

Question
Suppose a person convolves a rope at constant speed v0 on the left
riverbank that is h above the water. The other end of the rope is fixed
on a small boat floating on the surface of the water. Find the speed
and the acceleration of the boat when it is x from the person
(assuming the rope is weightless).

Solution
The fact that the motion of the boat is constrained on a straight line
allows us to use the magnitude of position vector, velocity, and
acceleration directly. Let r denote the length of the rope, then:{

dr
dt = −v0

r =
√

x2 + h2
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Pulling a Boat at Constant Speed

Solution (continued)

Our goal is to express ẋ and ẍ using x , v0 and h.
Taking the derivative w.r.t t on both sides of r =

√
x2 + h2 using the

chain rule,
dr
dt

=
2x

2
√

x2 + h2

dx
dt

so v = ẋ = −
√

x2 + h2v0/x , where the − sign indicates that the boat is
moving toward the left.

v̇ = −v0

 2x
2
√

x2+h2
x −
√

x2 + h2

x2

 ẋ = −v0

 x2−x2−h2√
x2+h2

x2

 ẋ

= [v2
0

√
x2 + h2/x ][−h2/(x2

√
x2 + h2)] = −

v2
0 h2

x3
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Parallel and Perpendicular Components of Vectors

Question
Consider two vectors u = 3n̂x + 4n̂y and w = 6n̂x + 16n̂y . Find (a) the
components of the vector w that are parallel and perpendicular to the
vector u, (b) the angle between w and u.

Solution
(a) The parallel component of w to u is given by the orthogonal
projection w‖ = u◦w

|w | ·
u
|u| = 3×6+4×16√

32+42

(3,4)√
32+42

= (9.84,13.12). The

orthogonal component is given by w⊥ = w−w‖ = (−3.84,2.88)
(b)

∠(w,u) = arccos
u ◦w
uw

= arccos[
3× 6 + 4× 16

5× 17.088
] = 0.285 rad
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Harmonic Oscillation Drifting in One Direction

Question
A particle moves along a straight line with non-constant acceleration
ax (t) = −Aω2 cosωt , where A and ω are positive constants with proper
units. At the instant of time t = 0 its velocity vx (0) = 3 [m/s] and
position x(0) = 4 [m]. Find vx (t) and x(t) at any instant of time. Sketch
the graphs of x(t), vx (t), and ax (t). What kind of motion may these
results describe?

Solution

vx (t) = vx (0) +

∫ t

0
a(τ)dτ = 3− Aω sinωt

x(t) = x(0) +

∫ t

0
vx (τ)dτ = 4 + 3t + A(cosωt − 1)
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Vectors, Coordinate Systems, and 1D Kinematics Exercises
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Figure: Plot for x , v , and a given ω = 5 [rad/s], A = 2 [m]
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Vectors, Coordinate Systems, and 1D Kinematics Exercises
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Vectors, Coordinate Systems, and 1D Kinematics Exercises
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

MATLAB Scripts

1 omega=10;t=0:pi/2000:2*2*pi/omega;A=2;
2

3 figure
4 subplot(1,3,1)
5 plot(t,-A.*omega.ˆ2.*cos(omega.*t),’r-’,’LineWidth’,2);
6 xlabel(’t/[s]’);ylabel(’a/[m/sˆ2]’);title(’Plot of a(t), \omega

=10 [rad/s], A=2 [m]’);
7 subplot(1,3,2)
8 plot(t,3-A.*omega.*sin(omega.*t),’b-’,’LineWidth’,2);
9 xlabel(’t/[s]’);ylabel(’v/[m/s]’);title(’Plot of v(t), \omega

=10 [rad/s], A=2 [m]’);
10 subplot(1,3,3)
11 plot(t,4+3.*t+A.*(cos(omega.*t)-1),’y-’,’LineWidth’,2);
12 xlabel(’t/[s]’);ylabel(’x/[m/s]’);title(’Plot of x(t), \omega

=10 [rad/s], A=2 [m]’);
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

An Under-Damped Oscillation

A particle is moving along a straight line with velocity
vx (t) = −βAωe−βt cosωt , where A, ω, β are positive constants.

1 What are the units of these constants?
2 Find acceleration ax (t) and position x(t) of the particle, assuming

that x(0) = 5 [m].
3 Sketch x(t), vx (t), and ax (t)
4 What kind of motion could these results refer to (qualitatively)?
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

An Under-Damped Oscillation (Solution)

βt is dimensionless, so β has unit [s−1]. The same holds for ω. βAω
has unit [m/s], so A has unit [m · s]
ax (t) = v̇x (t) = β2Aωe−βt cosωt + βAω2e−βt sinωt
x(t) = x(0) +

∫ t
0 vx (τ)dτ , where we need to integrate by part.∫ t

0
e−βτ cosωτdτ = −1

β
e−βτ cosωτ

∣∣∣∣t
0
−
∫ t

0

ω

β
e−βτ sinωτdτ

∫ t

0
e−βτ sinωτdτ = −1

β
e−βτ sinωτ

∣∣∣∣t
0

+

∫ t

0

ω

β
e−βτ cosωτdτ

so denoting C =
∫ t

0 e−βτ cosωτdτ , we have

C = − 1
βe−βτ cosωτ

∣∣∣t
0
− ω

β [− 1
βe−βτ sinωτ

∣∣∣t
0

+ ω
βC], i.e.,

(1 + ω2

β2 )C = − 1
βe−βt cosωt + 1

β + ω
β2 [e−βt sinωt ]
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

C =
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1
β
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ω
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β2+ω2
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Figure: x(t) given A = 3 m · s, β = 1 s−1, ω = 10 rad/s
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

Sketch of vx(t) and ax(t)
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Figure: v(t) and a(t) given A = 3 m · s, β = 1 s−1, ω = 10 rad/s

This represents an underdamped oscillation.
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Vectors, Coordinate Systems, and 1D Kinematics Exercises

A Moving Car

Question
A car is moving in one direction along a straight line. Find the average
velocity of the car if: (a) it travels half of the journey with velocity v1 and
the other half with velocity v2, (b) it covers half the distance with
velocity v1 and the other with velocity v2. Both v1 and v2 are constants.

Solution
The formula we use is the definition: vavg,x = x

t .
(a) x = v1t/2 + v2t/2, so vavg,x = v1+v2

2
(b) t = x/(2v1) + x/(2v2), so vavg,x = 1

1/(2v1)+1/(2v2)
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3D Kinematics

1 Vectors, Coordinate Systems, and 1D Kinematics

2 3D Kinematics

3 Force, Newton’s Laws, Linear Drag and Oscillators

4 Driven Oscillations, Non-inertial FoRs

5 Work and Energy

6 Lagrangian Mechanics, Momentum, Center-of-Mass FoR

7 Angular Momentum, Rigid Body Dynamics

8 Equilibrium and Elasticity, Fluid Mechanics, Gravitation
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3D Kinematics Kinematics in Cartesian Coordinates

Kinematics in Cartesian Coordinates
Kinematics in Cylindrical Coordinates
Kinematics in Spherical Coordinates
Kinematics in Natural Coordinates
Discussion
Exercises
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3D Kinematics Kinematics in Cartesian Coordinates

Kinematics in Cartesian Coordinates

The velocity and acceleration are just the Derivatives of the position
vector.

Position Vector

r(t) = x(t)n̂x + y(t)n̂y + z(t)n̂z

Velocity

v(t) = ṙ(t) = ẋ(t)n̂x + ẏ(t)n̂y + ż(t)n̂z

Instantaneous Speed v =
√

ẋ2 + ẏ2 + ż2

Acceleration

a(t) = v̇(t) = ẍ(t)n̂x + ÿ(t)n̂y + z̈(t)n̂z

a =
√

ẍ2 + ÿ2 + z̈2
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3D Kinematics Kinematics in Cylindrical Coordinates

Kinematics in Cartesian Coordinates
Kinematics in Cylindrical Coordinates
Kinematics in Spherical Coordinates
Kinematics in Natural Coordinates
Discussion
Exercises

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 52 / 289



3D Kinematics Kinematics in Cylindrical Coordinates

Derivatives of Versors w.r.t. Time

Based on the position vector, we find the velocity and acceleration.

Position Vector in Cylindrical Coordinates

r(t) = ρ(t)n̂ρ + z(t)n̂z

Relation Between Versors

n̂ρ = n̂x cosϕ+ n̂y sinϕ n̂ϕ = −n̂x sinϕ+ n̂y cosϕ n̂z = n̂z

Derivatives of Versors

˙̂nρ = −n̂x ϕ̇ sinϕ+ n̂y ϕ̇ cosϕ = ϕ̇n̂ϕ
˙̂nϕ = −n̂x ϕ̇ cosϕ− n̂y ϕ̇ sinϕ = −ϕ̇n̂ρ

Then using the product rule of differentiation, we calculate velocity and
acceleration.

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 53 / 289



3D Kinematics Kinematics in Cylindrical Coordinates

Derivatives of Versors w.r.t. Time

Based on the position vector, we find the velocity and acceleration.

Position Vector in Cylindrical Coordinates

r(t) = ρ(t)n̂ρ + z(t)n̂z

Relation Between Versors

n̂ρ = n̂x cosϕ+ n̂y sinϕ n̂ϕ = −n̂x sinϕ+ n̂y cosϕ n̂z = n̂z

Derivatives of Versors

˙̂nρ = −n̂x ϕ̇ sinϕ+ n̂y ϕ̇ cosϕ = ϕ̇n̂ϕ
˙̂nϕ = −n̂x ϕ̇ cosϕ− n̂y ϕ̇ sinϕ = −ϕ̇n̂ρ

Then using the product rule of differentiation, we calculate velocity and
acceleration.

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 53 / 289



3D Kinematics Kinematics in Cylindrical Coordinates

Velocity and Acceleration in Cylindrical Coordinates
˙̂nρ = ϕ̇n̂ϕ and ˙̂nϕ = −ϕ̇n̂ρ are used in the following derivation.

Velocity

v = ρ̇n̂ρ + ρ ˙̂nρ + żn̂z = ρ̇n̂ρ + ρϕ̇n̂ϕ + żn̂z

Acceleration

a = ρ̈n̂ρ + ρ̇ ˙̂nρ + ρ̇ϕ̇n̂ϕ + ρϕ̈n̂ϕ + ρϕ̇ ˙̂nϕ + z̈n̂z

= ρ̈n̂ρ + ρ̇ϕ̇n̂ϕ + ρ̇ϕ̇n̂ϕ + ρϕ̈n̂ϕ + ρϕ̇(−ϕ̇n̂ρ) + z̈n̂z

= (ρ̈− ρϕ̇2)n̂ρ︸ ︷︷ ︸
radial component

+ (ρϕ̈+ 2ρ̇ϕ̇)n̂ϕ︸ ︷︷ ︸
transversal component

+z̈n̂z

Setting z ≡ 0 in the preceding formulas yields the formulas for the
polar coordinates.
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3D Kinematics Kinematics in Spherical Coordinates

Kinematics in Cartesian Coordinates
Kinematics in Cylindrical Coordinates
Kinematics in Spherical Coordinates
Kinematics in Natural Coordinates
Discussion
Exercises
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3D Kinematics Kinematics in Spherical Coordinates

Position Vector in Spherical Coordinates

r(t) = r(t)n̂r

Relation Between Versors

n̂r = sin θ(n̂x cosϕ+ n̂y sinϕ) + n̂z cos θ

n̂ϕ = −n̂x sinϕ+ n̂y cosϕ

n̂θ = cos θ(n̂x cosϕ+ n̂y sinϕ)

Derivatives of Versors w.r.t. Time

˙̂nr = θ̇n̂θ + ϕ̇ sin θn̂ϕ
˙̂nϕ = −ϕ̇ sin θn̂r − ϕ̇ cos θn̂θ

˙̂nθ = −θ̇n̂r + ϕ̇ cos θn̂ϕ
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3D Kinematics Kinematics in Natural Coordinates

Kinematics in Cartesian Coordinates
Kinematics in Cylindrical Coordinates
Kinematics in Spherical Coordinates
Kinematics in Natural Coordinates
Discussion
Exercises
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3D Kinematics Kinematics in Natural Coordinates

Natural Coordinates

Versors:

n̂τ : tangent (along v )

n̂n: normal

n̂b: binormal

Velocity:

v(t) = vn̂τ

n̂τ = v
v = ṙ

|ṙ |
Assumption: the trajectory is not straight;

the particle moves in one direction.
n̂n =

˙̂nτ
| ˙̂nτ |

n̂b = n̂τ × n̂n
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3D Kinematics Kinematics in Natural Coordinates

Acceleration and Curvature

Acceleration

a = v̇ n̂τ︸︷︷︸
tangent component

+ v | ˙̂nτ |n̂n︸ ︷︷ ︸
normal component

Radius of Curvature

Rc =
v

| ˙̂nτ |

a = v̇ n̂τ︸︷︷︸
tangential component aτ

+ (v2/Rc)n̂n︸ ︷︷ ︸
normal component an
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3D Kinematics Discussion

Kinematics in Cartesian Coordinates
Kinematics in Cylindrical Coordinates
Kinematics in Spherical Coordinates
Kinematics in Natural Coordinates
Discussion
Exercises
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3D Kinematics Discussion

The Difference Between v̇ and v̇

The derivative of a vector v is the vector whose components are
derivatives of the components in the original vector. It is exactly the
acceleration of the particle. The derivative of a scalar v is the rate of
change of the magnitude of velocity. It is precisely the magnitude of
the tangential component of acceleration.

Example

Consider a particle moving with velocity v(t) =

 t
t2

t3

, so v̇ =

 1
2t
3t2

.

Now v =
√

t2 + t4 + t6, so v̇ = 2t+4t3+6t5

2
√

t2+t4+t6
.

Now the unit tangent vector n̂τ = v
|v | = 1√

t2+t4+t6

 t
t2

t3


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3D Kinematics Discussion

v̇ as Magnitude of Tangential Component of a

Example
Now the tangential component and normal component of the
acceleration can be calculated using the inner product of these unit
vectors and acceleration. The magnitude aτ = 〈a, n̂τ 〉 and an = 〈a, n̂n〉.

aτ =
1√

t2 + t4 + t6

〈 1
2t
3t2

 ,

 t
t2

t3

〉 =
t + 2t3 + 3t5
√

t2 + t4 + t6
= v̇

This results conforms with the assertion that v̇ is just the magnitude of
the tangential component aτ of the acceleration a = v̇ .

Then, applying the quotient rule for the derivative, we find the unit
normal vector:
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3D Kinematics Discussion

Calculating n̂n

Example

˙̂nτ =
1

t2 + t4 + t6


√

t2 + t4 + t6 − t 2t+4t3+6t5

2
√

t2+t4+t6

2t
√

t2 + t4 + t6 − t2 2t+4t3+6t5

2
√

t2+t4+t6

3t2
√

t2 + t4 + t6 − t3 2t+4t3+6t5

2
√

t2+t4+t6


| ˙̂nτ | =

√
t4 + 4t6 + t8

t2 + t4 + t6

n̂n =
˙̂nτ
| ˙̂nτ |

=
1√

t4 + 4t6 + t8


√

t2 + t4 + t6 − t 2t+4t3+6t5

2
√

t2+t4+t6

2t
√

t2 + t4 + t6 − t2 2t+4t3+6t5

2
√

t2+t4+t6

3t2
√

t2 + t4 + t6 − t3 2t+4t3+6t5

2
√

t2+t4+t6


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3D Kinematics Discussion

Calculating an

Example

an =
1√

t4 + 4t6 + t8

〈 1
2t
3t2

 ,


√

t2 + t4 + t6 − t 2t+4t3+6t5

2
√

t2+t4+t6

2t
√

t2 + t4 + t6 − t2 2t+4t3+6t5

2
√

t2+t4+t6

3t2
√

t2 + t4 + t6 − t3 2t+4t3+6t5

2
√

t2+t4+t6


〉

=

√
t8 + 4t6 + t4
√

t6 + t4 + t2

and we can check that a2
n + a2

τ = a2
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3D Kinematics Discussion

Role of the normal component an

Remarks

n̂τ ◦ n̂τ = 1 =⇒ d
dt

[n̂τ ◦ n̂τ ] = 0 =⇒ d
dt

n̂τ ◦ n̂τ + n̂τ ◦
d
dt

n̂τ = 0

Notice that ˙̂nτ is perpendicular to n̂τ because n̂τ has unit length. The
normal component of acceleration, therefore, only changes the
direction of velocity, and has no effect on the magnitude of velocity.
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3D Kinematics Discussion

Differential Geometry in Polar Coordinates

Changing r ,keeping ϕ constant, results in displacement along r , while
changing ϕ, keeping r constant, results in displacement perpendicular
to r . Putting these two kinds of changes in the form of infinitesimal
displacement vector: n̂r dr and n̂ϕrdϕ, we note that in fact,

dr︸︷︷︸
Infinitesimal displacement

= n̂r dr︸︷︷︸
Radial Component

+ n̂ϕrdϕ︸ ︷︷ ︸
Transversal Component

Therefore, by the Pythagoras’ theorem,

|dr |2 = (dr)2 + (rdϕ)2

In fact, this is exactly the case for velocity: we can decompose the
velocity into radial and transversal components, and exploit the fact
that they are mutually perpendicular to each other.
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3D Kinematics Exercises

Kinematics in Cartesian Coordinates
Kinematics in Cylindrical Coordinates
Kinematics in Spherical Coordinates
Kinematics in Natural Coordinates
Discussion
Exercises
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3D Kinematics Exercises
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3D Kinematics Exercises

A Parabolic Motion
A particle moves in the x − y plane so that

x(t) = at , y(t) = bt2

where a,b are positive constants. Find its trajectory, velocity, and
acceleration (its tangential and normal components).

Solution

The trajectory is y = b(x/a)2. The position vector r =

(
at
bt2

)
, so the

velocity is ṙ =

(
a

2bt

)
. The acceleration is r̈ =

(
0

2b

)
.

The unit tangent vector n̂τ = v
v = 1√

a2+4b2t2

(
a

2bt

)
.
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3D Kinematics Exercises

A Parabolic Motion

Solution (Continued)

The tangential component of acceleration aτ = 〈a, n̂τ 〉 n̂τ

aτ =
4b2t√

a2 + 4b2t2

1√
a2 + 4b2t2

(
a

2bt

)
=

1
a2 + 4b2t2

(
4ab2t
8b3t2

)
The normal component of acceleration an = a− aτ

an =
1

a2 + 4b2t2

(
−4ab2t

2b(a2 + 4b2t2)− 8b3t2

)
=

1
a2 + 4b2t2

(
−4ab2t

2ba2

)
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3D Kinematics Exercises

Relative Motion of Two Particles

Question
The velocities of two particles observe from a fixed frame of reference
are given in the Cartesian coordinates by vectors
v1(t) = (0,2,0) + (3,1,2)t2 and v2(t) = (1,0,1). At the initial instant of
time t = 0, the positions of these particles are r1(0) = (1,0,0), and
r2(0) = (0,1,1).
Find the positions of both particles and the acceleration of particle 1
(and its tangential and normal components), relative position, and
relative acceleration of particle 1 with respect to particle 2 at any
instant of time t .
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3D Kinematics Exercises

Relative Motion of Two Particles (Solution)

The positions are found as follows:
r1(t) = r1(0) +

∫ t
0 v1(τ)dτ = (1,0,0) + (0,2,0)t + (1,1/3,2/3)t3

r2(t) = r2(0) +
∫ t

0 v2(τ)dτ = (0,1,1) + (1,0,1)t
The acceleration of particle 1 and 2 are found as follows:
a1(t) = v̇1(t) = (6,2,4)t a2(t) = 0
The unit tangent vector for particle 1 is found as
n̂τ,1 = v1(t)

|v1(t)| = 1√
9t4+(2+t2)2+4t4

[(0,2,0) + (3,1,2)t2]

so the tangential component of acceleration is found as
aτ,1 =

〈
a1(t), n̂τ,1

〉
n̂τ,1 = t(18t2+4+2t2+8t2)

9t4+(2+t2)2+4t4 [(0,2,0) + (3,1,2)t2]
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3D Kinematics Exercises

Relative Motion of Two Particles (Continued Solution)

aτ,1 =
2(7t3+t)

7t4+2t2+2

 3t2

2 + t2

2t2

, so the normal component of accelration

an,1 = a1 − aτ,1 = 1
2+2t2+7t4

6t(2 + t2)
−26t3

4t(2 + t2)

. Check they are orthogornal!

The relative position of particle 1 w.r.t. particle 2 is

r1(t)− r2(t) = (1,−1,−1) + (−1,2,−1)t + (1,1/3,2/3)t3

The relative acceleration of particle 1 w.r.t. particle 2 is

a1(t)− a2(t) = (6,2,4)t
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3D Kinematics Exercises

Beetle on the Wheel

A disc of radius R rotates about its axis of symmetry (perpendicular to
the disk surface) with constant angular velocity ϕ̇ = ω = const . At the
instant of time t = 0 a beetle starts to walk with constant speed v0
along a radius of the disk, from its center to the edge. Find

1 the position of the beetle and its trajectory in the Cartesian and
polar coordinate systems,

2 its velocity in both systems,
3 its acceleration in both systems (Cartesian components, polar

components, as well as tangential and normal components).
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3D Kinematics Exercises

Beetle on the Wheel (Solution)

Position and Trajectory
In the Polar Coordinate system, r = v0t , ϕ = ωt . Hence in the
Cartesian Coordinate system, x(t) = v0t cosωt , y(t) = v0t sinωt . The
trajectory in the Polar coordinates is r = v0ϕ/ω. The trajectory in the
Cartesian coordinates is found by{

tanωt = y/x
x2 + y2 = v2

0 t2

so the trajectory is y/x = tan(ω
√

x2 + y2/v0), known as Archimedes’
spiral.
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3D Kinematics Exercises

Velocity

In the Polar Coordinate system, ṙ = v0, ϕ̇ = ω. Therefore,

vr = ṙ = v0, and vϕ = r ϕ̇ = v0ωt .

In the Cartesian Coordinate system, vx = ẋ(t) = v0 cosωt − ωv0t sinωt ,
vy = ẏ(t) = v0 sinωt + ωv0t cosωt .

Acceleration
In the Polar Coordinate system, r̈ = 0, and ϕ̈ = 0. Therefore,

ar = r̈ − r ϕ̇2 = −v0tω2 and aϕ = r ϕ̈+ 2ṙ ϕ̇ = 2v0ω.

In the Cartesian Coordinate system,
ax = ẍ(t) = −ωv0(2 sinωt + ωt cosωt), and
ay = ÿ(t) = ωv0(2 cosωt − ωt sinωt).

CAUTION: Tangential component is not radial component in this case.
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3D Kinematics Exercises

Tangential Component and Normal Component

Based on the previous results, we calculate v , with which we find the
magnitude of the tangential component of acceleration.

v =
√

v2
r + v2

ϕ = v0

√
1 + (ωt)2

aτ = v̇ = v0
ω2t√

1 + (ωt)2

Then we exploit the fact that the tangential and the normal
components are perpendicular to each other to find the magnitude of
the normal component from a: a =

√
a2

r + a2
ϕ = v0ω

√
(ωt)2 + 4

an =
√

a2 − a2
τ =

v0ω(2 + (ωt)2)√
1 + (ωt)2
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3D Kinematics Exercises

More on the Beetle

1 What is the distance covered by the beetle?

s =

∫ T

0
vdt =

∫ T

0
v0

√
1 + (ωt)2dt

= v0

(
1
2

T
√
ω2T 2 + 1 +

sinh−1(ωT )

2ω

)

2 What is the radius of curvature of the trajectory?

Rc =
v2

an
=

v0(1 + ω2t2)3/2

ω(2 + ω2t2)
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3D Kinematics Exercises

Hyperbolic Spiral Motion

Question
A particle moves along a hyperbolic spiral (i.e. a curve r = c/ϕ, where
c is a positive constant), so that ϕ(t) = ϕ0 + ωt , where ϕ0 and ω are
positive constants. Fint its velocity and acceleration (all components
and magnitudes of both vectors).

Solution

ϕ̇ = ω ṙ = −c/ϕ2 ·ω, so vr = −cω/(ϕ0 +ωt)2, and vϕ = ωc/(ϕ0 +ωt)
v =

√
v2

r + v2
τ = [ωc/(ϕ0 + ωt)2]

√
1 + (ϕ0 + ωt)2

ϕ̈ = 0 r̈ = (2ω2c)/ϕ3, so aϕ = r ϕ̈+ 2ṙ ϕ̇ = −2cω2/(ϕ0 + ωt)2

ar = r̈ − r ϕ̇2 = (2ω2c)/(ϕ0 + ωt)3 − ω2c/(ϕ0 + ωt)

a =
√

a2
ϕ + a2

r =
√

c2ω4(4+(ϕ0+ωt)4)
(ϕ0+ωt)6
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3D Kinematics Exercises

Hyperbolic Spiral Motion

Question
A particle moves along a hyperbolic spiral (i.e. a curve r = c/ϕ, where
c is a positive constant), so that ϕ(t) = ϕ0 + ωt , where ϕ0 and ω are
positive constants. Fint its velocity and acceleration (all components
and magnitudes of both vectors).

Solution

ϕ̇ = ω ṙ = −c/ϕ2 ·ω, so vr = −cω/(ϕ0 +ωt)2, and vϕ = ωc/(ϕ0 +ωt)
v =

√
v2

r + v2
τ = [ωc/(ϕ0 + ωt)2]

√
1 + (ϕ0 + ωt)2

ϕ̈ = 0 r̈ = (2ω2c)/ϕ3, so aϕ = r ϕ̈+ 2ṙ ϕ̇ = −2cω2/(ϕ0 + ωt)2

ar = r̈ − r ϕ̇2 = (2ω2c)/(ϕ0 + ωt)3 − ω2c/(ϕ0 + ωt)

a =
√

a2
ϕ + a2

r =
√

c2ω4(4+(ϕ0+ωt)4)
(ϕ0+ωt)6
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3D Kinematics Exercises

Four Crawling Spiders

Four spiders are initially placed at the four corners of a square with
side length l . The spiders crawl counter-clockwise at the same speed
v and each spider crawls directly toward the next spider at all times.
They approach the center of the square along spiral paths. Find

1 polar coordinates of a spider at any instant of time, assuming the
origin is at the center of the square.

2 the time after which all spiders meet.
3 the trajectory of a spider in polar coordinates.
4 the acceleration of a spider, and the radius of curvature at any

instant of time.
CAUTION: The transversal component is not the tangential
component in this case.
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3D Kinematics Exercises

Four Crawling Spiders (Solution)

Due to the symmetry of the problem, we study the spider starting at
r(0) = l/

√
2 and ϕ(0) = 0. Notice that the four spiders always lie on

the four corners of a square due to symmetry. Now the fact that one
spider always aims directly at the next spider is interpreted as each
spider having a radial velocity vr = −v/

√
2 and a transversal velocity

vϕ = v/
√

2. Therefore, ṙ = −v/
√

2 and ϕ̇ = (v/
√

2)/r(t). Now
r(t) = r(0) +

∫ t
0 ṙ(τ)dτ = l/

√
2− vt/

√
2, and ϕ(t) = ϕ(0) +

∫ t
0 ϕ̇(τ)dτ .

ϕ(t) =

∫ t

0

v
(l − vτ)

dτ =

∫ vt

0

ds
l − s

= −
∫ vt

0

ds
s − l

= −
∫ vt−l

−l

dw
w

so the polar coordinates are given by

r(t) =
l − vt√

2
ϕ(t) = − ln

(
vt − l
−l

)
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3D Kinematics Exercises

The time tf the spiders meet is the time when r(tf ) = 0, so tf = l/v
The trajectory of the spider is given by

ϕ = − ln

(√
2r
l

)

The acceleration of the spider is given by
a(t) = (r̈ − r ϕ̇2)n̂r + (r ϕ̈+ 2ṙ ϕ̇)n̂ϕ, where r̈ = 0 and
ϕ̈ = −[(v/

√
2)/r(t)2](−v/

√
2) = v2/(l − vt)2. Hence,

ar = −v2/[
√

2(l − vt)],
aϕ = v2/[

√
2(l − vt)] +

√
2(−v)(v/

√
2)/[(l − vt)/

√
2] =

−(
√

2− 1/
√

2)v2/(l − vt)

a =
√

a2
r + a2

ϕ = v2/(l − vt)
Since there is no tangential acceleration, this is the normal
acceleration, so the radius of curvature is (l − vt).
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3D Kinematics Exercises

A Numerical Animation

The animation works with Adobe Reader XI or Adobe Acrobat Reader
DC. Equivalent GIF is uploaded to CANVAS.
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3D Kinematics Exercises

1 void SpiderChase(Point* spiders,double* angle, int size){
2 double step=0.00004,newx,newy;
3 double distance=sqrt(pow((spiders[0].x-spiders[1].x),2)

+pow((spiders[0].y-spiders[1].y),2));
4 if (distance<=step*5.0){
5 spiders[0]={-1.0,1.0};spiders[1]={-1.0,-1.0};

spiders[2]={1.0,-1.0};spiders[3]={1.0,1.0};
6 distance=sqrt(pow((spiders[0].x-spiders[1].x)

,2)+pow((spiders[0].y-spiders[1].y),2));
7 }
8 for (int i=0;i<size;i++){
9 newx=spiders[i].x+step/distance*(spiders[(i+1)%

size].x-spiders[i].x);
10 newy=spiders[i].y+step/distance*(spiders[(i+1)%

size].y-spiders[i].y);
11 spiders[i]={newx,newy};
12 angle[i]=atan2(spiders[(i+1)%size].y-spiders[i

].y,spiders[(i+1)%size].x-spiders[i].x)-PI

*0.5;
13 }
14 }
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Force, Newton’s Laws, Linear Drag and Oscillators

1 Vectors, Coordinate Systems, and 1D Kinematics

2 3D Kinematics

3 Force, Newton’s Laws, Linear Drag and Oscillators

4 Driven Oscillations, Non-inertial FoRs

5 Work and Energy

6 Lagrangian Mechanics, Momentum, Center-of-Mass FoR

7 Angular Momentum, Rigid Body Dynamics

8 Equilibrium and Elasticity, Fluid Mechanics, Gravitation
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Force, Newton’s Laws, Linear Drag and Oscillators Force

Force
Newton’s Laws
Application of Newton’s Laws
Motion with Air/Fluid Drag
Simple and linearly damped Oscillator
Exercises
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Force, Newton’s Laws, Linear Drag and Oscillators Force

Force

Definition
Force is interaction between two objects or an object and its
environment. The interactions are of material origin. Force is a vector
quantity with SI unit Newton. 1 N = 1 kg ·m/s2

Several Forces
Normal Force When an object pushes on a surface, the surface
pushes back on the object in the direction perpendicular to the surface.
Friction When an object slides on a surface, the surface resists such
sliding parallel to the surface.
Tension A pulling force exerted on an object by rope/cord.
Weight Pull of gravity on an object.
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Force, Newton’s Laws, Linear Drag and Oscillators Newton’s Laws

Force
Newton’s Laws
Application of Newton’s Laws
Motion with Air/Fluid Drag
Simple and linearly damped Oscillator
Exercises
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Force, Newton’s Laws, Linear Drag and Oscillators Newton’s Laws

Newton’s First Law

Essence
An Inertial frame of reference exists.

Inertial frame of reference
A special class of frames of reference is inertial frames of reference,
where a particle acted upon by zero net force moves with constant
velocity. ∑

F = 0⇔ a = 0
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Force, Newton’s Laws, Linear Drag and Oscillators Newton’s Laws

Newton’s Second Law

In an inertial frame of reference (identified by the first law),
acceleration of a particle is directly proportional to the net force, and is
inversely proportional to the mass.

1 F 6= 0⇔ a 6= 0
2 a ∝ F
3 a ∝ 1/m

Equivalence of all Inertial FoRs (Galilean Invariation)

r(t) = rO′(t) + r ′(t)
v(t) = vO′(t) + v ′(t)
a(t) = a′(t)
Conclusion: Enough to have one inertial FoR.
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Force, Newton’s Laws, Linear Drag and Oscillators Newton’s Laws

Free Body Diagram

Definition
A free-body diagram is a sketch showing all forces acting upon an
object. When kinematics and dynamics are both involved, we sketch
two diagrams, with one diagram is sketched for
alertkinematics, and the other for dynamics.

Remarks
Newton’s Second Law bridges kinematics and dynamics.

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 91 / 289



Force, Newton’s Laws, Linear Drag and Oscillators Newton’s Laws

Newton’s Third Law

Statement
The mutual forces of action and reaction between two bodies are equal
in magnitude and opposite in direction.

Remarks
Newton’s third law allows us to consider several objects as a system
and ignore the internal forces of the system when we study the
kinematics and dynamics of the system as a whole.
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Force, Newton’s Laws, Linear Drag and Oscillators Application of Newton’s Laws

Force
Newton’s Laws
Application of Newton’s Laws
Motion with Air/Fluid Drag
Simple and linearly damped Oscillator
Exercises
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Force, Newton’s Laws, Linear Drag and Oscillators Application of Newton’s Laws

Particles in Static Balance

Now consider a person with mass
m1 = 60 kg standing on a board
with mass m2 = 20 kg. Ignoring
the friction between the rope and
the wheels and the mass of them.
How much force does the person
need to exert on the rope to keep
himself and the board static?
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Force, Newton’s Laws, Linear Drag and Oscillators Application of Newton’s Laws

Particles in Motion

Now consider the situation shown
in the figure. All the surfaces are

frictionless, and the weight of the
wheel and the ropes can be
ignored. Find the horizontal force
F and the stress N block M exerts
on the horizontal surface in the
following two cases:

1 There is no relative motion
among block m1, m2, and M

2 M is static
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Force, Newton’s Laws, Linear Drag and Oscillators Application of Newton’s Laws

Friction

Consider a brick sliding upward an inclined surface 30◦ to the
horizontal plane. Its initial speed is 1.5 m/s, and the coefficient of
kinetic friction µ =

√
3/12. How far is the brick from its initial position

after 0.5 s?
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Force, Newton’s Laws, Linear Drag and Oscillators Motion with Air/Fluid Drag

Force
Newton’s Laws
Application of Newton’s Laws
Motion with Air/Fluid Drag
Simple and linearly damped Oscillator
Exercises
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Force, Newton’s Laws, Linear Drag and Oscillators Motion with Air/Fluid Drag

Projectile Motion with Linear Drag

Question
Consider a particle launched with horizontal speed vx (0) and vertical
speed vy (0) from the origin. The drag is linear, i.e., f = −αv . Find its
position at time t .

ODE Solution as IVP{
mv̇x = −αvx

mv̇y = −mg − αvy
=⇒

{
dvx
vx

= −(α/m)dt
d(vy +mg/α)

vy +mg/α = −(α/m)dt
=⇒

{
ln(vx (t))− ln(vx (0)) = −(α/m)t
ln(vy (t) + mg/α)− ln(vy (0) + mg/α) = −(α/m)t

vx (t) = vx (0)e−(α/m)t vy (t) = (vy (0) + mg/α)e−(α/m)t −mg/α
x(t) = vx (0)(1− e−(α/m)t )m/α
y(t) = (vy (0) + mg/α)(1− e−(α/m)t )m/α−mgt/α
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Force, Newton’s Laws, Linear Drag and Oscillators Motion with Air/Fluid Drag

Free Fall with Quadratic Drag f = −kv2

Taking the vertically downward direction as the positive direction,

mv̇ = mg − kv2 =⇒ (k/m)v2 + v̇ = g

This is a Ricatti’s equation with one trivial solution being v =
√

mg/k .
v =

√
mg/k + 1/z, where z is the solution to

z ′ − (2
√

mg/k)(k/m)z = (k/m). Now z ′ − 2
√

g(k/m)z = 0 is the
homogeneous equation, zhom = Ce2

√
g(k/m)t , and a particular solution

is given by zpart = −
√

k/(mg)/2, so the general solution for v is

v =
√

mg/k +
1

Ce2
√

g(k/m)t −
√

k
4mg

Now the initial condition is v(0) = 0, so C = −
√

k/(4mg), the solution

v(t) =
√

mg/k − 1√
k

4mg e2
√

g(k/m)t +
√

k
4mg
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Force, Newton’s Laws, Linear Drag and Oscillators Simple and linearly damped Oscillator

Force
Newton’s Laws
Application of Newton’s Laws
Motion with Air/Fluid Drag
Simple and linearly damped Oscillator
Exercises
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Force, Newton’s Laws, Linear Drag and Oscillators Simple and linearly damped Oscillator

Simple Harmonic Oscillator

Definition
A simple harmonic oscillator is a particle under a net external force
proportional in magnitude to its displacement from equilibrium, and
towards equilibrium in direction. Such an external force is called the
restoring force.

In the case of 1 dimension,∑
F = −kx =⇒ ẍ = − k

m
x =⇒ ẍ +

k
m

x = 0

Characteristic equation s2 + k
m = 0, Characteristic roots s1,2 = ±j

√
k
m

General solution given by

x = C1es1t + C2es2t = A cos(ω0t) + B sin(ω0t)

where natural frequencyω0 =
√

k/m, so period T = 2π/ω = 2π
√

m/k
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Force, Newton’s Laws, Linear Drag and Oscillators Simple and linearly damped Oscillator

Harmonic Oscillator with Linear Damping

x is displacement from equilibrium, b > 0 is constant.

mẍ = −bẋ︸︷︷︸
Linear Drag

−kx

A linear, second order, homogeneous ODE with constant coefficients
is obtained:

ẍ +
b
m

ẋ +
k
m

x = 0

Characteristic Equation s2 + b
m s + k

m = 0, so Characteristic Roots

s1,2 =


−b±
√

b2−4km
2m if b2 > 4km

− b
2m if b2 = 4km

−b±j
√
−b2+4km
2m if b2 < 4km
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Force, Newton’s Laws, Linear Drag and Oscillators Simple and linearly damped Oscillator

Three Regimes: b2 vs. 4km

General solution

x = C1es1t + C2es2t if s1 6= s2 x = C1es1t + C2tes2t if s1 = s2

Overdamped Regime: b2 > 4km

x(t) = C1e
−
(

b
2m +

√
b2

4m2−ω
2
0

)
t

+ C2e
−
(

b
2m−

√
b2

4m2−ω
2
0

)
t

Critically Damped Regime: b2 = 4km

x(t) = C1e−
b

2m t + C2te−
b

2m t

Under Damped Regime: b2 < 4km

x(t) = e−
b

2m t
[
A cos

(√
ω2

0 −
b2

4m2 t
)

+ B sin

(√
ω2

0 −
b2

4m2 t
)]
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Force
Newton’s Laws
Application of Newton’s Laws
Motion with Air/Fluid Drag
Simple and linearly damped Oscillator
Exercises
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Mass on a Car

Question
Mass m hangs on a massless rope in a car moving with (a) constant
velocity v, (b) constant acceleration a on a horizontal surface. What is
the angle the rope forms with the vertical direction?

Solution
Recall: tension on a massless rope is along the rope. (a) The mass is
moving with constant velocity, i.e., zero net force. Now gravity and
tension are the only two forces on this mass, so they are equal in
magnitude and opposite in direction. Hence the rope is parallel to the
vertical direction. (b) Now the net force on the mass is ma, horizontal,
so the horizontal component of the tension is ma, and the vertical
component of the tension is mg. The rope forms arctan(a/g) with the
vertical direction.
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Sliding car on an Inclined Plane

Question
Mass m hangs on a massless rope in a car sliding down an inclined
plane (frictionless) at an angle α. What is the angle the rope forms with
the vertical direction?

Solution
Consider the mass sliding down the same inclined plane. It slides in an
identical fashion as the car. Apart from gravity, a normal force is
exerted on the mass perpendicular to the surface of the plane. The
parallel component of net force is completely due to gravity. Therefore,
when the mass is attached to the rope, to follow a same motion, the
parallel component of net force is also due to gravity. The tension shall
only contribute to the normal component. Therefore, the rope forms α
with the vertical direction.
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Monkey and Pulley

A monkey with mass m holds a rope hanging over a frictionless pulley
attached to mass M. Discuss the motion of the system if the monkey

1 does not move with respect to the rope,
2 climbs up the rope with constant velocity v0 with respect to the

rope,
3 climbs up the rope with constant acceleration a0 with respect to

the rope.
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Monkey and Pulley (Solution)

In case a and b, the monkey and the mass have accelerations that are
equal in magnitude and opposite in direction. The acceleration a must
satisfy Newton’s second law for both the monkey and the mass. For
the monkey,

ma = T −mg

for the mass,
Ma = Mg − T

Adding them together, we get a = M−m
M+m g. For case c, let a denote the

acceleration of the mass.

m(a + a0) = T −mg Ma = Mg − T

so we get a = Mg−m(g+a0)
M+m
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Free Fall with Quadratic Air Drag (Continued)

Question
Consider fall of an object (mass m) without initial speed. Assuming
quadratic air drag. Find the time dependence of the object’s velocity
and position. Find the terminal speed (Sol. to Velocity on Slide 99).

Solution

Taking downward as positive. f = −kv2 =⇒ a = g − k
m v2.

v(t) =

√
mg
k
−
√

4mg
k

1

e2
√

gk/mt + 1

x(t) = x(0) +

√
mg
k

t −
√

4mg
k

2
√

gk/mt + ln 2− ln(1 + e2
√

gk/mt )

2
√

gk/m
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Separation of Variables Approach

It turns out that the ODE on Slide 99 can be solved using separation of
variables!

dv
dt

= g − k
m

v2 =⇒ dv
(v +

√
mg/k)(v −

√
mg/k)

= − k
m

dt

d(v −
√

mg/k)

v −
√

mg/k
−

d(v +
√

mg/k)

v +
√

mg/k
= −2

√
kg/mdt

v(t) =

√
mg
k

1− e−2
√

kg/mt

1 + e−2
√

kg/mt
= vterminal tanh(

√
kg/mt)

x(t) = x(0) +
m
k

[
ln(cosh(

√
kg/mt))

]
where cosh(x) = ex +e−x

2
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Oscillation at the bottom of a Pot

Question
Discuss motion of a particle that is placed on the inner surface of a
spherical pot, close to its bottom, and released from hold (no friction).

Solution
The potential energy of the particle x from the axis of symmetry of the
pot is U = −mg

√
R2 − x2. Our goal is to find the coefficient for the

quadratic term in the analytic expansion of the potential energy, and
conclude that it is a simple harmonic oscillation around the bottom of
the potential well. The bottom of the potential well is identified at
U ′(x0) = 0 and U ′′(x0) > 0.

Coefficients of Series Expansion
Suppose within the radius of convergence around x0 f is analytic,
f (x) =

∑∞
n=0 an(x − x0)n
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Coefficients of Series Expansion

f (x) = a0 + a1(x − x0) + a2(x − x0)2 + a3(x − x0)3 + . . .

f ′(x) = a1 + 2a2(x − x0) + 3a3(x − x0)2 + 4a4(x − x0)3 + . . .

f ′′(x) = 2a2 + 6a3(x − x0) + 12a4(x − x0)2 + 20a5(x − x0)3 + . . .

Our goal is to determine an, and in fact we can calculate an by
differentiating both sides n times and taking the value at x0.
f (x0) = a0; f ′(x0) = a1; f ′′(x0) = 2a2; f ′′′(x0) = 6a3. In general,

f (n)(x0) = n!an =⇒ an =
f (n)(x0)

n!
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

Oscillation at the bottom of a Pot (Continued)

Now in our case, U = −mg
√

R2 − x2, U ′ = −mg −2x
2
√

R2−x2
,

U ′′ = mg

√
R2−x2−x −2x

2
√

R2−x2

(R2−x2)
= mg (R2−x2)+x2

(R2−x2)3/2 = mgR2

(R2−x2)3/2 so x0 = 0.

U =
∑∞

n=0 an(x − x0)n, a1 = 0, a2 = mgR2

2R3 = mg
2R Therefore, the

restoring force F = −U ′ = −a1 − 2a2(x − x0) +
∑∞

n=3 nan(x − x0)n−1.
When x is close to x0, F ≈ −2a2(x − x0), so when the amplitude is
small, the motion is approximated by a simple harmonic oscillation with

natural frequency ω0 =
√

2a2
m =

√
g
R and period T = 2π

ω0
= 2π

√
R
g
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

A More Difficult Pot

Question
The same pot with cross-section in the shape of a cycloid placed
upside-down

x = R(γ + sin γ), y = R(1− cos γ) where− π ≤ γ ≤ π

Solution
We still want to find evidence that the oscillation is simple harmonic,
but this time we have to go with the parametrized form. Suppose the
particle is in such a position that γ = θ close to 0. We need to exploit
the Series expansion of sine and cosine: cos θ =

∑∞
n=0(−1)n θ2n

(2n)! and

sin θ =
∑∞

n=0(−1)n θ2n+1

(2n+1)! The potential energy of the particle is
U = mgR(1− cos θ) = mgR(1− (1− 1

2θ
2) + o(θ2)) = 1

2mgRθ2 + o(θ2)
x = R(θ + θ + o(θ2)) = 2Rθ + o(θ2)
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Force, Newton’s Laws, Linear Drag and Oscillators Exercises

A More Difficult Pot (Continued)

Now U = 1
2mgRθ2 + o(θ2) and x = 2Rθ+ o(θ2). dx

dθ = 2R + o(θ), so by
the inverse function theorem (Use series expansion to see o(θ)),

dθ
dx

=
1

2R + o(θ)︸︷︷︸
A polynomial

=
1

2R
+ o(θ)

Restoring force

F = −dU
dx

= −dU
dθ

dθ
dx

= −[mgRθ + o(θ)][
1

2R
+ o(θ)] = −mgθ

2
+ o(θ)

F
x

=
−mgθ/2 + o(θ)

2Rθ + o(θ2)
≈ −mg

4R

so the natural frequency of the simple harmonic oscillation is

ω0 =
√

g
4R , and the period is T = 2π

ω0
= 2π

√
4R
g
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Driven Oscillations, Non-inertial FoRs

1 Vectors, Coordinate Systems, and 1D Kinematics

2 3D Kinematics

3 Force, Newton’s Laws, Linear Drag and Oscillators

4 Driven Oscillations, Non-inertial FoRs

5 Work and Energy

6 Lagrangian Mechanics, Momentum, Center-of-Mass FoR

7 Angular Momentum, Rigid Body Dynamics

8 Equilibrium and Elasticity, Fluid Mechanics, Gravitation
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Driven Oscillations, Non-inertial FoRs Driven Oscillations

Driven Oscillations
Non Inertial FoR
The Earth as a Frame of Reference
Discussion
Exercises
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Driven Oscillations, Non-inertial FoRs Driven Oscillations

Driven Oscillations

Definition
A driven oscillation in our context is a linearly damped simple harmonic
oscillation under a periodic driving force.

Equation of Motion

d2x
dt2 +

b
m

dx
dt

+
k
m

x =
F0

m
cosωdr t

This is an inhomogeneous, second order, linear ODE with constant
coefficients.

Applying Laplace Transform on Both Sides

s2X (s)− sx(0−)− x ′(0−) +
b
m

(sX (s)− x(0−)) +
k
m

X (s) =
F0

m
s

s2 + ω2
dr
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Driven Oscillations, Non-inertial FoRs Driven Oscillations

Laplace Transformed Equation

(s2 +
b
m

s +
k
m

)X (s) =
F0

m
s

s2 + ω2
dr

+ (s +
b
m

)x(0−) + x ′(0−)

Suppose there are two distinct roots s1 and s2 for s2 + b
m s + k

m = 0,
then assuming zero state x(0−) = 0 and x ′(0−) = 0, there are four
distinct first-order poles.

X (s) =
F0

m
s

(s + jωdr )(s − jωdr )(s − s1)(s − s2)

X (s) =
F0

m

[
E

s + jωdr
+

B
s − jωdr

+
C

s − s1
+

D
s − s2

]
To perform Inverse Laplace Transform, we need to expand X (s) into a
sum of first order fractions.
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Driven Oscillations, Non-inertial FoRs Driven Oscillations

Partial Fraction Expansion, Inverse Laplace Transform

E = s
(s−jωdr )(s−s1)(s−s2)

∣∣∣
s=−jωdr

= 1
2(s1s2+(s1+s2)jωdr−ω2

dr )

B = s
(s+jωdr )(s−s1)(s−s2)

∣∣∣
s=jωdr

= 1
2(s1s2−(s1+s2)jωdr−ω2

dr )

C = s
(s2+ω2

dr )(s−s2)

∣∣∣
s=s1

= s1
(s2

1+ω2
dr )(s1−s2)

D = s
(s2+ω2

dr )(s−s1)

∣∣∣
s=s2

= s2
(s2

2+ω2
dr )(s2−s1)

X (s) =
F0

m

[
E

s + jωdr
+

B
s − jωdr

+
C

s − s1
+

D
s − s2

]
Applying the Inverse Laplace Transform on both sides, for t > 0,

x(t) =
F0

m

[
Ee−jωdr t + Be+jωdr t + Ces1t + Des2t

]
Be aware that Re{s1} = Re{s2} = − b

2m < 0, so Ces1t + Des2t decays.
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Driven Oscillations, Non-inertial FoRs Driven Oscillations

Sinusoidal Steady-State Response

The other two terms are complex exponentials that are oscillating.
Now s1s2 = k

m , and s1 + s2 = − b
m , so E = 1

2( k
m−

b
m jωdr−ω2

dr )
, and

B = 1
2( k

m + b
m jωdr−ω2

dr )
. x(t) = 2F0

m |B| cos(ωdr t + ∠B), so the amplitude of

the sinusoidal steady state response is A = F0

m
√

(k/m−ω2
dr )2+(bωdr/m)2

and

the phase lag ϕ satisfies tanϕ = bωdr
mω2

dr−k . Therefore,

x(t) = A cos(ωdr t + ϕ), where the amplitude of the sinusoidal steady
state response is

A =
F0

m
√

(k/m − ω2
dr )2 + (bωdr/m)2

and the phase lag (ϕ takes value from 0 to −π) ϕ satisfies

tanϕ =
bωdr

mω2
dr − k
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Driven Oscillations, Non-inertial FoRs Non Inertial FoR

Driven Oscillations
Non Inertial FoR
The Earth as a Frame of Reference
Discussion
Exercises
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Driven Oscillations, Non-inertial FoRs Non Inertial FoR

Start with Position Vector

Einstein’s notation rαn̂α =
∑

α=x ,y ,z rαn̂α.

r(t) = rO′(t) + r ′(t)

Differentiate both sides w.r.t. time,

dr
dt

= v =
drO′(t)

dt
+

dr ′(t)
dt

= vO′ +
dr ′(t)

dt

Now dr ′(t)
dt = d

dt (rα′ n̂α′) = ṙα′ n̂α′ + rα′ ˙̂nα′ = v ′ + rα′ ˙̂nα′
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Driven Oscillations, Non-inertial FoRs Non Inertial FoR

Derivative ˙̂nα′

|dn̂α′ | = dχ|n̂α′ | sinα, so define vector dχ as the vector along the
instantaneous axis of rotation, such that dχ is the angle that the tips of
n̂α′(t), n̂α′(t + dt) form over time dt . Then (ω = dχ

dt )

dn̂α′ = dχ× n̂α′
dn̂α′
dt

=
dχ
dt
× n̂α′ = ω × n̂α′
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Driven Oscillations, Non-inertial FoRs Non Inertial FoR

Velocity and Acceleration in Non Inertial FoR

The upshot of all these calculations is that the motion of a particle
observed in one Inertial FoR OXYZ and one Non Inertial FoR
O′X ′Y ′Z ′ described by the relation r(t) = rO′(t) + r ′(t) and that the
axes of O′X ′Y ′Z ′ rotates with angular velocity ω in OXYZ around O′

has velocity relation

v = vO′ + v ′ + (ω × r ′)

and acceleration relation

a = aO′ + a′ + 2ω × v ′ +
dω
dt
× r ′ + ω × (ω × r ′)

or, multiplying by mass m and noting that ma = F ,

ma′ = F −maO′ −m
dω
dt
× r ′ − 2m(ω × v ′)−mω × (ω × r ′)︸ ︷︷ ︸

Pseudo Forces
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Driven Oscillations, Non-inertial FoRs Non Inertial FoR

Pseudo Forces

Term Name Cause
−maO′ d’Alembert “force” acceleration of O’
−m dω

dt × r ′ Euler “force” angular acceleration of O’
−2mω × v ′ Coriolis “force” motion in O’ and rotation of O’
−mω × (ω × r ′) Centrifugal “force” rotation of O’

On Slide 180, a comparison is made among solutions using Non
Inertial FoR and Lagrangian Mechanics.
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Driven Oscillations, Non-inertial FoRs The Earth as a Frame of Reference

Driven Oscillations
Non Inertial FoR
The Earth as a Frame of Reference
Discussion
Exercises
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Driven Oscillations, Non-inertial FoRs The Earth as a Frame of Reference

The Earth as a Frame of Reference

The Earth is a non-inertial frame of reference that performs orbital
motion and rotational motion.

ma′ = F −ma0 −mω × (ω × r ′)− 2m(ω × v ′)

The gravitational attraction of the sun F sun provides the mass m with
ma0, so for objects on the earth under gravity,

ma′ = F earth −mω × (ω × r ′)− 2m(ω × v ′)

In general, the earth can be treated as an inertial frame of reference
with a good approximation, but when v ′ is large (such as the velocity of
a missile), the Coriolis “force” becomes more significant.
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Driven Oscillations, Non-inertial FoRs Discussion

Driven Oscillations
Non Inertial FoR
The Earth as a Frame of Reference
Discussion
Exercises
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Driven Oscillations, Non-inertial FoRs Discussion

Phase Lag of Driven Oscillation

x(t) = A cos(ωdr t + ϕ)

Figure: Relation between Phase Lag ϕ and Driving Frequency f . Notice how
x(t) is defined.
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Driven Oscillations, Non-inertial FoRs Discussion

Harmonic Oscillator in 2D: Lissajous Figures

The position coordinates of a 2D Harmonic Oscillator are given by{
x(t) = A cos(ωx t − ϕx )

y(t) = B cos(ωy t − ϕy )

A special case is ωx = ωy , and ϕx = 0, in which case we can observe
the phase lag using Lissajous Figures.
Weisstein, Eric W. “Lissajous Curve.” From MathWorld–A Wolfram
Web Resource.
http://mathworld.wolfram.com/LissajousCurve.html
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Driven Oscillations, Non-inertial FoRs Discussion

ϕy = π/2, π/3, π/4

ϕy = π, 3π/5, 2π.

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 132 / 289



Driven Oscillations, Non-inertial FoRs Discussion

Consequences of Coriolis Force in Nature

http://csep10.phys.utk.edu/astr161/lect/earth/
coriolis.html The following diagram on the left illustrates the effect
of Coriolis forces in the Northern and Southern hemispheres.

This produces the prevailing surface winds illustrated in the figure on
the right.
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Driven Oscillations, Non-inertial FoRs Discussion

Cyclones and anticyclones

The wind flow around high pressure (anticyclonic) systems is
clockwise in the Northern hemisphere and counterclockwise in the
Southern hemisphere. The corresponding flow around low pressure
(cyclonic) systems is counterclockwise in the Northern hemisphere
and clockwise in the Southern hemisphere.
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Driven Oscillations, Non-inertial FoRs Discussion

Centrifugal force and Centripetal force

We CANNOT say that there is a centrifugal force and a centripetal
force acting upon a particle at the same time. When we state a
centrifugal force, we are describing the effect of a pseudo force in a
non-inertial FoR. When we state a centripetal force, we are describing
the effect of some concrete force in an inertial FoR.
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Driven Oscillations, Non-inertial FoRs Exercises

Particle Sliding down a fixed Hemisphere: Zero State

Question
A particle with mass m slides with 0 initial speed from the top of a fixed
frictionless hemisphere with radius R. Find the place where the
particle loses contact with the surface of the ball. What is its speed at
this instant?

Solution
The moment the mass loses contact with the surface of the ball, the
mass is just able to maintain a circular motion using the normal
component of gravity. Suppose it traverses θ from the top,
v =

√
2gR(1− cos θ), and m v2

R = mg cos θ. Therefore, θ = arccos 2
3 ,

and v =
√

2gR/3.
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Driven Oscillations, Non-inertial FoRs Exercises

Particle Sliding down a fixed Hemisphere

Question
A particle with mass m slides with 0 initial speed from the top of a fixed
frictionless hemisphere with radius R. Find the place where the
particle loses contact with the surface of the ball. What is its speed at
this instant?

Solution
The moment the mass loses contact with the surface of the ball, the
mass is just able to maintain a circular motion using the normal
component of gravity. Suppose it traverses θ from the top,

v =
√

v2
0 + 2gR(1− cos θ), and m v2

R = mg cos θ. Therefore,

θ = arccos
[

v2
0 +2gR
3gR

]
, and v =

√
(v2

0 + 2gR)/3.
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Driven Oscillations, Non-inertial FoRs Exercises

Angle the Surface of Liquid Forms

Question
A box is filled with a liquid and is placed on a horizontal surface. Find
the angle that the surface of the liquid forms with the horizontal surface
if we pull the box with acceleration a.

Solution
The surface of the liquid can only exert pressure on the liquid particles
at the surface of the liquid, so study the force along the surface. Either
an Inertial FoR or an Non-Inertial FoR works. α = arctan(a/g).
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Driven Oscillations, Non-inertial FoRs Exercises

Stay on a Rotating Plane

Question
A plane, inclined at an angle α to the horizontal, rotates with constant
angular speed ω about a vertical axis (see the figure). Where on the
inclined plane should we place a particle, so that it remains at rest?

The plane is frictionless.

Solution
The plane can only support the particle in the normal direction, so
study the force along the plane. tanα = ω2R

g , R = g
ω2 tanα.
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Driven Oscillations, Non-inertial FoRs Exercises

Bead on a Hoop

Question
A small bead can slide without friction on a circular hoop that is in a
vertical plane and has a radius R. Find points on the hoop, such that if
we place the bead there it will remain at rest. Acceleration due to

gravity is g.

Solution

tan(ϕ) = ω2R sinϕ
g , so cosϕ = g

ω2R , ϕ = arccos(g/(ω2R))
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Driven Oscillations, Non-inertial FoRs Exercises

Foucault Pendulum on the Equator

Question
Will the oscillation plane of a Foucault pendulum, that is placed on the
equator, rotate?

Solution

No. The rotation of the oscillation plane is due to ω × v ′. Now ω × v ′
lies in the plane of oscillation.
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Driven Oscillations, Non-inertial FoRs Exercises

Mass inside a Rotating Pipe

Question
A particle with mass m is inside a pipe that rotates with constant
angular velocity ω about an axis perpendicular to the pipe. The kinetic
coefficient of friction is equal to µk . Write down (do not solve!) the
equation of motion for this particle in the non-inertial frame of
reference of the rotating pipe.

There is no gravitational force in this problem.
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Driven Oscillations, Non-inertial FoRs Exercises

Mass inside a Rotating Pipe (Solution)

ma′ = F −maO′ −m dω
dt × r ′ − 2m(ω × v ′)−mω × (ω × r ′) There are

two concrete forces (normal force and friction) and two pseudo forces
(Coriolis “force” and Centrifugal “force”) in this non inertial FoR. Now
set O′X ′ along the pipe, O′Z ′ along the axis of rotation. F = N + f .
Furthermore, there is no acceleration along O′Y ′ and O′Z ′. Now

ω = ωn̂z′ , and v ′ = v ′n̂x ′ , so ω × v ′ = ωv ′n̂y ′ .

Furthermore, f = f n̂x ′ , so the balance in O′Y ′ direction tells
N − 2m(ω × v ′) = 0, i.e., N = 2mωv ′n̂y ′ . Centrifugal force is
−mω × (ωn̂z′ × r n̂x ′) = −mω × ωr n̂y ′ = −mω2r n̂z′ × n̂y ′ = mω2r n̂x ′ .
As long as the mass is sliding (in which case it has to be sliding along
the positive direction of the O′X ′ axis), f = −2µkmωv ′n̂x ′ , so the
motion of equation in this non inertial FoR is given by

a′ = (ω2r − 2µkωv ′)n̂x ′
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Work and Energy

1 Vectors, Coordinate Systems, and 1D Kinematics

2 3D Kinematics

3 Force, Newton’s Laws, Linear Drag and Oscillators

4 Driven Oscillations, Non-inertial FoRs

5 Work and Energy

6 Lagrangian Mechanics, Momentum, Center-of-Mass FoR

7 Angular Momentum, Rigid Body Dynamics

8 Equilibrium and Elasticity, Fluid Mechanics, Gravitation
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Work and Energy Work and Energy; Power

Work and Energy; Power
Potential Force Fields
Potential Energy
Non-conservative Forces
Exercises
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Work and Energy Work and Energy; Power

Work

Definition

Elementary work δW done by F when particle moves from r to r + dr

δW := F ◦ dr

Total work wAB when particle moves from A to B along curve ΓAB is
the line integral of the force field

wAB =

∫
ΓAB

F ◦ dr

Line Integral Along Parametrized Curve (Discussed in Calculus III)
If we calculate the line integral using a concrete parametrization
γ : I → C, we obtain

∫
C∗ Fds =

∫
I 〈F (γ(t)), γ′(t)〉 dt
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Work and Energy Work and Energy; Power

Line Integral: Example

Example
Calculate ∮

C+

(
y2

3xy

)
ds

where C+ is the positively oriented curve

C =
{

(x , y) ∈ R2 : x2 + y2 = 1, y > 0
}
∪{

(x , y) ∈ R2 : y = 0,−1 ≤ x ≤ 1
}
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Work and Energy Work and Energy; Power

We choose these two parameterizations:

γ1 : [0, π]→ R3 : t 7→

cos t
sin t

0

 γ2 : [−1,1]→ R3 : t 7→

 t
0
0


∮
C+

y2dx + 3xydy

=

∫ π

0

〈(
sin2 t

3 cos t sin t

)
,

(
− sin t
cos t

)〉
dt +

∫ 1

−1

〈(
0
0

)
,

(
1
0

)〉
dt

=

∫ π

0
(− sin3 t + 3 cos2 t sin t)dt + 0

=

∫ π

0
−(− sin2 t + 3 cos2 t)d(cos t)

=

∫ π

0
[(1− cos2 t)− 3 cos2 t ]d cos t

=− 1− 1 + (−4/3)(−1− 1) = 2/3

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 149 / 289



Work and Energy Work and Energy; Power

Kinetic Energy, Work-Kinetic Energy Theorem

Recall that δw = F ◦ dr , and exploiting v2 = v ◦ v ,

δw
dt

= F ◦ dr
dt

= F ◦ v = ma ◦ v = d
1
2

mv2

so kinetic energy is defined as K = 1
2mv2

Work-Kinetic Energy Theorem
The work done by the net force on a particle is equal to the change in
the particle’s kinetic energy.

δw = dK

or, for finite increments,
w = ∆K
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Work and Energy Work and Energy; Power

Power

Power characterizes how fast work is being done.

Definition
Instantaneous power

δw
dt︸︷︷︸

rate of work done

= F ◦ v = P︸︷︷︸
instantaneous power

Definition
Average power

work done in the interval (t ,t+∆t)︷︸︸︷
w
δt

= Pav︸︷︷︸
average power
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Work and Energy Potential Force Fields

Work and Energy; Power
Potential Force Fields
Potential Energy
Non-conservative Forces
Exercises
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Work and Energy Potential Force Fields

Potential Force Fields

Definition

If there exists a scalar function u of x , y , z such that F = −∇u, then
the force field is called potential (conservative).
−∇u = (−∂u

∂x

∣∣
x ,y ,z , −

∂u
∂y

∣∣∣
x ,y ,z

, −∂u
∂z

∣∣
x ,y ,z)

Properties

Work done by F depends only on the final position and initial position.

w = u(rfinal)− u(rinitial)

Criteria

In a simply connected region, F is conservative if and only if rotF = 0.
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Work and Energy Potential Force Fields

Rotation (Curl) of F

rotF = ∇× F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
×
(
Fx ,Fy ,Fz

)
=

(
∂

∂y
Fz −

∂

∂z
Fy ,

∂

∂z
Fx −

∂

∂x
Fz ,

∂

∂x
Fy −

∂

∂y
Fx

)

Simply Connected
The concept simply connected can be interpreted as being possible to
retract a rubber band within the region to any point in the region.
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Work and Energy Potential Energy

Work and Energy; Power
Potential Force Fields
Potential Energy
Non-conservative Forces
Exercises
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Work and Energy Potential Energy

Potential Energy

To find the potential energy once we have proved that a force field is
conservative, we need to find a compatible u for all three integrations∫

Fx dx + Cx (y , z),
∫

Fy dy + Cy (x , z), and
∫

Fzdz + Cz(x , y).

Example

Consider F = xn̂x + yn̂y + zn̂z , so
∫

Fx dx = 1
2x2 + Cx (y , z),∫

Fy dy = 1
2y2 + Cy (x , z),

∫
Fzdz = 1

2z2 + Cz(x , y), we decide
−u(x , y , z) = 1

2x2 + 1
2y2 + 1

2z2 + C
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Work and Energy Potential Energy

Conservation of Mechanical Energy in Potential Fields

Suppose F is the net force on a particle and F is conservative, then
δw = F ◦ dr = −dU. Now by the work-kinetic energy theorem,
δw = dK , so d(K + U) = 0, K + U = const . The constant is the
mechanical energy of the particle in this Potential Field.
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Work and Energy Non-conservative Forces

Work and Energy; Power
Potential Force Fields
Potential Energy
Non-conservative Forces
Exercises
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Work and Energy Non-conservative Forces

Non-conservative Forces

If non-conservative forces present, then the work done by
non-conservative forces is equal to the change in the total mechanical
energy. In fact, wn−cons = −∆uint , i.e., internal energy (other form of
energy). The sum of all these energies is constant. In other words,

∆K + ∆U + ∆Uint = 0

This is the law of conservation of total energy.

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 159 / 289



Work and Energy Non-conservative Forces

Energy Diagrams
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Work and Energy Non-conservative Forces

1D Energy Diagram; Harmonic Approximation

Harmonic approximation of oscillation in the vicinity of a stable
equilibrium x0:

U(x) ≈ U(x0) +
1
2

U ′′(x0)(x − x0)2

ω0 =
√

U′′(x0)
m , x(t) = x(0) + A cos(ω0t + ϕ).
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Work and Energy Exercises

Work and Energy; Power
Potential Force Fields
Potential Energy
Non-conservative Forces
Exercises
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Work and Energy Exercises

Pull a Cylinder out of Liquid

Question
A uniform cylinder of mass m, radius R, and height h is floating
vertically in a liquid, so that it is half-immersed in the liquid. Find the
density of the liquid and minimum work needed to pull the cylinder
completely above the liquid’s surface.

Solution

mg = 1
2ρgπR2h, so the density of the liquid ρ = 2m

πR2h . The minimum
work is attained when we pull the cylinder slowly so that the kinetic
energy is always almost 0.
Consider the cylinder has been pulled up by x . The pulling force F is
F = mg − h/2−x

h/2 mg = x
h/2mg, so by definition,

w =
∫ h/2

0 Fdx = 2mg
h

1
2(h/2)2 = mg

4h
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Work and Energy Exercises

Find Work

Question
Find work done by the force F1(x , y) = −xn̂x − yn̂y and by the force
F2(x , y) = (2xy + y)n̂x + (x2 + 1)n̂y if the particle is being moved from
(−1,0) to (0,1) along

1 the straight line connecting these points
2 the (shorter) arc of the circle x2 + y2 = 1
3 the axes of the Cartesian coordinate system: first from (−1,0) to

(0,0) along the x axis, then from (0,0) to (0,1) along the y axis.

Parametrization
1 γ : [0,1]→ R2, γ(t) = (t − 1, t)
2 γ : [π, π/2]→ R2, γ(t) = (cos t , sin t)
3 t ∈ [0,1], γ1(t) = (t − 1,0), γ2(t) = (0, t)
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Work and Energy Exercises

Find Work (Solution)

1 w1 =
∫ 1

0

〈(−t+1
−t

)
,
(1

1

)〉
dt =

∫ 1
0 −2t + 1dt = −t2 + t

∣∣1
0 = 0

w2 =
∫ 1

0

〈(2(t−1)t+t
(t−1)2+1

)
,
(1

1

)〉
dt =

∫ 1
0 3t2 − 3t + 2dt = 3/2

2 w1 =
∫ π/2
π

〈(− cos t
− sin t

)
,
(− sin t

cos t

)〉
dt = 0

w2 =
∫ π/2
π

〈(2 sin t cos t+sin t
cos2 t+1

)
,
(− sin t

cos t

)〉
dt =

− t
2 + 5 sin(t)

4 + 1
4 sin(2t) + 1

4 sin(3t)
∣∣∣π/2

π
= 4+π

4

3 w1 =
∫ 0
−1(−x)dx +

∫ 1
0 (−y)dy = 1/2− 1/2 = 0

w2 =
∫ 0
−1(2xy + y)dx

∣∣∣
y=0

+
∫ 1

0 (x2 + 1)dy
∣∣∣
x=0

= 1

Notice that F1(r) = −r , F1 is central force, so the work done is path
independent (proved in a later section).
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Work and Energy Exercises

Visualized Force Field F1 (Left) and F2 (Right)
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Figure: Force Field F1 (Left) and F2 (Right)
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Work and Energy Exercises

F3 = 1
r2 n̂r , F4 = sin(r)n̂r
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Figure: 3D Vector Plot of F3 on the left, and 2D Vector Plot of F4 on the right.
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Work and Energy Exercises

Find Work

Question

Find the work the force F(r) = (x2 − y , z,1) does on a particle that is
being moved from (0,0,0) to (1,1,1) along

1 straight line connecting these points
2 the curve given in the parametric form:

x(t) = t , y(t) = t2, z(t) = 1
2 t(t + 1), where 0 ≤ t ≤ 1.

Solution
1 A parametrization is given by γ : [0,1]→ R3, γ(t) = (t , t , t),

w =
∫ 1

0 (t2 − t , t ,1) ◦ (1,1,1)dt = 4
3

2 w =
∫ 1

0 (t2 − t2, 1
2 t(t + 1),1) ◦ (1,2t , t + 1

2)dt=
1
4 t4 + 1

3 t3 + 1
2 t2 + 1

2 t
∣∣1
0 = 19

12
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Work and Energy Exercises

Check whether Conservative

Question
Check whether the following force fields are conservative. Find the
corresponding potential energy for those that are.

1 F(r) = (−y2z − 3y ,−xz2 + 4yz − 3x ,−2xyz + 2y2 + 1)

2 F(r) = (x2 + y2, y2 + z2, z)

Solution
1 ∇× F =

((−2xz+4y)−(−2xz+4y), (−y2)−(−2yz), (−z2−3)−(−2yz−3))
not conservative.

2 ∇× F = ((0)− (2z), (0)− (0), (0)− (2y)) not conservative.
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Work and Energy Exercises

Central Forces are Conservative

F(r) = f (r)n̂r is an expression given in the spherical coordinate. http:
//hyperphysics.phy-astr.gsu.edu/hbase/curl.html, so

∇× F =

∣∣∣∣∣∣∣
n̂r

r2 sin θ
n̂θ

r sin θ
n̂φ
r

∂
∂r

∂
∂θ

∂
∂φ

f (r) 0 0

∣∣∣∣∣∣∣ = 0

Otherwise, we need to convert to the Cartesian Coordinates and use
chain rule on f (r).

∇× F =

∣∣∣∣∣∣∣∣
n̂x n̂y n̂z
∂
∂x

∂
∂y

∂
∂z

xf (
√

x2+y2+z2)√
x2+y2+z2

yf (
√

x2+y2+z2)√
x2+y2+z2

zf (
√

x2+y2+z2)√
x2+y2+z2

∣∣∣∣∣∣∣∣
W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 170 / 289

http://hyperphysics.phy-astr.gsu.edu/hbase/curl.html
http://hyperphysics.phy-astr.gsu.edu/hbase/curl.html


Work and Energy Exercises

Central Forces are Conservative (Continued)

〈
∇× F , n̂x

〉
=

zfr (r) 2y
2
√

x2+y2+z2

√
x2 + y2 + z2

(x2 + y2 + z2)
−

zf (r) 2y
2
√

x2+y2+z2

(x2 + y2 + z2)


−

yfr (r) 2z
2
√

x2+y2+z2

√
x2 + y2 + z2

(x2 + y2 + z2)
−

yf (r) 2z
2
√

x2+y2+z2

(x2 + y2 + z2)


= 0

where fr (r) = df (·)
dr

∣∣∣
r
, and the other three components can also be

shown as 0 in an identical manner.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR

1 Vectors, Coordinate Systems, and 1D Kinematics

2 3D Kinematics

3 Force, Newton’s Laws, Linear Drag and Oscillators

4 Driven Oscillations, Non-inertial FoRs

5 Work and Energy

6 Lagrangian Mechanics, Momentum, Center-of-Mass FoR

7 Angular Momentum, Rigid Body Dynamics

8 Equilibrium and Elasticity, Fluid Mechanics, Gravitation
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Elements of Lagrangian Mechanics
Momentum
Center-of-Mass FoR
Exercises
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Generalized Coordinates and Velocities; Degrees of
Freedom

Definition
Generalized Coordinates are any coordinates describing position of a
particle (or a system of particles). Usually denoted by q1, q2, . . . . Then
q̇i denote generalized velocities.

Definition
Number of degrees of freedom of a particle (or a system of particles):
the minimum number of independent generalized coordinates needed
to uniquely describe position of a particle (or a system of particles).
Usually denoted by f .
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Example for Generalized Coordinates and DoF

A uniform disk with radius R is rolling without sliding along the x axis.
A uniform thin stick with length 2l stays in contact with the disk without
sliding. One end of the stick is sliding along the x axis. When the
system is in motion, the disk and the stick stay in the same vertical
plane. Choose appropriate coordinates, write down the constraint
relations, and state the number of degree of freedom of this system.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Use (x1, y1) to express the position of the center of mass of the stick,
the angle θ1 the stick forms with the x axis to express the inclination of
the stick, x2 to express the position of the center of mass of the
disk,and s to express the distance from the tangential point of the stick
and the disk and the center of mass on the stick.

y1 = l sin θ1

ẋ2 − Rθ̇2 = 0 due to pure rolling =⇒ x2 − Rθ2 = C

Since there is no sliding between the stick and the disk,

ẋ1n̂x + ẏ1n̂y + θ̇1n̂z × s(cos θ1n̂x + sin θ1n̂y )

= ẋ2n̂x − θ̇2n̂z × R(− sin θ1n̂x + cos θ1n̂y )

so ẋ1 − sθ̇1 sin θ1 = ẋ2 + Rθ̇2 cos θ1 and ẏ1 + sθ̇1 cos θ1 = Rθ̇2 sin θ1
Geometrically, x2 − x1 + l cos θ1 = l + s, so there are only three
independent generalized coordinates.
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Expressing K Using Generalized Coordinates

A particle with mass m is moving on a plane. Use r and sinϕ instead of
the polar coordinates r and ϕ to express the kinetic energy of this
particle.
x = r cosϕ, y = r sinϕ. Use r and q = sinϕ as generalized
coordinates. x = r cosϕ = r

√
1− q2, y = r sinϕ = rq, so

ẋ = ṙ
√

1− q2 − rqq̇√
1−q2

, and ẏ = ṙ q + r q̇.

K =
1
2

m(ẋ2 + ẏ2) =
1
2

m(ṙ2 +
r2q̇2

1− q2 )
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Lagrangian, Hamilton’s Action, Hamilton’s Principle

Definition
Lagrangian L := K − U
For any trajectory q = q(t) = (q1(t),q2(t), . . . ,qf (t)) we can define
Hamilton’s Action

S := S[q] =

∫ tB

tA
L(q, q̇, t)dt

Hamilton’s Principle The real trajectory extremizes Hamilton’s action.
δS = 0. Similar to chain rule in ordinary differentiation, (Noticing that
variation of trajectory is independent of time)

δ

∫ tB

tA
L(q, q̇, t)dt =

∫ tB

tA
δL(q, q̇, t)dt =

∫ tB

tA

(
f∑

i=1

∂L
∂qi

δqi +
f∑

i=1

∂L
∂q̇i

δq̇i

)
dt
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Euler-Lagrange Equations

The f equations
d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0

are called the Euler-Lagrange Equations
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Lagrangian Mechanics, Momentum, Center-of-Mass FoR Elements of Lagrangian Mechanics

Mass, Rope and Cylinder

A particle with mass m is tied to the edge of a fixed cylinder with radius
R via a weightless, non-elastic rope. Initially, the rope is winded on the
cylinder tightly where the particle is in contact with the cylinder. Now
we give the particle an initial radial velocity v0, and the particle is
constrained on a smooth horizontal surface. Find the relation of length
l of the rope that is not winded on the cylinder with time t .
As was promised on Slide 126, a comparison is made in this exercise.
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Solution using a Non Inertial FoR

Recall that the acceleration in Cylindrical coordinates is given by

a = (ρ̈− ρϕ̇2)n̂ρ + (ρϕ̈+ 2ρ̇ϕ̇)n̂ϕ + z̈n̂z

and that the acceleration in Non-inertial FoR is given by

ma′ = F −maO′ −m
dω
dt
× r ′ − 2m(ω × v ′)−mω × (ω × r ′)

Consider the non inertial FoR: origin O′ is the intersection of straight
rope and winded rope, and O′Y ′ is along the straight rope. n̂x ′ = n̂r ,
n̂y ′ = n̂ϕ, and n̂z′ = n̂z The position of the particle in this non-inertial
FoR is y ′ = −l . Geometrically, l = Rϕ, so l̇ = Rϕ̇, and l̈ = Rϕ̈.
Furthermore, ma′ = ml̈(−n̂y ′), F = T n̂y ′ ,

−maO′ = −m[(−Rϕ̇2)n̂r + (Rϕ̈)n̂ϕ]
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−m dω
dt × r ′ = −mϕ̈n̂z × (−l n̂y ′) = mϕ̈l n̂z × n̂y ′ = −mϕ̈l n̂x ′

−2m(ω × v ′) = −2m(ϕ̇n̂z × (−l̇ n̂′y )) = −2mϕ̇l̇ n̂x ′

−mω × (ω × r ′) = −m(ϕ̇n̂z)× (ϕ̇n̂z × (−l)n̂y ′) = −m(ϕ̇n̂z)× (ϕ̇l n̂′x ) =
−mϕ̇2l n̂y ′ Now look at the x ′ direction (n̂r and n̂x ′):

mRϕ̇2 −mϕ̈l − 2mϕ̇l̇ = 0 =⇒ l̇2 + l l̈ = 0

Using l̈ = dl̇
dl l̇ (by chain rule), we get l̇ + l dl̇

dl = 0, l̇dl + ldl̇ = 0, so l l̇ = C.
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To find l l̇ = C at t = 0, we need to use l̇ = Rϕ̇. l l̇ = lRϕ̇ = Rlϕ̇. Now
v = vO′ + v ′ + (ω × r ′). At t = 0, v = v0n̂r is perpendicular to n̂y ′ , and
ω × r ′ = ϕ̇n̂z × y ′n̂y ′ = ϕ̇(−l)(−n̂x ′) is also perpendicular to n̂y ′ .
Besides, v ′ is along n̂′y because our choice of the non-inertial FoR
ensures that the particle is always on the O′Y ′ axis. Furthermore, O′

slides on the edge of the cylinder, so vO′ is also along n̂y ′ , so
v ′ + vO′ = 0, and v = ω× r ′. v0 = lϕ̇. Furthermore, vO′ = Rϕ̇n̂ϕ by the
velocity in the polar coordinates, so v ′ = −Rϕ̇n̂ϕ. Therefore,
C = l l̇

∣∣∣
t=0

= Rv0. l l̇ = Rv0, so ldl = Rv0dt , 1
2 l2 = Rv0t , l =

√
2Rv0t .
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Solution Using Lagrangian Mechanics

Use the length l of the straight component of the rope as the
generalized coordinate. L = K − U = 1

2mv2. v consists of two
components: vϕ (along the straight rope) and vr (perpendicular to the
rope). vϕ = Rϕ̇− l̇ = 0, and vr = lϕ̇ = l l̇

R . L = 1
2ml2 l̇2/R2.

∂L
∂ l̇

=
ml2 l̇
R2

d
dt
∂L
∂ l̇

=
2mll̇2

R2 +
ml2 l̈
R2

∂L
∂l

=
ml̇2l
R2

so by the Euler Lagrange Equations, mll̇2
R2 + ml2 l̈

R2 = 0, l̇2 + l l̈ = 0.
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Elements of Lagrangian Mechanics
Momentum
Center-of-Mass FoR
Exercises
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Momentum

Definition

Momentum P = mv
Newton’s second law in terms of linear momentum: F = dP

dt

Conservation of Momentum
If the sum of all external forces on the system is equal to zero, then the
total momentum of the system is constant.
The total momentum of a system can only be changed by external
forces.
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Collisions

Two objects interact (directly or non-directly) over a finite time interval.

Elastic
Internal forces involved are potential, hence mechanical energy is
conserved. Approach speed is equal to departure speed.

Inelastic
Internal forces are non-conservative, so mechanical energy is not
conserved. Departure speed is zero.

In both cases, the total momentum is conserved.
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Center of Mass

Discrete distributions of mass r cm =
∑N

i=1 mi r i∑N
i=1 mi

Continuous distributions of mass
xcm =

∫
Ω xdm∫
Ω dm ycm =

∫
Ω ydm∫
Ω dm zcm =

∫
Ω zdm∫
Ω dm

The total momentum of the system is equal to the momentum of a
hypothetical particle of mass M moving with velocity vcm

Mvcm =
N∑

i=1

Pi = P

This property of the center of mass motivates a new Frame of
Reference: the center-of-mass Frame of Reference.
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Rocket Propulsion

(u, dm
dt const.)

By the conservation of momentum in the immobile frame of reference,

mv = (m + dm)(v + dv)− dm(v − u)

mv = mv + vdm + mdv − vdm + udm

0 = mdv + udm =⇒ dv = −udm
m

=⇒ v(t)− v(0) = −u ln

(
m(t)
m(0)

)
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Elements of Lagrangian Mechanics
Momentum
Center-of-Mass FoR
Exercises
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Center-of-Mass FoR

It is often convenient to consider impacts in a translational FoR whose
origin is attached to the center of mass of the system. The kinetic
energy of the system can be decomposed into the translational kinetic
energy of the center of mass and the kinetic energy of the mass in the
system with respect to the center of mass.

Proof.

K =
∑N

i=1
1
2miv2

i =
∑N

i=1
1
2mi(vc + v i,c)2 =∑N

i=1
1
2miv2

c +
∑N

i=1
1
2miv2

i,c +
∑N

i=1 mivc ◦ v i,c =

1
2

Mv2
c︸ ︷︷ ︸

K CoM

+
N∑

i=1

1
2

miv2
i,c︸ ︷︷ ︸

K w.r.t. CoM

+ vc ◦
N∑

i=1

miv i,c︸ ︷︷ ︸
Zero
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Elements of Lagrangian Mechanics
Momentum
Center-of-Mass FoR
Exercises
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Particle down a Wedge

Question
A point particle of mass m moves without friction down a wedge of
mass M that is free to slide on a frictionless table. The wedge is
inclinded at the angle α to the horizontal. How many degrees of
freedom does the particle have here? Identify the generalized
coordinates here.

Solution
We need two independent generalized coordinates:

1 Position of the tip of the edge x
2 Height of the particle h

Now let’s solve this problem using Lagrangian Mechanics.
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The Power of Lagrangian’s (over Newton’s) Mechanics

K = 1
2Mẋ2 + 1

2m((ẋ + ḣ/ tanα)2 + (ḣ)2)
U = mgh
L = K − U = 1

2Mẋ2 + 1
2m((ẋ + ḣ/ tanα)2 + ḣ2)−mgh

∂L
∂x = 0
∂L
∂h = −mg
∂L
∂ẋ = Mẋ + mẋ + mḣ/ tanα
∂L
∂ḣ

= mḣ + mẋ/ tanα + mḣ/ tan2 α
Hence using the Euler-Lagrangian Equations,
(M + m)ẍ + mḧ

tanα = 0
mḧ + mẍ

tanα + mḧ/ tan2 α + mg = 0
It is then easy to solve for ẍ and ḧ:
ḧ = g tan2 α

m
M+m−1−tan2 α

ẍ = mg cosα sinα

M+m sin2 α
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Simple Pendulum on a Rim

A simple pendulum of length b and mass m moves on a massless rim
of radius a rotating with constant angular velocity ω. How many
degrees of freedom do we have here? Find the Lagrangian.

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 195 / 289



Lagrangian Mechanics, Momentum, Center-of-Mass FoR Exercises

Simple Pendulum on a Rim

There is only one degree of freedom θ for this particle on the end of
the simple pendulum.

U = mg(a sin(ωt)− b cos θ)

K =
1
2

m[(θ̇b)2 − 2θ̇bωa sin(ωt − θ) + (ωa)2]

Now L = K − U. Here the constraint is more complicated and requires
some more sophisticated knowledge to obtain the EoM.

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 196 / 289



Lagrangian Mechanics, Momentum, Center-of-Mass FoR Exercises

Particle on the Surface of a Sphere

Question
Find the equations of motion of a particle of mass m constrained to
move on the surface of a sphere, acted upon a conservative force
F = F0n̂θ, with F0 a constant.

Solution
On this particular sphere, we are able to define potential for this force F
(similar to the proof of central force). Now in the spherical coordinates,
∇U = ∂U

∂r n̂r + 1
r
∂U
∂θ n̂θ + 1

r sin θ
∂U
∂ϕ n̂ϕ, so U = −r

∫
F0dθ = −rF0θ + C.

Furthermore, K = 1
2m[(r θ̇)2 + (r sin θϕ̇)2], so the Lagrangian

L = K − U =
1
2

m[(r θ̇)2 + (r sin θϕ̇)2] + rF0θ + C
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For the general coordinate ϕ,

∂L
∂ϕ

= 0
∂L
∂ϕ̇

= m(r sin θϕ̇)r sin θ = mr2 sin2 θϕ̇

d
dt

(
∂L
∂ϕ̇

)
= mr2[2ϕ̇ sin θ cos θθ̇ + sin2 θϕ̈)]

!
= 0

For the general coordinate θ,

∂L
∂θ

= rF0
∂L
∂θ̇

= mr2θ̇
d
dt

(
∂L
∂ϕ̇

)
= mr2θ̈

so
mr2θ̈ − rF0 = 0 θ̈ =

F0

mr

The conclusion is that ϕ = 0 and θ satisfies θ̈ = F0
mr
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Double Pendulum

The generalized coordinates are θ1 and θ2.
U = −m1gl1 cos θ1 −m2g(l2 cos θ2 + l1 cos θ1), K = 1

2m1v2
1 + 1

2m2v2
2

where v1 = l1θ̇1, v2
2 = v2

2,τ + v2
2,n

v2,n = l1θ̇1 cos(θ1 + π
2 − θ2), and

v2,τ = l1θ̇1 sin(θ1 + π
2 − θ2) + l2θ̇2.

Hence L = K − U, and the
calculations can be done.
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Block Mass Oscillation After Impact with Suspended
Scale

Question
A block with mass m1 falls down from height h on a horizontal plane
with mass m2 suspended on a spring with spring constant k , and
remains on the plane. Find the amplitude of resulting oscillations.

Solution
Upon the non elastic impact, the speed v0 of the two masses become

the speed of their center of mass right before impact. v0 =

√
2ghm1

m1+m2
. Be

aware that when the two masses come together, the equilibrium
position changes. Initial displacement from equilibrium x0 = m1g

k , so
the amplitude of resulting oscillation is

A =

√
x2

0 +
( v0
ω

)2
=

√(m1g
k

)2
+

(√
2ghm1

m1+m2

√
m1+m2

k

)2
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Find the Center of Mass

Question
Find the center of mass of a non-uniform cylinder with the z axis as the
axis of symmetry and ρ(r) = αz2

Solution

Due to symmetry, xCoM = yCoM = 0. Now zCoM =
∫ H

0 (z)(αz2)πR2dz∫ H
0 (αz2)πR2dz

= 3
4H
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Angular Momentum, Rigid Body Dynamics

1 Vectors, Coordinate Systems, and 1D Kinematics

2 3D Kinematics

3 Force, Newton’s Laws, Linear Drag and Oscillators

4 Driven Oscillations, Non-inertial FoRs

5 Work and Energy

6 Lagrangian Mechanics, Momentum, Center-of-Mass FoR

7 Angular Momentum, Rigid Body Dynamics

8 Equilibrium and Elasticity, Fluid Mechanics, Gravitation
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Particle: Angular Momentum, Torque, and Moment of Inertia
Angular Momentum of a Rigid Body
Tensor of Inertia
Principal Axes Transformation
Rigid Body: Rotation Around Principal Axes
Rotation of the Rigid Body Around a Fixed Axis
Combined Translational and Rotational Motion
Exercises
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Angular Momentum

For a single particle, the angular momentum is defined as L = r × P.
Torque is defined as τ = r × F . Now ṙ = v , P = mv , dr × P = 0, so

τ =
dL
dt

(1)

Now consider central force F (r) = f (r)r . They are conservative, as is
proved on Slide 170. They also produce zero torque, because
τ = r × F = 0. These two characteristics give rise to the two
conservation properties of central force

Mechanical Energy is preserved
Angular Momentum is preserved

Aerial Velocity σ = 1
2(r × v) is equivalent to angular momentum for

constant-mass heavenly bodies.
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Momentum of Inertia for a Particle About a Point

The angular momentum and angular velocity has the following relation:

L = Iω

Here I, moment of inertia, is a one-by-one tensor quantity (a scalar).
I = mr2. If I = const (particle in circular motion), then τ = Iε
For a system of particles, the total angular momentum can only be
changed by a non-zero external torque.
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Particle: Angular Momentum, Torque, and Moment of Inertia
Angular Momentum of a Rigid Body
Tensor of Inertia
Principal Axes Transformation
Rigid Body: Rotation Around Principal Axes
Rotation of the Rigid Body Around a Fixed Axis
Combined Translational and Rotational Motion
Exercises
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Rigid Body

Definition

A body is called rigid if |r − r ′| = const for any two points on the body.

Momentum in Lab FoR

P = MvO′︸ ︷︷ ︸
translational motion

+ Mω × rcm′︸ ︷︷ ︸
rotational motion

Angular momentum about the origin of Lab FoR L =
∑N

i=1 mi ri × vi

L = MrO′ × vO′ + MrO′ × (ω × rcm′) + Mrcm′ × vO′ +
N∑

i=1

mi r ′i × (ω × r ′i )

where in the FoR associated with the rigid body, r ′i is the position
vector of point mass rcm′ is the position vector of the center of mass.

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 207 / 289



Angular Momentum, Rigid Body Dynamics Angular Momentum of a Rigid Body

Rigid Body

Definition

A body is called rigid if |r − r ′| = const for any two points on the body.

Momentum in Lab FoR

P = MvO′︸ ︷︷ ︸
translational motion

+ Mω × rcm′︸ ︷︷ ︸
rotational motion

Angular momentum about the origin of Lab FoR L =
∑N

i=1 mi ri × vi

L = MrO′ × vO′ + MrO′ × (ω × rcm′) + Mrcm′ × vO′ +
N∑

i=1

mi r ′i × (ω × r ′i )

where in the FoR associated with the rigid body, r ′i is the position
vector of point mass rcm′ is the position vector of the center of mass.
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Rigid Body with Pure Rotation

If we choose vO′ = 0, O′ at the center of mass of the body, and
O = O′, then using the back-cab identity of vectors (i.e.,
a× (b × c) = b(a ◦ c)− c(a ◦ b)), The angular momentum with pure
rotation L =

∑N
i=1 mi r ′i × (ω × r ′i ) in the CoM FoR is rewritten as

L =
N∑

i=1

mi [ωr ′2i − r ′i (ω ◦ r ′i )]

Decomposing the linear terms in the CoM FoR of the rigid body (i.e,
ω = ωx ′ + ωy ′ + ωz′ , r ′i = rix ′ + riy ′ + riz′), for α′ = x ′, y ′, z ′

Lα′ =
〈

L, n̂α′
〉

=
N∑

i=1

mi

ωα′r ′2i − riα′

∑
β′

ωβ′riβ′


Next: Try to find I that L = Iω, where I is a tensor quantity.
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Rigid Body with Pure Rotation
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Lα′ =
∑N

i=1 mi

(
ωα′r ′2i − riα′

(∑
β′ ωβ′riβ′

))
To sum over β′, rewrite

ωα′r ′2i =
∑
β′

ωβ′r ′2i δα′β′(δα′β′ =

{
1 α′ = β′

0 α′ 6= β′
)

so that Lα′ =
∑N

i=1 mi

(∑
β′ ωβ′r

′2
i δα′β′ − riα′

(∑
β′ ωβ′riβ′

))

Taking out
the sum iterator β′ (both

∑
and ωβ′),

Lα′ =
∑
β′

[
N∑

i=1

mi(r ′2i δα′β′ − riα′riβ′)

]
ωβ′

Lα′ =
∑

β′=x ′,y ′,z′
Iα′β′ωβ′

The 3× 3 matrix Iα′β′ is called the tensor of the moment of inertia

Iα′β′ =
N∑

i=1

mi( r ′i
2
δα′β′︸ ︷︷ ︸

Diagonal Terms

− riα′riβ′︸ ︷︷ ︸
Off-Diagonal Terms

)

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 209 / 289



Angular Momentum, Rigid Body Dynamics Angular Momentum of a Rigid Body

Lα′ =
∑N

i=1 mi

(
ωα′r ′2i − riα′

(∑
β′ ωβ′riβ′

))
To sum over β′, rewrite

ωα′r ′2i =
∑
β′

ωβ′r ′2i δα′β′(δα′β′ =

{
1 α′ = β′

0 α′ 6= β′
)

so that Lα′ =
∑N

i=1 mi

(∑
β′ ωβ′r

′2
i δα′β′ − riα′

(∑
β′ ωβ′riβ′

))
Taking out

the sum iterator β′ (both
∑

and ωβ′),

Lα′ =
∑
β′

[
N∑

i=1

mi(r ′2i δα′β′ − riα′riβ′)

]
ωβ′

Lα′ =
∑

β′=x ′,y ′,z′
Iα′β′ωβ′

The 3× 3 matrix Iα′β′ is called the tensor of the moment of inertia

Iα′β′ =
N∑

i=1

mi( r ′i
2
δα′β′︸ ︷︷ ︸

Diagonal Terms

− riα′riβ′︸ ︷︷ ︸
Off-Diagonal Terms

)
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Particle: Angular Momentum, Torque, and Moment of Inertia
Angular Momentum of a Rigid Body
Tensor of Inertia
Principal Axes Transformation
Rigid Body: Rotation Around Principal Axes
Rotation of the Rigid Body Around a Fixed Axis
Combined Translational and Rotational Motion
Exercises
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Tensor of Inertia [Iα′β′]α′,β′=x ′,y ′,z ′

Note that Iα′β′ = Iβ′α′ , so this tensor quantity is symmetric. In the
Center-of-Mass Frame of Reference,Lx ′

Ly ′

Lz′

 =

Ix ′x ′ Ix ′y ′ Ix ′z′
Iy ′x ′ Iy ′y ′ Iy ′z′
Iz′x ′ Iz′y ′ Iz′z′

ωx ′

ωy ′

ωz′


where

[
Iα′β′

]
α′,β′=x ′,y ′,z′ is explicitly given as

∑N
i=1 mi(y ′i

2 + z ′i
2) −

∑N
i=1 mix ′y ′ −

∑N
i=1 mix ′z ′

−
∑N

i=1 miy ′x ′
∑N

i=1 mi(x ′i
2 + z ′i

2) −
∑N

i=1 miy ′z ′

−
∑N

i=1 miz ′x ′ −
∑N

i=1 miz ′y ′
∑N

i=1 mi(x ′i
2 + y ′i

2)


In case of a continuous mass distribution, the summations are
replaced by integrations.
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Angular Momentum, Rigid Body Dynamics Tensor of Inertia

Physical Significance of Diagonal Terms and Off
Diagonal Terms

It is instructive to assume you have an axis along O′X ′ so that the rigid

body is rotating along it at ω =

ωx ′

0
0

.

The angular momentum is

L =

Ix ′x ′ωx ′

Iy ′x ′ωx ′

Iz′x ′ωx ′


Notice that the y ′ component and the z ′ component are rotating with
the rigid body, whereas x ′ is in a fixed direction. The axis is providing
torque to change the direction of the angular momentum, causing the
axis to wear out.
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Angular Momentum, Rigid Body Dynamics Principal Axes Transformation

Particle: Angular Momentum, Torque, and Moment of Inertia
Angular Momentum of a Rigid Body
Tensor of Inertia
Principal Axes Transformation
Rigid Body: Rotation Around Principal Axes
Rotation of the Rigid Body Around a Fixed Axis
Combined Translational and Rotational Motion
Exercises
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Angular Momentum, Rigid Body Dynamics Principal Axes Transformation

The Spectral Theorem

Reference: Page 222 Vv286 FA2015. Eigenvalue λ and eigenvector u
satisfies: Au = λu.

Spectral Theorem

Let A = A∗ ∈ Mat(n × n;R) be a self-adjoint matrix. Then there exists
an orthonormal basis of Rn consisting of eigenvectors of A.

Corollary
Every self-adjoint matrix A is diagonalizable. Furthermore, if
(v1, . . . , vn) is an orthonormal basis of eigenvectors and
U = (v1, . . . , vn), then U−1 = U∗. Hence, if A is self-adjoint, there
exists an orthogonal matrix U such that D = U∗AU is the
diagonalization of A.

Notice that our tensor of inertia I is real and symmetric, so it is
self-adjoint. We can always diagonalize it.
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Angular Momentum, Rigid Body Dynamics Principal Axes Transformation

Principal Axes

Definition

For any tensor of inertia we can find three axes x̃ ′, ỹ ′, and z̃ ′ such that
[Iα̃′β̃′ ] only has diagonal terms. Then we have Lα̃′ = Iα̃′α̃′ωα̃′ , where
L ‖ ω. Such axes are called principal axes of the tensor of inertia. The
corresponding values of Iα̃′α̃′ are called principal moments of inertia.

General Steps
1 Find the Center of Mass of the rigid body
2 Set up a Cartesian Coordinate whose origin is at the CoM
3 Find the tensor of inertia
4 Diagonalize the tensor of inertia (find the eigenvalues and

eigenvectors)
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Angular Momentum, Rigid Body Dynamics Principal Axes Transformation

Eigenvalues and Eigenvectors

Eigenvalues λi and eigenvalues ui for matrix I come in pairs: Iui = λiui .

Theorem
Eigenvectors ui define directions of principal axes, and in the new
coordinate system of principal axes (unit vectors are û1, û2, and û3),
tensor of inertia is diagonal, and the eigenvalues line up on the main

diagonal (i.e., D =

λ1 0 0
0 λ2 0
0 0 λ3

).

To find these eigenvalues, we need to solve

(I− λ1)ui = 0 (2)

i.e., ui ∈ ker(I− λ1)
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Angular Momentum, Rigid Body Dynamics Principal Axes Transformation

Finding Eigenvalues

By Fredhom Alternative 1.7.21 on Slide 233 of Vv 285 SU 2016, for our
matrix A = I− λ1, either

detA = 0, in which case Ax = 0 has a non-zero solution x ∈ kerA,
or
detA 6= 0, then Ax = b has a unique solution x = A−1b for any
b ∈ Rn.

Since we need to find eigenvalues, we need the first case, i.e., we
need to find such λ that det(I− λ1) = 0
Then we plug back each λi into Eqn. 2 to find its corresponding
eigenvector.

If at least two principal moments are equal, the rigid body
is called a symmetrical top; If all three principal moments are equal, it
is called a spherical top.

Theorem
Kinetic Energy of a Rigid Body is given by
K = 1

2
∑

α′,β′ Iα′,β′ωα′ωβ′ = 1
2 〈ω, Iω〉
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Angular Momentum, Rigid Body Dynamics Rigid Body: Rotation Around Principal Axes

Particle: Angular Momentum, Torque, and Moment of Inertia
Angular Momentum of a Rigid Body
Tensor of Inertia
Principal Axes Transformation
Rigid Body: Rotation Around Principal Axes
Rotation of the Rigid Body Around a Fixed Axis
Combined Translational and Rotational Motion
Exercises
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Angular Momentum, Rigid Body Dynamics Rigid Body: Rotation Around Principal Axes

Moment of Inertia and Angular Momentum

After choosing the principal axes x , y , z, we omit the ′.

Ixx =
N∑

i=1

mi(y2
i + z2

i ), Iyy =
N∑

i=1

mi(x2
i + z2

i ), Izz =
N∑

i=1

mi(x2
i + y2

i )

Given ω = (0,0, ωz) (no translational motion),

L = Izzω, and K =
1
2

Izzω
2
z
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Angular Momentum, Rigid Body Dynamics Rotation of the Rigid Body Around a Fixed Axis

Particle: Angular Momentum, Torque, and Moment of Inertia
Angular Momentum of a Rigid Body
Tensor of Inertia
Principal Axes Transformation
Rigid Body: Rotation Around Principal Axes
Rotation of the Rigid Body Around a Fixed Axis
Combined Translational and Rotational Motion
Exercises

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 220 / 289



Angular Momentum, Rigid Body Dynamics Rotation of the Rigid Body Around a Fixed Axis

Easier Configuration: Fixed Axis

For rotation of the rigid body around a fixed axis, we are only
interested in the torque and angular momentum along the axis. The
moment of inertia is a scalar defined by I =

∫
Ω r2dm because now the

angular momentum has a fixed direction, all elementary mass are in
planar motion, the speed given by ωr⊥, and angular momentum
L =

∫
Ω ωr2

⊥dm = ω
∫

Ω r2
⊥dm, where r⊥ is the distance from the

elementary mass to the axis.

Steiner’s Theorem (Parallel Axis Theorem)

Suppose A is an axis through the center of mass, and A′ is an axis
parallel to A and b from A.

IA′ = IA + mb2

Useful because we can traverse the rigid body more easily in a
symmetric coordinate system (e.g., a torus).
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Angular Momentum, Rigid Body Dynamics Rotation of the Rigid Body Around a Fixed Axis

2nd Law of Dynamics, Kinetic Energy

For rotation ω = (0,0, ω), L = Izzω. But dL
dt = τext , so

Izz
dω
dt

= τext

CAUTION: dL
dt = τext is generally valid, but Izz

dω
dt = τext is valid only

when the rigid body is given a fixed axis z, so that ω does not change
its orientation.
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Angular Momentum, Rigid Body Dynamics Rotation of the Rigid Body Around a Fixed Axis

Work and Power in Rotational Motion (Fixed Axis)

In a rotational motion, F tan ‖ dr , so

δw = τzdθ w =

∫ θ2

θ1

τzdθ

Note: Axis and radial components do no work. Nor do they contribute
to torque.
Rotational Analogue of work-kinetic energy theorem

δw = d
(

1
2

Iω2
z

)
= dKrot w = K2 − K1

Power
P = τzωz
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Angular Momentum, Rigid Body Dynamics Combined Translational and Rotational Motion

Particle: Angular Momentum, Torque, and Moment of Inertia
Angular Momentum of a Rigid Body
Tensor of Inertia
Principal Axes Transformation
Rigid Body: Rotation Around Principal Axes
Rotation of the Rigid Body Around a Fixed Axis
Combined Translational and Rotational Motion
Exercises
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Angular Momentum, Rigid Body Dynamics Combined Translational and Rotational Motion

Combined Translational and Rotational Motion

Kinetic Energy
For a rigid body in combined translational and rotational motion at
angular velocity ω whose center of mass is in a translational motion
vcm

K =
1
2

Mv2
cm +

1
2

Icmω
2

Compare with the kinetic energy in Center-of-Mass FoR given on
Slide 191.

Angular Momentum Theorem

τz = Iεz

still holds true if axis
1 passes through center of mass
2 axis does not change orientation

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 225 / 289



Angular Momentum, Rigid Body Dynamics Exercises

Particle: Angular Momentum, Torque, and Moment of Inertia
Angular Momentum of a Rigid Body
Tensor of Inertia
Principal Axes Transformation
Rigid Body: Rotation Around Principal Axes
Rotation of the Rigid Body Around a Fixed Axis
Combined Translational and Rotational Motion
Exercises
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Angular Momentum, Rigid Body Dynamics Exercises

Rigid Body Hitting a Wall, Inducing a Rotation

Two light rigid rods AB and BC
are glued together at B. AB and
BC form angle α ∈ (0, π/2),
|BC| = l , and |AB| = l cosα. One
small ball with mass m is fixed at
each of A, B, and C. The balls
and the rods form a rigid body.
The entire system is placed on a
smooth horizontal desk, and there
is a fixed smooth vertical wall on
the desk. Initially, AB is
perpendicular to the wall, and the
system is in a translational motion
at v0 along AB toward the wall. At

one instant, ball C hit the wall,
and right after impact, ball C has
a zero velocity component
perpendicular to the wall. Ball C
does not stick to the wall. If after
ball C hitting the wall, ball B hits
the wall before ball A does, what
condition does α satisfy?
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Angular Momentum, Rigid Body Dynamics Exercises

Rigid Body Hitting a Wall, Inducing a Rotation (Sol.)

Suppose upon impact, the wall provides impulse J to the system at C.
The effect of this impulse is to reduce the velocity of the Center of
Mass of the system and to provide an angular momentum around the
center of mass.

3mv0 − J = 3mvc J · (2
3

l sinα) = Iω (3)

In order that B hits the wall before A does, consider the situation where
they hit the wall at the same time, i.e., the system has rotated π/2, and
the center of mass has traveled l cosα− 1

3 l sinα. B hitting earlier
means the time it would take the system to rotate π/2 is longer than
the time it would take the center of mass to travel l cosα− 1

3 l sinα,
should there be no secondary impact (which is possible if J is large).

l cosα− 1
3 l sinα

vc
<

π
2
ω

(4)
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Angular Momentum, Rigid Body Dynamics Exercises

Rigid Body Hitting a Wall, Inducing a Rotation (Sol.)

Now we do not know J, but there is a constraint on it: the velocity of C
after impact, which is the sum of the velocity of the center of mass and
the velocity of C in the center of mass FoR.

vC − ω(
2
3

l sinα) = 0

The moment of inertia is contributed by the three balls. Ball A
contributes m

[(1
3 l sinα

)2
+ (l cosα)2

]
, Ball C contributes

m
[(2

3 l sinα
)2

+ (l cosα)2
]
, and Ball B contributes m

(1
3 l sinα

)2

I = ml2(
2
3

+
4
3

cos2 α)
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Angular Momentum, Rigid Body Dynamics Exercises

Rigid Body Hitting a Wall, Inducing a Rotation (Sol.)

it then follows that (plugging I into Equation 3)

3 sinα(v0 − vc) = ωl(1 + 3 cos2 α)

so vc = 2v0 sin2 α

4−sin2 α
, and ω = 3v0 sinα

(4−sin2 α)l
. Plugging these into Equation 4,

(π + 1) sinα > 3 cosα

tanα >
3

π + 1
α > 36◦
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Angular Momentum, Rigid Body Dynamics Exercises

Principal Axes Transformation

Question

A square with side length a lies in
plane z = 0 and has masses m1
and m2 in its vertices.

Find the components of the
tensor of inertia with respect
to axes x , y , z.

Diagonalize this tensor,

giving directions of the
principal axes.

Tensor of Inertia

I =

2(m2 + m1)(a
2 )2 2(m1 −m2)(a

2 )2 0
2(m1 −m2)(a

2 )2 2(m2 + m1)(a
2 )2 0

0 0 2(m1 + m2)a2

2


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Angular Momentum, Rigid Body Dynamics Exercises

The characteristic equation is

det

2(m2 + m1)(a
2 )2 − λ 2(m1 −m2)(a

2 )2 0
2(m1 −m2)(a

2 )2 2(m2 + m1)(a
2 )2 − λ 0

0 0 2(m1 + m2)a2

2 − λ

 = 0

The eigenvalues are

λ1 = 2(m1 + m2)
a2

2
λ2 = m2a2 λ3 = m1a2

and their corresponding unit eigenvectors are

u1 =

0
0
1

 u2 =


1√
2

− 1√
2

0

 u3 =


1√
2

1√
2

0


The tensor of inertia in the principal axes FoR is given by the
eigenvalues on the diagonal:

D = diag(λ1, λ2, λ3)
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Angular Momentum, Rigid Body Dynamics Exercises

Degenerate Eigenvalues

Albegraic Multiplicity

Then the multiplicity of the zero in p(λ) = 0 is called the algebraic
multiplicity of λ.

Using symmetry, the three unit
eigenvectors are

0
0
1

,


1√
2

1√
2

0

, and

−
1√
2

1√
2

0


The tensor of inertia is

I =

6ma2 6ma2 0
6ma2 6ma2 0

0 0 12ma2


Characteristic Equation
p(λ) = (6ma2 − λ)2(12ma2 − λ)−
(12ma2 − λ)(6ma2)2 = 0
λ1 = 12ma2, λ2 = 12ma2, λ3 = 0
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Angular Momentum, Rigid Body Dynamics Exercises

Eigenspace and Geometric Multiplicity

Geometric Multiplicity

The subspace Vλ = {x ∈ V : Ax = λx} is called the eigenspace for
eigenvalue λ. The dimension dimVλ is called the geometric multiplicity
of λ.

Notice that with λ = 12ma2 we get ux − uy = 0 and no control over uz .

Remarks
Since we can always diagonalize the tensor of inertia, we anticipate
the algebraic multiplicity of each eigenvalue to be equal to its
geometric multiplicity, in which case we choose orthonormal vectors
that span the eigenspace as the direction of our principal axes.

With λ = 12ma2 you can get two eigenvectors:

0
0
1

,


1√
2

1√
2

0


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Angular Momentum, Rigid Body Dynamics Exercises

Cylinder down a Movable Wedge

Question
A wedge with mass M and angle α rests on a frictionless horizontal
surface. A cylinder with mass m rolls down the wedge without slipping.
Find the acceleration of the wedge.
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Angular Momentum, Rigid Body Dynamics Exercises

Cylinder down a Movable Wedge (sol.)

Solution
The cylinder: No slipping constraint: ε = am

R
Rotation around the center of mass: fMR = ε(1

2mR2)
Translational force along the surface: maM cosα+ mg sinα− fM = mam
Translational force perpendicular to the surface:
NM + maM sinα = mg cosα
Notice we don’t have fM = NM in these rolling without slipping
problems. Instead, we use the no slipping constraint.
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Angular Momentum, Rigid Body Dynamics Exercises

Cylinder down a Movable Wedge (sol. contd.)

Then we analyze the wedge in the FoR attached to the ground.
Horizontal forces: MaM = NM sinα− fM cosα
We get fM = 1

2mam from the first two equations,
NM = mg cosα−maM sinα from the fourth equation, and
maM cosα + mg sinα = 3

2mam from the third equation. Finally, plugging
in everything into the last equation, we get

MaM = (mg cosα−maM sinα) sinα− 1
2

m(
2
3

(aM cosα + g sinα)) cosα

(M + m sin2 α + 1
3m cos2 α)aM = 2

3mg sinα cosα,
aM = mg sin 2α

3(M+m sin2 α+ 1
3 m cos2 α)
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Angular Momentum, Rigid Body Dynamics Exercises

Ball hitting a Fixed-Axis Box

Question
A ball with mass m, moving within the horizontal
direction with speed v , hits the upper edge of a
rectangular box with dimensions l × l × 2l . Assuming
that the box can rotate about a fixed axis containing
the edge AA′, and the collision of the ball with the

box is elastic (and the ball moves back in the horizontal direction), find
1 angular velocity of the box starts moving at the moment of collision
2 equation of motion of the box after the collision
3 the minimum speed of the ball needed to put the box in the upright

position
The angular momentum of the box around axis AA′ is IAA′ , and the
mass of the box is M (uniform distribution).
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Angular Momentum, Rigid Body Dynamics Exercises

Conservation of angular momentum around AA′

IAA′ω −mv1l = mv0l

Conservation of mechanical energy

1
2

IAA′ω
2 +

1
2

mv2
1 =

1
2

mv2
0

Get a quadratic equation about ω:

(IAA′ +
I2
AA′

ml2
)ω2 − 2IAA′mv0l

ml2
ω + C = 0

Mathematically, sum of the two roots of ω for aω2 + bω + c = 0 is equal
to −b

a . Since the two solutions of ω corresponds to the angular velocity
of the box before and after the collision, and we already know that
before the collision, ω = 0, it follows that after the collisiion,

ω =
2v0

l +
IAA′
ml
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Angular Momentum, Rigid Body Dynamics Exercises

After the collision, the box is under the torque of gravity. Torque
changes the angular momentum following Eqn. 1, so

IAA′α̈ + Mgl
√

5
2

cosα = 0

After the collision, the mechanical energy of the box is conserved.

Initial: K1 = 1
2 IAA′

(
2v0

l+
IAA′
ml

)2

, Maximum height: K2 = 0 (when the

center of mass is above AA′). Increased potential energy:
∆U = −Mg l

2 + Mg
√

5
2 l . Therefore, using ∆K + ∆U = 0,

−1
2

IAA′

(
2v0

l +
IAA′
ml

)2

+ Mg
√

5− 1
2

l = 0

The minimal required speed v0 =
l+

IAA′
ml

2

√
(
√

5−1)Mgl
IAA′
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Simple (maybe not) Calculations

Problem

Using symmetry, find the principal axes and corresponding principal
moments of inertia for:

1 thin disk
2 thin-walled hollow sphere
3 torus with mean radius R and the radius of cross-section r

assuming total mass is m and is distributed uniformly across the
body.
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Thin Disk, Axes in the Disk

Thin disk has two axes contained in the disk through the center and a
perpendicular axis through the center.
Aerial mass density σ = m

πR2 . For the two axes contained in the disk,
I = 2

∫ R
0 2
√

R2 − x2σx2 dx
= 4σ

∫ R
0

√
R2 − x2x2 dx

= 4σR
∫ R

0

√
1− x2

R2 x2 dx

= 4σR
∫ 1

2π

0 cos θR2 sin2 θR cos θ dθ

= σR4 ∫ 1
2π

0 sin2(2θ) dθ

= σR4 ∫ 1
2π

0
1
2 dθ − σR4 ∫ 1

2π

0
1
2 cos(4θ) dθ

= σR4(1
4π)− 0

= 1
4mR2
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Thin Disk, Perpendicular Axis

For the perpendicular axis,

I = σ

∫ R

0
2πρ · ρ2 dρ

= σ

∫ R

0
2πρ3 dρ

= σ
1
4

(2π)ρ4
∣∣∣∣R
0

= σ(
1
2
π)R4

=
1
2

mR2
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Thin-walled hollow sphere has three mutually perpendicular axes
through the center. Aerial mass density σ = m

4πR2 .

I = 2
∫ 1

2π

0
σ2π(R sin θ)3R dθ

= 4πσR4
∫ 1

2π

0
sin2 θ sin θ dθ

= 4πσR4
∫ 1

2π

0
(1− cos2 θ)(− d cos θ)

= 4πσR4

[∫ 1
2π

0
− d cos θ +

∫ 1
2π

0
cos2 θ d cos θ

]

= 4πσR4
[
−(0− 1) +

1
3

(0− 1)

]
= 4πσR4(

2
3

) =
2
3

mR2
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Torus has two axes crossing the torus and the center and one
perpendicular axis through the center. We need to calculate its volume
first. The coordinate system is shown in Figure 10.

Figure: Coordinates for torus on Slide 241.

dV = [(R + l cos θ) dϕ][l dθ][ dl] = (R + l cos θ)l dl dθ dϕ
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Angular Momentum, Rigid Body Dynamics Exercises

Torus Geometry

V =

[∫ 2π

0
dϕ

]∫ r

0

[∫ 2π

0
Rl dθ +

∫ 2π

0
l2 cos θ dθ

]
dl

= (2π)

∫ r

0
[Rl(2π)] dl

= (4π2)R
1
2

l2
∣∣∣∣r
0

= 4π2R(
1
2

)r2

= (2πR)(πr2)

ρ =
m
V

=
m

(2πR)(πr2)
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Angular Momentum, Rigid Body Dynamics Exercises

Torus, Perpendicular Axis

For the perpendicular axis,

dI = ρ(R + l cos θ)3l dl dθ dϕ

I = ρ

[∫ 2π

0
dϕ

]∫ r

0
[

∫ 2π

0
R3l dθ + . . .

+

∫ 2π

0
3R2l2 cos θ dθ +

∫ 2π

0
3Rl3 cos2 θ dθ +

∫ 2π

0
l4 cos3 θ dθ] dl

= ρ(2π)

∫ r

0
[2πR3l + 0 + 3Rl3π + 0] dl

= ρ(2π)[πR3r2 +
3
4

Rπr4]

= m
[
R2 +

3
4

r2
]
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Angular Momentum, Rigid Body Dynamics Exercises

For the axis through the torus,

d2 = (l sin θ)2 + [(R + l cos θ) sinϕ]2

dI = ρ(R + l cos θ)l[(l sin θ)2 + [(R + l cos θ) sinϕ]2] dl dθ dϕ

I =

∫ r

0

∫ 2π

0

∫ 2π

0
ρ(R + l cos θ)l[(l sin θ)2 + [(R + l cos θ) sinϕ]2] dϕ dθ dl

=

∫ r

0

∫ 2π

0
ρ(R + l cos θ)l[l2 sin2 θ(2π) + (R + l cos θ)2π] dθ dl

=

∫ r

0
(ρR)[l3(2π)(π) + πR2l(2π) + 2πRl2(0) + πl3(π)] + ...

+ (ρl)[l3(2π)(0) + πR2l cos θ(0) + 2πRl2(π) + πl3(0)] dl

= (ρR)[(2π2)(
1
4

r4) + 2π2R2(
1
2

r2) + π2(
1
4

r4)] + ρ[2π2R
1
4

r4]

= m
[

1
2

R2 +
5
8

r2
]
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation

1 Vectors, Coordinate Systems, and 1D Kinematics

2 3D Kinematics

3 Force, Newton’s Laws, Linear Drag and Oscillators

4 Driven Oscillations, Non-inertial FoRs

5 Work and Energy

6 Lagrangian Mechanics, Momentum, Center-of-Mass FoR

7 Angular Momentum, Rigid Body Dynamics

8 Equilibrium and Elasticity, Fluid Mechanics, Gravitation
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Conditions for Equilibrium

Conditions for Equilibrium
Elasticity
Fluid Statics
Fluid in Motion
Gravitation
Additional Exercises

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 250 / 289



Equilibrium and Elasticity, Fluid Mechanics, Gravitation Conditions for Equilibrium

Conditions for Equilibrium

The two conditions required for the rigid body to be in equilibrium:
1 Net external force is equal to zero (translational motion of the

center of mass):
Fext = 0

2 Net external torque is equal to zero (rotational motion around the
center of mass):

τext = 0
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Conditions for Equilibrium

R = N + f

When f = µN, the direction of the
total reactive force R is governed
by the coefficient of friction µ. The
balance of gravity, tension, and
reactive force requires torque
τ = 0 about any point, so the lines
of the three forces have to
intersect at the same point.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Conditions for Equilibrium

Pull Wheel upstairs

Be aware that as the wheel
creeps up the stair, the moment
arm of gravity is reducing, and the
moment arm of F is increasing.
Therefore, the minimal constant
force of is given by a balance of
torque initially with respect to the
contact point on the stair.

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 253 / 289



Equilibrium and Elasticity, Fluid Mechanics, Gravitation Conditions for Equilibrium

Torque Balance and Force Balance

(a) Torque balance with respect to
the hinge. (b) Force balance of
the pole.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Conditions for Equilibrium
Elasticity
Fluid Statics
Fluid in Motion
Gravitation
Additional Exercises
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Strain, Stress, and Elastic Modulus

Stress is the force per unit area.
Strain is the fractional deformation due to the stress.
Elastic modulus is stress divided by strain.
Hooke’s Law: Stress and strain are proportional (small deformation).

stress
strain

= elastic modulus
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Tensile and Compressive Stress and Strain
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Young’s Modulus

Young’s modulus Y is tensile stress divided by tensile strain:

Y =
F⊥
A

∆l
l0
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Bulk Stress and Strain

Pressure in a fluid is force per unit
area p = F⊥

A .
Bulk stress is pressure change
∆p upon volume change from V0
to V = V0 + ∆V
Bulk strain is fractional volume
change ∆V

V0
Bulk modulus is bulk stress
divided by bulk strain:
B = − ∆p

∆V/V0
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Shear stress and strain

Shear stress is F‖
A

Shear strain is x
h

Shear modulus is shear stress

divided by shear strain: S =
F‖
A
x
h
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Elasticity

Elasticity and Plasticity

Hooke’s law applies to point a. Beyond elastic limit, the material
demonstrates plastic behavior. You may try this with the spring in your
used pens.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid Statics

Conditions for Equilibrium
Elasticity
Fluid Statics
Fluid in Motion
Gravitation
Additional Exercises
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid Statics

Pressure in a Fluid

For a fluid at rest,

p =
∆F⊥
∆A

Pressure at depth h:
p = p0 + ρgh

Pascal’s law
Pressure applied to an enclosed incompressible fluid is transmitted
undiminished to every portion of the liquid and the walls of the
container.
Cause: work done on the fluid is zero.

Absolute pressure: total pressure p = patm + pgauge. (e.g., gauge
pressure at depth pgauge = p − p0 = ρgh)
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid Statics

Buoyancy and Archimedes’s law

When a body is immersed in a fluid, the fluid exerts an upward force on
the body equal to the weight of the fluid displaced by the body.
Justification: the liquid was originally there in static, so the buayancy
force has to balance the weight of that portion of liquid (replaced by the
body).

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 264 / 289



Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid Statics

Block in Fluids

(a) pgauge,upper = ρoilghupper
(b) pgauge,lower =
ρoilghoil + ρwater ghlower
(c)
mg = (pgauge,lower − pgauge,upper )S;
m = ρwoodVblock
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Conditions for Equilibrium
Elasticity
Fluid Statics
Fluid in Motion
Gravitation
Additional Exercises
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Ideal Fluid, Flow lines, Stream lines

Ideal Fluid
Fluid density does not change, experiences no internal friction
(incompressible and no viscosity).

Flow Lines
Trajectories of individual particles in a fluid.

Stream Lines
Family of curves that are instantaneously tangential to the velocity
vector field.

Steady Flow
The Flow lines coincide the stream lines.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Continuity Equation

Flow Tube
A tube formed by flow lines passing through the edge of an imaginary
element of area. In steady flow

1 No fluid can cross the side walls of a flow tube
2 fluids in different flow tubes cannot mix

Continuity Equation
For homogeneous incompressible fluid:

A1v1 = A2v2

Bernoulli’s Equation

p +
1
2
ρv2 + ρgy = const

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 268 / 289



Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Bernoulli’s Equation

Work done by pressure
difference: (p1 − p2)dV
Work done by gravity:
ρdVg(y1 − y2)
Change in Kinetic energy:
1
2ρdV (v2

2 − v2
1 )

Work-Kinetic energy theorem:
1
2
ρdV (v2

2 − v2
1 ) = (p1 − p2)dV + ρdVg(y1 − y2)

Bernoulli’s Equation:
1
2
ρv2 + p + ρgy = const
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Continuity Equation and Bernoulli’s Equation

Question
At one point in a pipeline the water’s speed is 3.00 m/s and the gauge
pressure is 5.00× 104 Pa. Find the gauge pressure at a second point
in the line, 11.0 m lower than the first, if the pipe diameter at the
second point is twice that at the first.

Solution
v1A1 = v2A2 due to the continuity equation. The speed v1 = 3.00 m/s,
and down there, speed is v2 = 0.75 m/s.

1
2
ρv2

1 + p1 + ρgh1 =
1
2
ρv2

2 + p2 + ρgh2

h1 − h2 = 11 m, p1 = 5.00× 104 Pa
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Water out of an Open Tank

(a) v =
√

2gh
R =

√
2gh

√
2(H − h)/g

(b) h∗ = H − h will give the same
range.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Bucket with Hole

Question
A cylindrical bucket, open at the top, is 25.0 cm high and 10.0 cm in
diameter. A circular hole with a cross-sectional area 1.50 cm2 is cut in
the center of the bottom of the bucket. Water flows into the bucket from
a tube above it at the rate of 2.40× 10−4 m3/s. How high will the water
in the bucket rise?

Solution

At stabilized height, flow out rate is 2.40× 10−4 m3/s, and flow speed
at the top is equal to zero. Hence h = v2

2g , with v = 2.40×10−4

1.50×10−4 m/s.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Tube with Open Experimental Segment

Question

The open segment has

cross-sectional diameter d , and
the thick segment (cross-sectional
diameter D) is connected to an
alcohol (density ρ′) pressure
meter. When ideal incompressible
fluid (density ρ) flows through, the
pressure meter has a reading of
height h. The atmospheric
pressure is p0. Find the speed of
the liquid in the open segment.

Solution

p2 = 0, p1 = ρ′gh, v1D2 = v2d2, 1
2ρv2

1 + p1 = 1
2ρv2

2 + p2.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Fluid in Motion

Water from Container to Conduit

Question

Water (ρ) flows from a large

container to a trumpet-shaped
conduit. The cross-sectional area
of entrance and exit are S1 and
S2, and the conduit has a length
of H. The atmospheric pressure is
p0, and the flow is steady. For
what length of H will the pressure
of the liquid at the entrance of the
conduit be zero?

Solution
By equation of continuity, S1v1 = S2v2; by Bernoulli’s equation,

p0 + ρg(h + H) = p0 +
1
2
ρv2

2 p2 +
1
2
ρv2

2 =
1
2
ρv2

1 + ρgH
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

Conditions for Equilibrium
Elasticity
Fluid Statics
Fluid in Motion
Gravitation
Additional Exercises
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

Newton’s Law of Gravitation

The particle m1 at r1 exerts gravitation force F 12 on particle m2 at r2 is

F 12 = −G
m1m2

r2
12

r12

|r12|

where r12 = r1 − r2. Gravitation force is a central force, so it is
conservative and conserves angular momentum. Conservation of the
angular momentum means planar motion (e.g. planets). Define
gravitation interaction due to M on unit mass as a vector field in space:

EG = −G
M
r2

r
|r |
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

∇ ◦ EG Due to Point Mass at the Origin

For a point mass at the origin, the divergence of EG everywhere else is
zero: ∇ ◦ EG = −GM∇ ◦ r

r3 = −GM
∑

α=x ,y ,z

(
∂
∂α

r◦n̂α
r3

)
Now

r ◦ n̂α = α, so ∂
∂α

α
r3 = 1

r3 + α
(
− 3

r4

) 2α
2
√∑

β=x,y,z β
2

= 1
r3 − 3α2

r5 , it follows

that
∑

α=x ,y ,z
∂
∂α

α
r3 = 3

r3 −
3
∑
α=x,y,z α

2

r5 = 0
Now choose a sphere Σ1, radius R, centered at the origin, so∫

Σ1
EG ◦ dS = −GM

R2 (4πR2) = −4πGM, and by the theorem of Gauss
that

∫
Σ1

EG ◦ dS =
∫

Ω1
(∇ ◦ EG)d3r , (Ω1 is the region enclosed by

surface Σ1), so the divergence of EG at the origin satisfies∫
Ω1

(∇ ◦ EG)
∣∣∣
r=0

δ3(0)d3r = −4πGM

Now rewrite M =
∫

Ω1
ρ(0)δ3(0)d3r (point mass at the origin), we get(

∇ ◦ EG

)
= −4πGρ(0).
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

Gauss’ Law for Gravitational Field

(
∇ ◦ EG

)
= −4πρ(0) generalizes to a mass distribution ρ(r) as

∇ ◦ EG(r) = −4πGρ(r) which is the differential form of Gauss’ Law for
Gravitational Field. Back into the integral form,∫

Σ2

EG ◦ dS =

∫
Ω2

(∇ ◦ EG)d3r =

∫
Ω2

(−4πGρ(r))d3r = −4πGMΣ2

where MΣ2 is the mass enclosed by surface Σ2.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

Potential Energy and Potential

Potential Energy U(r) = −G Mm
r + C where C depends on the choice

of zero potential. Gravitational potential (potential energy of unit mass)
with U(∞) = 0:

V (r) = −G
M
r

Note: there is a useful fact about the gradient of 1
r :

∇1
r

=
∑

α=x ,y ,z

− 1
r2
∂r
∂α

n̂α =
∑

α=x ,y ,z

− 1
r2

2α

2
√∑

β=x ,y ,z β
2

n̂α

but
∑

β=x ,y ,z β
2 = r2 and

∑
α=x ,y ,z αn̂α = r , so

∇1
r

= − 1
r2

r
r

which conforms to F = −∇U and EG = −∇V
W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 279 / 289



Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

Satellites on Circular Orbits

Gravitation force provides centripetal force:

−GMm
r2

r
r

= −m
v2

r
n̂r

v =

√
GM

r
Period on a circular orbit:

T =
2πr
v

= 2π
r3/2
√

GM
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

Kepler’s Laws

1 Each planet moves in an
elliptical orbit, with the sun at
one focus of the ellipse.

2 A line from the sun to a given
planet sweeps out equal
areas in equal times
(constant aerial velocity
σ = 1

2(r × v)).

3 T 2

a3 = 4π2

Gms
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

Ellipse’s a,b, c versus planet’s E and L

Given the mechanical energy E < 0 of the planet and the angular
momentum L of the planet, we need to find the parameters semi-major
axis length a, semi-minor axis length b, and semi-focal length c of the
ellipse (e = c

a is the eccentricity).

When the planet is on one end of the minor axis, v =

√
2
m

[
E + GMm

a

]
.

The angular momentum is L = mvb, so

L
mb

=

√
2
m

[
E +

GMm
a

]
Then when the planet is at its perihelion or at its aphelion,

1
2

mv2
p = E +

GMm
a− c

1
2

mv2
a = E +

GMm
a + c

=⇒

1
2mv2

p (a− c)2 = E(a− c)2 + GMm(a− c)
1
2mv2

a (a + c)2 = E(a + c)2 + GMm(a + c)

W.Peng (UM-SJTU JI) VP160 Honors Physics I Recitation Class Summer 2018 282 / 289



Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

1
2mv2

p (a− c)2 = E(a− c)2 + GMm(a− c)
1
2mv2

a (a + c)2 = E(a + c)2 + GMm(a + c)
Using (a + c)va = (a− c)vp by constant aerial velocity, we subtract
one equation from the other and get

E(−4ac) + GMm(−2c) = 0 =⇒ E = −GMm
2a

=⇒ a = −GMm
2E

Plugging this back to L
mb =

√
2
m

[
E + GMm

a

]
, we get b =

√
L2

−2mE . It

then follows that c =
√

a2 − b2 =

√(
GMm

2E

)2
+ L2

2mE
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

Tunnel through the Earth

Question
A shaft is drilled from the surface through a straight tunnel d from the
center of the earth. Assume the mass distribution of the earth is
uniform, find the time it takes an object that is released from one end
of the tunnel to travel to the other end (frictionless).

Solution
Suppose the object is x from equilibrium. The net force on the object

has a magnitude of M 4
3π(d2+x2)3/2

4
3πR3

Gmx
(d2+x2)3/2 = GMmx

R3 , so the motion is

simple harmonic.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Gravitation

A Little Line Integral

Question
A thin, uniform rod has length L and mass M. A small uniform sphere
of mass m is placed a distance x from one end of the rod, along the

axis of the rod.
Calculate the gravitational potential energy of the rod-sphere system.
Find the force exerted on the sphere by the rod.

Solution

U =
∫ x

x+L−
Gλm

r (−dr) = Gλm ln
(

x
x+L

)
,

F = −∇U = −Gλm
(

1
x −

1
x+L

)
n̂x
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Additional Exercises

Halley’s Comet

Halley’s Comet is on an ellipse trajectory around the sun in a counter
clockwise motion, whose period is 76.1 years. In 1986, when it was at
its perihelion P0, it was r0 = 0.590 AU from the sun S. Some years
later, the comet reached point P on the orbit, and the angle it has
traversed is θp = 72.0◦. The following quantities are known:
1 AU = 1.50× 1011 m, gravitational constant
G = 6.67× 10−11 m3 · kg−1 · s−2, the mass of the sun
ms = 1.99× 1030 kg. Find the distance rp of P from S and the velocity
of the comet at P.
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Additional Exercises

Kepler’s third law:a = 3
√

GT 2ms
4π2 Mechanical energy E = 1

2mv2
0 −

Gmsm
r0

Then using x = c + rp cos θp and yp = rp sin θp in x2

a2 + y2

b2 = 1, we get

(a2 sin2 θp + b2 cos2 θp)r2
p + 2b2crp cos θp − b4 = 0

rp =
−b2c cos θp+b2a

a2 sin2 θp+b2 cos2 θp
Plugging in data, a = 2.685× 1012 m,

b =
√

a2 − (a− r0)2 = 6.837× 1011 m, c = 2.597× 1012 m, so
rp = 1.340× 1011 m
Aerial velocity σ = 1

2 rpvp,transversal = πab
T , so

vp,transversal = 2πab
rpT = 3.587× 104 m/s

vp =
√
−Gms

a + 2Gms
rp

= 4.395× 104 m/s Hence

vp,radial =
√

v2
p − v2

p,transversal = 2.540× 104 m/s

arctan(vp,radial/vp,transversal) = 35.3◦, so the velocity has a direction that
forms 126.7◦ from n̂x
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Equilibrium and Elasticity, Fluid Mechanics, Gravitation Additional Exercises

Two Rods Static Balance

Two uniform rods AB and CD are
placed as are shown in the figure.
The vertical wall which B and D

are in contact with are smooth,
and the horizontal ground which A
is in contact with has static
coefficient of friction µA. The point
where AB and CD are in contact
has static coefficient of friction µC .
Both rods have mass m and
length l . Suppose AB forms θ with
the vertical wall, find the
constraint α that CD forms with
the wall so that the system is in
static balance.
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