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SUMMARY

Merging data from multiple studies has been widely adopted in biomedical research. In this paper, we
consider two major issues related to merging longitudinal datasets. We first develop a rigorous hypothe-
sis testing procedure to assess the validity of data merging, and then propose a flexible joint estimation
procedure that enables us to analyse merged data and to account for different within-subject correlations
and follow-up schedules in different studies. We establish large sample properties for the proposed pro-
cedures. We compare our method with meta analysis and generalized estimating equations and show that
our test provides robust control of Type I error against both misspecification of working correlation struc-
tures and heterogeneous dispersion parameters. Our joint estimating procedure leads to an improvement
in estimation efficiency on all regression coefficients after data merging is validated.

Some key words: Data merging; Estimation efficiency; Generalized estimating function; Heterogeneity; Meta analysis.

1. INTRODUCTION

Merging data from clinical trials or longitudinal cohort studies with identical or similar protocols can
offer a powerful way to better understand effects of treatment and exposure on patient outcomes (e.g.,
Localio et al., 2001; Xie & Ahn, 2010). Appropriate data merging can increase statistical power. A well-
known approach to this is meta analysis (e.g., Becker, 2007; Hartung et al., 2008) but this often utilizes
summary statistics from individual analysis, with no or little justification provided on the validity of data
merging. When the original datasets are fully available, a statistical model incorporating interaction terms
between studies and covariates of interest may be used to characterize different effect sizes of covariates
across studies. However, in such analysis most existing approaches use a common correlation structure
and a common dispersion parameter for different studies. According to Crowder (1995), misspecification
of working correlation structures, particularly for multiple longitudinal studies, may inflate Type I errors
and distort power.

Another widely used approach is to model cross-study heterogeneity of regression coefficients through a
mixed-effects model (e.g., Laird & Ware, 1982; Zhang et al., 2009). This requires a relatively large number
of studies and correct distribution assumptions in order to adequately estimate the cross-study variability
(Follmann & Proschan, 1999). In addition, the general theory regarding tests for nonzero variance compo-
nents is difficult to apply (Stram & Lee, 1994; Crainiceanu & Ruppert, 2004), especially for nonnormal
data (Zhang & Lin, 2008).

Breslow & Day’s (1980) test for homogeneity of conditional odds ratios is a classical example of val-
idation prior to the calculation of the common odds ratio for multiple strata. In this paper, we consider
longitudinal studies that collect the same types of variables under similar protocols. We develop a novel
quadratic inference function (Qu et al., 2000) strategy to validate longitudinal data merging by testing for
the unbiasedness of the generalized estimating functions under a common set of regression coefficients
but with possibly different covariance structures. The unbiasedness implies that study-specific estimating
functions are compatible with a shared regression mean model, so that the resulting analysis of merged
data would lead to consistent estimators of regression coefficients and robust control of Type I error against
covariance misspecification.
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2. FORMULATION

We consider K � 2 longitudinal studies that collect a common set of variables under similar study
protocols. Let Yk,i j be the outcome for the j th observation of subject i in study k, and let Xk,i j be
the corresponding covariate vector for i = 1, . . . , nk , j = 1, . . . , mk and k = 1, . . . , K , where nk and mk

are the numbers of subjects and the numbers of observations on each subject in study k, respectively.
We assume a marginal model for outcome Yk,i j , consisting of conditional mean model E(Yk,i j | Xk,i j ) =
μk,i j = h(X T

k,i jβk) and conditional variance var(Yk,i j | Xk,i j ) = φkv(μk,i j ), where h(·) is a known link func-
tion, βk is a p-dimensional regression parameter, v(·) is the variance function, a known function of the
mean, and φk is a dispersion parameter. The within-subject correlation is accommodated via a working cor-
relation matrix Rk(αk), as suggested by Zeger et al. (1988), where αk is the correlation parameter of study k.

For study k, an estimator of βk from generalized estimating equations solves

n−1
k

nk∑
i=1

DT
k,i A−1/2

k,i R−1
k (αk)A−1/2

k,i (Yk,i − μk,i ) = 0 (k = 1, . . . , K ), (1)

where Yk,i = (Yk,i1, . . . , Yk,imk )
T, μk,i = (μk,i1, . . . , μk,imk )

T, Dk,i = ∂μk,i/∂β
T
k and Ak,i =

diag{v(μk,i1), . . . , v(μk,imk )}. To deal with merged data, we propose to use the quadratic inference
function method (Qu et al., 2000) to join the study-specific estimating functions. A quadratic inference
function is derived via approximating the inverse working correlation matrix by R−1

k (αk) ≈ ∑sk
s=1 ak,s Mk,s

for k = 1, . . . , K , where ak,1, . . . , ak,sk are constants possibly dependent on αk and Mk,1, . . . , Mk,sk are
known basis matrices with elements 0 and 1, which are determined by a given correlation matrix Rk(αk).
Qu et al. (2000) give more details on the forms of basis matrices for some widely used correlation
matrices. Inserting the expansion of R−1

k (αk) into (1) leads to

n−1
k

nk∑
i=1

sk∑
j=1

ak, j DT
k,i A−1/2

k,i Mk, j A−1/2
k,i (Yk,i − μk,i ) = 0 (k = 1, . . . , K ),

which may be regarded as a combination of elements of the extended score vector

ḡk(βk) = n−1
k

nk∑
i=1

gk,i (βk) = n−1
k

nk∑
i=1

⎛
⎜⎝

DT
k,i A−1/2

k,i Mk,1 A−1/2
k,i (Yk,i − μk,i )
...

DT
k,i A−1/2

k,i Mk,sk A−1/2
k,i (Yk,i − μk,i )

⎞
⎟⎠ (k = 1, . . . , K ).

Unlike generalized estimating equations, a quadratic inference function needs no estimates of nuisance
coefficients ak,1, . . . , ak,sk in order to estimate parameters β = (βT

1, . . . , β
T
K )T of interest.

Define the study indicator δi (k), with 1 indicating that subject i belongs to study k and 0 otherwise. For
the merged longitudinal data, β can be estimated by β̂ = arg min

β

Q(β), where

Q(β) = nḡ(β)TC−(β)ḡ(β), (2)

with n = ∑K
k=1 nk , and

ḡ(β) = n−1
n∑

i=1

{δi (1)g1,i (β1)
T, . . . , δi (K )gK ,i (βK )T}T = n−1

n∑
i=1

gi (β),

C(β) = n−1
n∑

i=1

diag{δi (1)g1,i (β1)g1,i (β1)
T, . . . , δi (K )gK ,i (βK )gK ,i (βK )T}.

Here C(β) is a block-diagonal matrix under the assumption of mutually independent study cohorts, which
however may be relaxed in the case of related cohorts. We adopt the unique Moore–Penrose generalized
inverse in equation (2) to enhance numerical stability, as the matrix C(β) may become singular in some
cases (Hu & Song, 2011). See Lemma 9.2.6 in (Harville, 2008) for the construction of such an inverse
operation.
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3. HOMOGENEITY TEST

We develop methods of hypothesis test for global and partial homogeneity of regression parameters
across multiple studies. By homogeneity, we mean the equality of regression parameters across all studies,
including global homogeneity β1 = · · · = βK or equality on a subset of coefficients for partial homogene-
ity. To derive asymptotic distributions of the proposed test statistics, we assume the study-specific mean
models are correctly specified, so βk can be consistently estimated in the corresponding individual study k.

Let M⊂ {1, . . . , p} denote an index set, and then |M| denotes the number of elements in M. Accord-
ingly, βk(M) and βk(Mc) are subsets of parameters indexed by M and its complementary set Mc, respec-
tively. Clearly, set M= {1, . . . , p} leads to global homogeneity, while partial homogeneity is given by M
being a certain subset of {1, . . . , p}.

To test the hypothesis H0 : β1(M) = · · · = βK (M) against Ha : βi (M) |=β j (M) for some i |= j and
i, j ∈ {1, . . . , K }, let �0(M) = {(βT

1, . . . , β
T
K )T : β1(M) = · · · = βK (M), βk ∈ R p, k = 1, . . . , K } be the

null parameter space under H0, and let � be the whole parameter space. Estimators of β under �0(M)

and under � are, respectively

β̂�0(M) = arg min
β∈�0(M)

Q(β), β̂� = arg min
β∈�

Q(β),

where Q(β) is given by (2) with the corresponding parameterization. Under H0, Theorem 1 establishes
the asymptotic distribution of Q(β̂�0(M)).

THEOREM 1. Let β̂�0(M) be a root-n consistent estimator of the true parameter β0 under H0. Suppose
the following regularity conditions hold: (a) β0 lies in the interior ofB ⊂RK p−(K−1)|M|, andB is compact;
(b) gi (β) is continuously differentiable in a neighbourhood N of β0; (c) E{gi (β)} = 0 if and only if β = β0

and E{||gi (β0)||2} is finite; (d) E{supβ∈N ||∂gi (β)/∂βT||} < ∞; (e) n1/2ḡ(β0) converges to N (0, �) in

distribution, where � is a block-diagonal matrix, � = diag(ρ−1
1 �1, . . . , ρ

−1
K �K ), with �k = cov{gk,i (β0)}

and ρk = limn→∞ nk/n for k = 1, . . . , K ; ( f ) GT�−G is nonsingular, where G = E{∂gi (β0)/∂β
T}; and

(g) ��−G = G. Then Q(β̂�0(M)) converges in distribution to χ2
rank(�)−K p+(K−1)|M|.

Here || · || denotes the Euclidean norm. The proof of Theorem 1 is given in the Appendix. Since � may
not be of full rank, the degrees of freedom of Q(β̂�0(M)) take the form of rank(�) − K p + (K − 1)|M|,
where rank(�) can be estimated from orthogonal triangularization of an estimated �.

When all study-specific mean models are correctly specified, β̂� is a root-n consistent estimator of
β0. Under the null hypothesis, ḡ(β) is an unbiased estimating function for β ∈ �0(M), so we can obtain
another root-n consistent estimator β̂�0(M) of β0. Therefore, we propose two test statistics. The first is
Q(β̂�0(M)), mimicking a score test statistic, denoted as Q̂S . Its asymptotic chi-square distribution under
H0 is shown in Theorem 1. The second is Q(β̂�0(M)) − Q(β̂�), which resembles a likelihood ratio test
statistic, denoted as Q̂L R . The asymptotic distribution of Q̂L R is given as follows.

COROLLARY 1. Under the regularity conditions in Theorem 1, Q̂L R converges in distribution to
χ2

(K−1)|M|.

4. JOINT ESTIMATION WITH MERGED DATA

When either global or partial homogeneity is established, the merged data will lead to efficiency
improvement in estimation for both common and study-specific regression coefficients. To elucidate
this without loss of generality we consider partial homogeneity. Let ζ denote a vector of common
coefficients for covariates Xk,i j shared by the studies and let γk denote study-specific parameters asso-
ciated with covariates Zk,i j . Then β = (ζ T, γ T

1 , . . . , γ T
K )T represents all the parameters and βk = (ζ T, γ T

k )T

contains those in study k only. Accordingly, the mean model is rewritten as E(Yk,i j | Xk,i j , Zk,i j ) = μk,i j =
h(X T

k,i jζ + Z T
k,i jγk) (k = 1, . . . , K ). Consequently, we obtain a consistent estimate β̂ by minimizing the

function in (2) with the merged data. Under Assumptions (a)–(f) of Theorem 1, as shown in the Appendix,
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n1/2(β̂ − β0) converges in distribution to N {0, (GT�−G)
−1} with � defined in Theorem 1 and

G = E

{
∂gi (β0)

∂βT

}
=

⎛
⎜⎝

G1
...

G K

⎞
⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E

{
∂g1,i (β0)

∂ζ T

}
E

{
∂g1,i (β0)

∂γ T
1

}
. . . . . . 0

E

{
∂g2,i (β0)

∂ζ T

}
0 E

{
∂g2,i (β0)

∂γ T
2

}
. . . 0

...
...

...
. . .

...

E

{
∂gK ,i (β0)

∂ζ T

}
0 . . . . . . E

{
∂gK ,i (β0)

∂γ T
K

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To find the efficiency gain in the merged data analysis, we focus on βk . Let β̃k be an estimator obtained
by minimizing the function in (2) using only the kth study data and let β̂k be the subvector of β̂, obtained
with the merged data. The asymptotic variance for β̃k is {ρk(GT

k�
−
k Gk)[βk ,βk ]}−1, where Gk is the kth

block-row of matrix G above, �k is defined in Theorem 1, and B[βk ,βk ] denotes the sub-block matrix of B
with rows and columns selected by those elements corresponding to βk . The asymptotic variance for β̂k is
{(GT�−G)−1}[βk ,βk ]. Theorem 2 below establishes the efficiency improvement achieved through the joint
estimation with merged data.

THEOREM 2. Suppose that (GT
k �−

k Gk)[βk ,βk ] is positive definite for study k, k = 1, . . . , K . Then the
asymptotic variances of β̂k and β̃k satisfy

{(GT�−G)
−1}[βk ,βk ] � 1

ρk
{(GT

k�
−
k Gk)[βk ,βk ]}−1 (k = 1, . . . , K ),

where � is in the sense of Löwner’s partial ordering in the space of nonnegative definite matrices.

The proof of Theorem 2 is given in the Appendix. Theorem 2 implies that the asymptotic variance of
β̂k is not larger than that of β̃k . This suggests that the estimation with the merged data is not only flexible
enough to accommodate different study-specific correlations and follow-up schedules but also leads to
estimation efficiency gain on the regression coefficients. This efficiency benefit is not easily achieved by
meta analysis, in which the effective sample size is not really increased from combining individual analy-
ses. Moreover, when additional nuisance parameters are introduced into the joint estimation procedure in
generalized estimating equations to account for study-specific covariance parameters, the efficiency gain
is not guaranteed for the estimation of parameters of interest. This is because even though the merged data
have more samples, the number of nuisance parameters increases too, which can offset the benefit from
the increased sample size.

5. SIMULATION STUDY

Two simulation studies were conducted to investigate the finite sample performance of our proposed
tests and to compare them with Wald-type tests using the method of generalized estimating equations. We
consider several Wald-type test statistics, denoted by Wzla, Wp, Wmd and Wwl. They are computed by using
different sandwich variance estimators, proposed by Zeger et al. (1988), Pan (2001), Mancl & DeRouen’s
(2001) and Wang & Long (2011), respectively. Wald-type tests are applied to test for no interactions
between study dummy covariates and covariates of interest under a common correlation structure for mul-
tiple studies. Technically speaking, these approaches may be modified to accommodate study-specific
covariance matrices, but the resulting methods require iteratively updating regression parameters and
study-specific covariance nuisance parameters, so their performances will be affected by the estimation
of nuisance parameters. In this paper we do not implement such extended estimating equation approaches
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but focus on using robust sandwich variance estimators to account for covariance heterogeneity across
multiple studies.

For meta analysis, we adopt Cochran’s test for partial homogeneity. According to Hartung et al. (2008),
this is approximately distributed as χ2

K−1 under the null hypothesis of homogeneous coefficients across
all K studies. Similarly as for the Wald-type tests, we use Tzla, Tp, Tmd and Twl to denote Cochran’s test
statistics with robust sandwich variance estimators.

We also consider a homogeneity test using mixed-effects models by testing zero variance components of
random slopes. In the linear mixed-effects model, the asymptotic distribution of a likelihood ratio test for
one zero variance component is 0·5χ2

0 + 0·5χ2
1 (Stram & Lee, 1994), while in a generalized linear mixed

model with nonidentity link functions, such mixtures of chi-squares for likelihood ratio tests are hard to
obtain (Fitzmaurice et al., 2007; Sinha, 2009). In our simulation studies, because data are generated by the
population-average model with some prefixed correlation structures, tests for zero variance components
cannot control Type I error at all. Thus, we do not include results from the mixed-effects models in the
comparison.

The first simulation study is generated by a population-average linear model Yk,i j = βk,0 + βk,1 Xk,i j +
βk,2 Zk,i j + εk,i j for j = 1, . . . , mk , i = 1, . . . , nk with mk = 8, nk = 100 and k = 1, . . . , K . The covari-
ate Zk,i = (Zk,i1, . . . , Zk,imk )

T is a time-dependent variable simulated from a multivariate normal
distribution with mean vector (1, . . . , mk)

T and the identity covariance matrix Imk . The covariate
Xk,i = (Xk,i1, . . . , Xk,imk )

T is a time-independent, baseline covariate generated from an exponential distri-
bution with rate parameter 4. The error terms εk,i = (εk,i1, . . . , εk,imk )

T follow N {0, φk Rk(αk)} with corre-
lation matrix Rk(αk). Denote all correlation parameters and dispersion parameters by α = (α1, . . . , αK )T

and φ = (φ1, . . . , φK )T, respectively, and denote the order-1 autoregressive and compound symmetric
correlations by RAR and RCS respectively. We consider three cases: (i) K = 4, φ = (50, 10, 4, 1)T, α = (0·7,

0·4, 0·2, 0·1)T, and {R1(·), R2(·), R3(·), R4(·)} = {RAR, RCS, RCS, RAR}; (ii) K = 3, φ = (10,

4, 1)T, α = (0·7, 0·2, 0·1)T, {R1(·), R2(·), R3(·)} = {RAR, RCS, RAR}; and (iii) K = 2, φ = (10, 1)T,
α = (0·7, 0·2)T, and {R1(·), R2(·)} = {RAR, RCS}. Let βk = (βk,0, βk,1, βk,2)

T for k = 1, . . . , K . We are
interested in a global test H0 : β1 = · · · = βK and a partial test concerning only the coefficients of Xk,i j ,
H0 : β1,1 = · · · = βK ,1. Type I errors are computed with βk = (−1,−2, 3)T for k = 1, . . . , K , while power
is calculated under β1 = β3 = β4 = (−1,−2, 3)T and β2 = (−1,−1·85, 3)T. In the use of Wald-type tests
for zero interaction effects between covariates and study indicators, only coefficients of interaction terms
will be involved in the test.

Table 1 summarizes Type I errors and power of all test statistics at a significance level 0·05 over 4000
replications. For a fair comparison, we compute Wald-type tests, meta analyses and our proposed tests
under a common correlation structure, RAR or RCS. The results clearly show that no matter which working
correlation structure is used, our proposed tests, Q̂L R and Q̂S , can properly control Type I error rates. In
contrast, Wald-type tests and meta analyses cannot, particularly for global homogeneity tests and for K > 2.
Wald-type tests have inflated Type I error rates, mostly because the modified robust variance estimators
underestimate variances of regression coefficients and cannot fully account for differences among covari-
ance structures across studies. Meta analyses appear to have fewer inflated Type I errors than Wald-type
tests, but since meta analyses cannot sufficiently utilize all data information, they tend to have lower power.

The second simulation study concerns a binary outcome Yk,i j , which follows a population-average
logistic model logit{E(Yk,i j | Zk,i j )} = βk,0 + βk,1 Zk,i j for j = 1, . . . , 8, i = 1, . . . , 100 and k = 1, . . . , K ,
with Zk,i j generated from Un(0, 1) distribution. We consider the same global and partial homogene-
ity hypotheses as in the first simulation study. Within-subject correlations are specified in three cases:
(i) K = 4, α = (0·7, 0·4, 0·2, 0·1)T, and {R1(·), R2(·), R3(·), R4(·)} = {RAR, RCS, RCS, RAR}; (ii) K = 3,
α = (0·7, 0·2, 0·1)T, and {R1(·), R2(·), R3(·)} = {RAR, RCS, RAR}; and (iii) K = 2, α = (0·7, 0·2)T, and
{R1(·), R2(·)} = {RAR, RCS}. Type I errors are computed with βk = (−0·2, 1·5)T for all k = 1, . . . , K , while
the power is calculated under β2 = (−0·2, 2·5)T and βk = (−0·2, 1·5)T for k |= 2.

Table 2 presents results summarized over 4000 replications at significance level 0·05. Similar conclu-
sions are drawn to those obtained in the case of continuous outcomes. Wald-type tests and meta analyses
both produce inflated Type I errors. For instance, the Type I error of Wp appears to be above 7% when
K = 4 studies are considered, regardless of the working correlation structure used. Among all Wald-type
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Table 1. Average Type I error rates and power of test statistics of the proposed (Qs), Wald-type (W s) and
meta-based (T s) versions over 4000 replications for continuous outcomes from K studies. Upper and
lower panels correspond to the global and partial homogeneity tests respectively. Two correlations are

used: order-1 autoregression, RAR, and compound symmetry, RCS

K = 4 K = 3 K = 2
Size % Power % Size % Power % Size % Power %

Test RAR RCS RAR RCS RAR RCS RAR RCS RAR RCS RAR RCS

Q̂S 4·1 4·1 27·0 38·7 4·8 4·6 85·4 95·2 4·5 4·0 50·5 65·7
Q̂L R 4·0 4·2 42·4 43·4 4·4 4·1 95·9 96·6 4·0 4·3 73·6 72·3
Wzla 9·6 9·6 79·0 80·2 8·8 8·3 99·9 100 7·1 7·4 91·3 90·1
Wp 11·4 12·1 42·5 40·0 8·5 9·2 95·2 94·8 5·8 5·9 90·8 89·4
Wmd 6·7 7·0 71·2 73·3 6·6 6·6 99·8 99·9 5·7 6·0 88·0 87·0
Wwl 10·2 11·0 39·4 36·8 7·5 8·2 94·6 94·0 5·4 5·2 89·4 88·8
Q̂L R 4·7 4·6 71·1 72·2 5·0 4·7 98·8 98·8 5·3 5·3 87·4 87·0
Wzla 8·4 8·2 88·8 90·0 7·4 7·3 100 100 7·2 7·1 96·5 95·5
Wp 9·0 8·8 62·1 60·4 7·2 7·6 99·4 99·5 6·1 6·0 96·4 95·6
Wmd 6·2 6·4 85·0 86·6 5·4 5·6 100 100 5·5 5·8 95·0 94·1
Wwl 8·5 8·4 60·5 58·7 6·9 7·2 99·3 99·5 5·5 5·4 96·1 95·4
Tzla 9·5 9·8 65·0 65·7 8·2 8·2 99·2 99·1 7·6 7·6 78·7 76·9
Tp 5·7 5·4 60·2 60·6 5·7 5·8 99·2 99·2 5·4 5·3 77·0 74·9
Tmd 6·2 6·5 56·4 57·0 5·6 6·0 98·6 98·6 5·7 5·8 72·7 71·8
Twl 4·9 4·8 57·9 58·6 5·1 5·0 99·0 99·0 4·8 4·7 75·2 73·5
Table 2. Average Type I error rates and power of test statistics of the proposed (Qs), Wald-type (Ws) and

meta-based (Ts) versions over 4000 replications for binary outcomes from K studies

K = 4 K = 3 K = 2
Size % Power % Size % Power % Size % Power %

Test RAR RCS RAR RCS RAR RCS RAR RCS RAR RCS RAR RCS

Q̂S 4·8 4·9 65·2 66·9 5·0 4·9 79·8 79·6 5·1 5·4 57·0 51·0
Q̂L R 5·2 5·1 86·0 82·6 4·8 4·9 92·0 91·3 5·1 5·5 78·7 71·0
Wzla 5·2 5·5 73·6 76·6 5·5 4·9 89·3 90·5 6·0 5·9 78·6 76·5
Wp 7·8 8·1 81·6 81·6 7·6 6·1 90·1 89·4 6·3 6·6 79·5 77·5
Wmd 4·5 4·8 71·6 75·2 5·0 4·6 88·6 89·7 5·5 5·4 77·6 75·7
Wwl 7·4 7·8 80·5 80·7 7·1 5·9 89·5 88·9 6·0 6·3 79·1 77·0
Q̂L R 5·3 5·0 88·2 89·4 5·2 5·3 95·6 95·4 5·0 4·9 86·0 80·8
Wzla 5·1 4·9 82·5 85·9 5·4 5·2 94·4 95·2 5·5 4·8 85·2 83·4
Wp 6·4 6·8 87·9 89·6 6·6 6·6 94·6 95·2 5·6 5·8 85·9 84·3
Wmd 4·7 4·6 81·5 85·0 5·2 4·9 94·1 94·8 5·2 4·3 84·8 82·5
Wwl 6·1 6·7 87·5 89·2 6·2 6·4 94·4 95·1 5·4 5·5 85·7 84·0
Tzla 5·1 5·4 58·8 65·4 5·4 5·4 70·8 69·3 5·0 5·0 63·2 52·2
Tp 10·4 10·2 58·7 64·6 5·7 4·8 70·4 69·2 4·8 4·7 63·2 52·0
Tmd 4·8 4·8 56·8 63·8 4·9 5·0 69·5 68·3 4·6 4·7 62·4 51·1
Twl 10·3 10·0 58·2 64·4 5·5 4·7 70·1 68·8 4·7 4·6 62·9 51·8

tests, the one based on Mancl & DeRouen’s (2001) sandwich variance estimator, Wmd, seems to have a rea-
sonable control of Type I error. To deal with the violation of a common correlation structure, their method
strives to reduce the bias in estimation of the covariance matrix while the other methods focus on improv-
ing correlation matrix estimation. To compare the power of Mancl & DeRouen’s test to our test, a ratio,
(Power of Wmd)/(Power of Q̂L R), decreases as the number of studies increases, dropping from 98·6% in
the case of two studies to 88·8% in the case of four studies for the global homogeneity test under RAR

working correlation. This implies that although Mancl & DeRouen’s method can correct for the bias in the
covariance estimation, it is inferior to Q̂L R in terms of power. Since meta analysis does not utilize data from
individual studies efficiently, it has lower power than our method even when its Type I error is properly
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controlled. Finally, since the degrees of freedom of a chi-square test statistic increase when the number
of studies increases, our test statistics may lose power in the setting of many studies. In this scenario, we
recommend using mixed-effects models to handle merged data if distribution assumptions for multiple
studies can be properly prespecified.
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APPENDIX

Proof of Theorem 1. Let β̂ be a root-n consistent estimator for β0. A Taylor expansion of ḡ(β̂) about
β0 gives ḡ(β̂) = ḡ(β0) + Ĝ(β∗)(β̂ − β0), where β∗ lies between β̂ and β0 and Ĝ(β∗) = ∂ ḡ(β∗)/∂βT. Sub-
stituting this expression for ḡ(β̂) into Q(β̂), we have

Q(β̂) = ‖n1/2{C−(β̂)}1/2{ḡ(β0) + Ĝ(β∗)(β̂ − β0)}‖2, (A1)

where ‖ · ‖ is the Euclidean norm. Another Taylor expansion of ḡ(β̂) about β0 in the first-order condition
of β̂, ∂ Q(β̂)/∂βT = 0, gives Ĝ(β̂)TC−(β̂){ḡ(β0) + Ĝ(β∗∗)(β̂ − β0)} + op(1) = 0, where β∗∗ is between
β0 and β̂. Provided that Ĝ(β̂)TC−(β̂)Ĝ(β∗∗) is nonsingular,

(β̂ − β0) = −{Ĝ(β̂)TC−(β̂)Ĝ(β∗∗)}−1an(β̂)ḡ(β0), (A2)

where an(β̂) = Ĝ(β̂)TC−(β̂). Substituting (A2) for β̂ − β0 into (A1) yields

Q(β̂) = ‖n1/2{C−(β̂)}1/2[I − Ĝ(β∗){Ĝ(β̂)TC−(β̂)Ĝ(β∗∗)}−1an(β̂)]ḡ(β0)‖2.

By assumptions (b) and (d) of Theorem 1 and Davidson (2001, Theorem 21.6), we obtain

∂ ḡ(β̂)

∂βT
= G + op(1),

∂ ḡ(β∗)
∂βT

= G + op(1),
∂ ḡ(β∗∗)

∂βT
= G + op(1), C−(β̂) = �− + op(1).

Assumptions (c) and (e) give n1/2ḡ(β0) → Y ∼ N (0, �) in distribution, where � could be singular.
The extended definition for multivariate normal distribution with singular covariance matrix is given by
Definition 2.4.1 (Anderson, 2003). Then Slutsky’s Theorem implies that

n1/2{C−(β̂)}1/2[I − Ĝ(β∗∗){Ĝ(β̂)TC−(β̂)Ĝ(β∗∗)}−1an(β̂)]ḡ(β0) → (�−)1/2(I − P)Y

in distribution, where P = G(GT�−G)−1GT�− and Y ∼ N (0, �). Let S = (�−)1/2(I − P)�(I −
P)T(�−)1/2. Since P is idempotent, so is S. Thus Q(β̂) converges in distribution to Y T(I − P)T�−(I −
P)Y ∼ χ2

rank(S), where rank(S) = trace(S) = rank(�) − K p + (K − 1)|M|. �

Proof of Theorem 2. Note that GT = (GT
1, GT

2, . . . , GT
K ) and �− = diag{ρ1�

−
1 , . . . , ρK �−

K } where Gk

(k = 1, . . . , K ) and � are defined in Theorem 1. We have GT�−G = ρ1GT
1�

−
1 G1 + · · · + ρK GT

K �−
K G K .

Denote B = GT�−G and Bk = ρk GT
k�

−
k Gk for k = 1, . . . , K . Then B can be partitioned as

B =
(

B[β1,β1] B[β1,−β1]

B[−β1,β1] B[−β1,−β1]

)
=

⎛
⎜⎜⎜⎜⎜⎝

K∑
k=1

Bk [β1,β1]

K∑
k=1

Bk [β1,−β1]

K∑
k=1

Bk [−β1,β1]

K∑
k=1

Bk [−β1,−β1]

⎞
⎟⎟⎟⎟⎟⎠ ,

where −β1 means not corresponding to β1, the block-diagonal matrix
∑K

k=1 Bk [−β1,−β1] =
diag{B2[γ2,γ2], . . . , BK [γK ,γK ]},

∑K
k=1 Bk [β1,−β1] = {B2[β1,γ2], . . . , BK [β1,γK ]} and

∑K
k=1(Bk [−β1,β1])

T =
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{(B2[γ2,β1])
T, . . . , (BK [γK ,β1])

T}. Following Horn & Johnson (1990, page 18), one can easily derive the
inverse of partitioned matrix B and

(B−1)[β1,β1] =
{

K∑
k=1

Bk [β1,β1] −
K∑

k=2

Bk [β1,γk ](Bk [γk ,γk ])
−1 Bk [γk ,β1]

}−1

.

Since Bk [βk ,βk ] is positive definite, so is Bk [ζ,ζ ] − Bk [ζ,γk ](Bk [γk ,γk ])
−1 Bk [γk ,ζ ]. By the fact that

Bk [β1,β1] − Bk [β1,γk ](Bk [γk ,γk ])
−1 Bk [γk ,β1] is a block-diagonal matrix with diagonal components Bk [ζ,ζ ] −

Bk [ζ,γk ](Bk [γk ,γk ])
−1 Bk [γk ,ζ ] and a zero matrix, we show that

∑K
k=2 Bk [β1,β1] − ∑K

k=2 Bk [β1,γk ](Bk [γk ,γk ])
−1

Bk [γk ,β1] is nonnegative definite. Applying Horn & Johnson (1990, Theorem 7.7.4), we obtain

(B−1)[β1,β1] � (B1[β1,β1])
−1, where (B−1)[β1,β1] and (B1[β1,β1])

−1 are root-n asymptotic variances for β̂1

and β̃1, respectively. Rearranging the order of γ1, . . . , γK in parameter β, we can prove (B−1)[βk ,βk ] �
(Bk [βk ,βk ])

−1 for all k = 1, . . . , K . �
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