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a b s t r a c t

Rank-based correlation is widely used to measure dependence between variables when
their marginal distributions are skewed. Estimation of such correlation is challenged by
both the presence ofmissing data and the need for adjusting for confounding factors. In this
paper, we consider a unified framework of Gaussian copula regression that enables us to
estimate either Pearson correlation or rank-based correlation (e.g. Kendall’s tau or Spear-
man’s rho), depending on the types of marginal distributions. To adjust for confounding
covariates, we utilizemarginal regressionmodelswith univariate location-scale family dis-
tributions.We establish the EM algorithm for estimation of both correlation and regression
parameters with missing values. For implementation, we propose an effective peeling pro-
cedure to carry out iterations required by the EM algorithm. We compare the performance
of the EM algorithmmethod to the traditional multiple imputation approach through sim-
ulation studies. For structured types of correlations, such as exchangeable or first-order
auto-regressive (AR-1) correlation, the EM algorithm outperforms themultiple imputation
approach in terms of both estimation bias and efficiency.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Estimation of rank-based correlation is frequently required in practice to evaluate relationships between variables when
they follow marginally skewed distributions. However, estimation of such correlation becomes a great challenge in the
presence of missing data and with the need of adjusting for confounders. Most of recently published works on the copula
models have been focused on analyzing fully observed data, e.g., Czado (2010), Joe et al. (2010), Genest et al. (2011),
Masarotto and Varin et al. (2012) and Acar et al. (2012), and there is little knowledge available concerning how the analysis
may be done in the presence of missing data.

In terms of handling missing data, the complete case analysis, which is often used in practice for convenience, simply
discards any cases with missing values on those of the variables selected and proceeds with the analysis using standard
methods. Obviously, the data attrition reduces the sample size, resulting potentially in a great loss of estimation efficiency.
EM algorithm (Dempster et al., 1977) is a widely used iterative algorithm to carry out themaximum likelihood estimation in
a statistical analysiswith incomplete data.Multiple Imputation (Rubin, 2004) provides an alternative approach useful to deal
with statistical analysis with missing values. Instead of filling in a single value for eachmissing value, Rubin (2004) multiple
imputation procedure actually replaces eachmissing valuewith a set of plausible values that represent the uncertainty about
the right value to impute. When data come from skewed distributions, Hot-Deck Imputation (Andridge and Little, 2010) is
also widely used, where a missing value is imputed with a randomly drawn similar record in terms of the nearest neighbor
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criterion. One caveat of Hot-Deck imputation is that it is a single imputation method, which may fail to provide desirable
uncertainty associated with missing values. In addition, the number of imputed data sets is critical to obtain proper data
analysis results, and a small number may lead to inappropriate inference. Some researchers have recommended 20–100
imputation data sets or even more (Graham et al., 2007), which appears computationally costly in practice. The imputation
methods may become nontrivial and no longer straightforward when data distributions are skewed and adjusting for
confounding factors is needed.

Multi-dimensional regressionmodels for correlated data involve typically the specification of both correlation structures
and marginal mean models that can be formulated by the classical univariate generalized linear model (GLM) (Nelder
and Baker, 1972). Although the great popularity of quasi-likelihood approaches to analyzing correlated data, such as
generalized estimating equation (GEE) (Liang and Zeger, 1986) and quadratic inference function (QIF) (Qu et al., 2000), a fully
specified probability model with interpretable correlation structures is actually a desirable device to achieve the objective
of evaluating correlations between variables. It is known that in the quasi-likelihood method correlations are treated as
nuisance parameters, so that their estimation and interpretation are not of primary interest in data analysis.

In this paper we consider the Gaussian copula regression model (Song, 2000; Song et al., 2009) as the probability model
for the correlated data because of the following meritorious features. First, the copula model allows us to define, evaluate
and interpret correlations between variables in a full probability manner, very similar to the classical multivariate normal
distribution. Second, from the copula model various types of correlations are provided to answer for different questions.
For example, it provides Pearson linear correlation or rank-based nonlinear correlations (Kendall’s tau or Spearman’s rho),
depending on if the marginal distributions are normal or skewed. Moreover these correlations may be obtained either in
a form of unconditional marginal pairwise correlation, or in a form of conditional pairwise correlation. Third, the copula
model has the flexibility to incorporate marginal GLMs to adjust for confounding factors, which is of practical importance.
Last, the availability of the full probability model gives rise to the great ease of implementing powerful EM algorithm to
handle missing data in a broad range of multi-dimensional models where the regression parameters in the mean model
and the correlation parameters can be estimated simultaneously under one objective function. In such a framework, both
estimation and inference are safeguarded by the well-established classical maximum likelihood theory.

It is of interest in the context of copula models to investigate and compare the two principled methods of handling
missing data, EM algorithm and multiple imputation, as well as their computational complexity. Since the development of
the EM algorithm is not trivial in the framework of Gaussian copula models, we propose an efficient peeling procedure to
update model parameters in the M-step due to the involvement of a multi-dimensional integral. To adjust for confounding
factors in the marginals, we focus on the location-scale family distribution in marginal regression models to embrace the
flexibility of marginal distributions.

We compare the performance of the EM algorithm to the multiple imputation approach through simulation studies.
For structured types of correlations, such as exchangeable or first-order auto-regressive (AR-1) correlation matrix, the EM
algorithm method outperforms the multiple imputation approach in both aspects of estimation bias and efficiency. These
two approaches perform similarly when the correlation matrix is unstructured.

This paper is organized as follows. Section 2 describes the Gaussian copula model. Together with some examples of
practically useful models, Section 3 presents the details of the EM algorithm and Louis’ formula (Louis, 1982) for standard
error calculation. Section 4 presents simulation study, and a data analysis is included in Section 5. Section 6 provides some
concluding remarks.

2. Model

The focus of this paper is on using EM algorithm in Gaussian copula to estimate of correlation with missing data. We
assume that there are n partially observed subjects. For a subject, let Y = (y1, y2, . . . , yd)′ be a d-dimensional random
vector of continuous outcomes, part of which is observed and the other part is missing. Denote by Rj as a missing data
indicator, where Rj = 0 or 1 if the jth element yj is missing or observed. Note that this indicator is known but varies for
different subjects. Let ymis be the set of variables with missing data, and yobs be the set of variables with observed data of a
subject.

2.1. Location-scale family distribution marginal model

Suppose θ = (θ1, θ2, . . . , θd)
′, where each θj denotes a set of marginal parameters associated with the jth (j = 1, . . . , d)

marginal density function, fj(yj|θj). Denote by uj = Fj(yj|θj) themarginal cumulative distribution function(CDF) correspond-
ing to the jth margin, where Fj is a location-scale family distribution parametrized by a location parameter µj and a positive
scale parameter σj, θj = (µj, σj). More specifically, the marginal location-scale density function is given by

fj(yj|θj) =
1
σj

f̃

yj − µj

σj


, j = 1, . . . , d, (1)

where f̃ (·) is the standard kernel density with

R yf̃ (y)dy = 0, and


R y

2 f̃ (y)dy = 1. In this paper, f̃ may be taken as a para-
metric or a nonparametric kernel density, and parameter µj or σj may be modeled as a function of confounding covariates.
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2.2. Gaussian copula

A copula is a multivariate probability distribution in which the marginal probability distribution of each variable
is uniform on (0, 1). Sklar’s theorem (Sklar, 1959) states that every multivariate cumulative distribution function
of a continuous random vector Y = (y1, y2, . . . , yd)′ with marginals Fj(yj|θj) can be written as F(y1, . . . , yd) =

C (F1(y1), . . . , Fd(yd)), where C is a certain copula. In this paper, Y is assumed to follow a d-dimensional distribution
generated by a Gaussian copula (Song, 2000), whose density function is given by

f (Y |θ, Γ ) = c(u|Γ )

d
j=1

fj(yj|θj), u = (u1, u2, . . . , ud)
′
∈ [0, 1]d, (2)

where c(u|Γ ) = c(u1, . . . , ud|Γ ), u ∈ [0, 1]d, is the Gaussian copula density, with uj = Fj(yj|θj), i = 1, . . . , d, and Γ is an
d × d matrix of correlation.

Let qj = qj(uj) = Φ−1(uj) be the jth marginal normal quantile, where Φ is CDF of the standard normal distribution.
According to Song (2007), the joint density of a Gaussian copula function c(·|Γ ) takes the form:

c(u|Γ ) = |Γ |
−

1
2 exp


1
2
Q (u)T (I − Γ −1)Q (u)


, u ∈ [0, 1]d (3)

where Γ = [γj1j2 ]d×d is the Pearson correlation matrix of Q (u) = (q1(u1), . . . , qd(ud))
′, and I is the d × d identity matrix.

Here | · | denotes the determinant of a matrix. Marginally, uj ∼ Uniform(0, 1), and qj ∼ Normal(0, 1). When yj is marginally
normal distributed, matrix Γ gives the Pearson correlation matrix of Y ; otherwise, Γ represents as a matrix of pairwise
rank-based correlations. In fact, given a matrix Γ in Eq. (3), two types of pairwise rank-based correlations, Kendall’s tau
(

τj1j2


d×d) and Spearman’s rho (


ρj1j2


d×d) can be obtained as follows: τj1j2 =

2
π
arcsin(γj1j2), and ρj1j2 =

6
π
arcsin(

γj1 j2
2 ) for

j1, j2 = 1, . . . , d, j1 ≠ j2, respectively (McNeil et al., 2010).

2.3. Examples of marginal models

Among many possible marginal models, here we present two examples of marginal models to illustrate our proposed
method, with or without the inclusion of covariates. These two following models are practically useful.

Example-1: marginal parametric distribution

To adjust for confounding factors in the mean marginal model, let Xi = (1, xTi )
T , i = 1, . . . , n. For the jth margin,

the linear model is imposed on the location parameter in Eq. (1), µij = E(yij|Xi) = h(XT
i βj), j = 1, . . . , d, where

βj = (βj0, βj1, . . . , βjp)
′ is a (p + 1)-element unknown regression vector, and h is a link function. For convenience, denote

the resulting model by Yij ∼ Fj(yj|µij(βj), σj).
As an important special case, we consider p = 0 (no covariates), and thus µij = h(βj0) is a common parameter for all

subjects i = 1, . . . , n. More generally, the marginal distribution model with the CDF uij = Fj(yj|θj) may be a generalized
location-scale family distribution, such as gamma distribution, of which the location parameter is 0, and the estimation
procedure remains the same under a given marginal parametric distribution. This will be discussed as an example in
simulation study in Section 4.1.

Example-2: Semi-parametric marginal distribution

If the type of the density function fj(yj), j = 1, . . . , d is unknown, there are several possible forms available to specify
Eq. (1). In this paper, we consider an example of fully unspecified marginal distribution function Fj(yj), which will be
estimated using the empirical distribution function. In this case, all the marginal parameter θj is absorbed into the CDF.

3. EM algorithm

Our goal is to estimate the model parameter (θ, Γ ) in the presence of missing data. This may be achieved by utilizing
the EM algorithm. We propose an effective peeling procedure in the EM algorithm, which serves as a core engine to speed
up the calculation of M-step in the copula model. Both E-step and M-step are discussed in detail in Section 3.1, and the
examples will be revisited in Section 3.2, respectively. Note that the EM algorithm assumes implicitly themissing at random
(MAR) mechanism. This is because that the E-step of the algorithm requires to have identifiable conditional distributions of
variables with missing data given all the other observed variables.

3.1. Expectation and maximization

Computing the likelihood of (θ, Γ ) and iteratively updating the model parameter (θ, Γ ) by maximizing the observed
likelihood constitute the two essential procedures of the EM algorithm, corresponding respectively to the expectation step
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(E-step) and the maximization step (M-step). The details of these two steps are discussed below under the setting where
the forms of parametric marginal location-scale distributions are given. When these marginal distribution of forms are
unspecified, we replace them by the corresponding empirical CDFs (see Example-2 above), and the resulting approximate
likelihood will be used in the EM algorithm.

E-step

Denote by uobs the subvector of observed margins of u and umis the subvector of margins with missing values; similarly,
qobs and qmis denote the corresponding subvectors of transformed quantiles. Let Dobs and Dmis be the sets of indices for
components with observed data and missing data, respectively. Then D = Dobs ∪ Dmis is the set of all indices, and
Dobs ∩ Dmis is an empty set. Note that both Dobs and Dmis are subject-dependent, and its partition varies across subjects.
Let dm = dim(ymis) = |Dmis|.

At the E-step, the primary task is to calculate λ(θ, Γ |θ (t), Γ (t), yobs) for each subject, where the pair (θ (t), Γ (t)) is the
updated values of (θ, Γ ) obtained from the tth iteration. For the ease of exposition, suppress index i in the following
formulas. Given a subject, the λ-function λ(θ, Γ |θ (t), Γ (t), yobs) is the expected value of the log likelihood function of (θ, Γ )
with respect to the conditional distribution of ymis given yobs and (θ (t), Γ (t)):

λ(θ, Γ |θ (t), Γ (t), yobs) =


Rdm

ln {f (y|θ, Γ )} f

ymis|yobs, θ (t), Γ (t) dymis

=


j∈Dobs

ln

fj(yj|θj)


+


(0,1)dm

ln {c(u|θ, Γ )} c

umis|uobs, θ

(t), Γ (t) dumis

+


j∈Dmis

 1

0
ln


fj

F−1
j (uj|θj)|θj


c

uj|uobs, θ

(t)
j , Γ (t)


duj, (4)

where the right-hand side of Eq. (4) consists of three terms. The first term


j∈Dobs
ln


fj(yj|θj)


is a sum of marginal

likelihoods over those observed margins j ∈ Dobs, which can be evaluated directly. The second term is the observed
likelihood, although it is of dm dimension, its closed form expression can be analytically obtained. To do so, let A =

[Aj1j2 ]d×d = Γ −1 be the precision matrix. The log copula density may be rewritten as follows:

ln c(u|θ, Γ ) =
1
2
ln |A| +

1
2

d
j=1

(1 − Ajj)q2j −
1
2

d
j2≠j1

Aj1j2qj1qj2 . (5)

It follows from Eq. (5) that
(0,1)dm

ln{c(u|θ, Γ )}c

umis|uobs, θ

(t), Γ (t) dumis

=
1
2
ln |A| +

1
2


j∈Dobs

(1 − Ajj)q2j +
1
2


j∈Dmis

(1 − Ajj)


R
q2j φ(qj|qobs, θ (t), Γ (t))dqj

−
1
2


j1≠j2∈Dobs

Aj1j2qj1qj2 −


j1∈Dobs

qj1


j2∈Dmis

Aj1j2


R
qj2φ(qj2 |qobs, θ

(t), Γ (t))dqj

−
1
2


j1≠j2∈Dmis

Aj1j2


R2

qj1qj2φ2(qj1 , qj2 |qobs, θ
(t), Γ (t))dqj1dqj2

=
1
2
ln |A| +

1
2


j∈Dobs

(1 − Ajj)q2j

+
1
2


j∈Dmis

(1 − Ajj)


1 − (Γ

(t)
obs,j)

T (Γ
(t)
obs,obs)

−1Γ
(t)
obs,j +


(Γ

(t)
obs,j)

T (Γ
(t)
obs,obs)

−1q(t)
obs

2


−
1
2


j1≠j2∈Dobs

Aj1j2qj1qj2 +


j1∈Dobs


j2∈Dmis

Aj1j2qj1

(Γ

(t)
obs,j2

)T (Γ
(t)
obs,obs)

−1q(t)
obs


−

1
2


j1≠j2∈Dmis

Aj1j2


Γ

(t)
j1,j2

− (Γ
(t)
obs,j1

)T (Γ
(t)
obs,obs)

−1Γ
(t)
obs,j2


−

1
2


j1≠j2∈Dmis

Aj1j2


(Γ

(t)
obs,j1

)T (Γ
(t)
obs,obs)

−1q(t)
obs

 
(Γ

(t)
obs,j2

)T (Γ
(t)
obs,obs)

−1q(t)
obs


, (6)
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where Γobs,j is the jth column of Γ with observed margins, and Γobs,obs is a submatrix of Γ , whose columns and rows are
observed margins. Also, φ(·) is the univariate normal density, and φ2(·) is the bivariate normal density. The third term in
Eq. (4) may be rewritten as follows:

j∈Dmis

 1

0
ln


fj

F−1
j (uj|θj)|θj


c

uj|uobs, θ

(t)
j , Γ (t)


duj =


j∈Dmis

E

ln


fj

F−1
j (uj|θj)|θj


|yobs, θ

(t)
j , Γ (t)


, (7)

where uj is the CDF of normally distributed quantile qj with mean (Γ
(t)
obs,j)

T (Γ
(t)
obs,obs)

−1q(t)
obs, and variance


1 − (Γ

(t)
obs,j)

T

(Γ
(t)
obs,obs)

−1Γ
(t)
obs,j


, and the expectation E(·) may be evaluated numerically using the method of Gaussian quadratures

(Abramowitz and Stegun, 1972). The observed likelihood for the full data of n subjects is expressed as:

λ(θ, Γ |θ (t), Γ (t), Yobs) =

n
i=1

λi(θ, Γ |θ (t), Γ (t), yi,obs), (8)

where function λi(·) is given by Eq. (4). It is worth noting that Eq. (6) is of critical importance as it turns a dm-dimensional
integral a closed form expression, which ensures the E-step to be numerically feasible and stable. As a result, the evaluation
of the E-step is computationally fast.

M-step

In the M-step we update parameters values by maximizing (8) with respect to θ and Γ . Following the ECM algorithm
(Meng and Rubin, 1993), we will execute the M-step with several computationally simpler CM-steps. We propose a peeling
procedure to facilitate the computation in the M-step, which consists of four routines given as follows.

Step M-1: updating marginal parameters

For a specific marginal parameter θj, we obtain its update by sequentially maximizing the observed likelihood (8) as
follows, for j = 1, . . . , d,

θ
(t+1)
j = argmax

θj

n
i=1

λi(θ
(t+1)
1 , . . . , θ

(t+1)
j−1 , θj, θ

(t)
j+1, . . . , θ

(t)
d |Γ (t), yi,obs).

This optimization is carried out numerically by a quasi-Newton optimization routine available in R function nlm, and this
step is computationally fast as the optimization involves only a set of low-dimensional parameters θj at one time.

Step M-2: updating correlation parameters

If Γ is an unstructured correlation matrix, each off-diagonal element γj1j2 is updated by maximizing the observed
log-likelihood (8), which has a closed form expression. That is, for j1, j2 = 1, . . . , d, j1 ≠ j2,

γ
(t+1)
j1j2

=

n
i=1

q(t)
ij1
q(t)
ij2
1(Rij1 = 1)1(Rij2 = 1)

n
i=1

1(Rij1 = 1)1(Rij2 = 1)
, (9)

where 1(·) is an indicator function. Note that the diagonal elements γjj = 1, j = 1, . . . , d.
If Γ is a structured correlationmatrix such as exchangeable or first-order auto-regressive correlation, say Γ = Γ (γ ), we

update the correlation parameter γ bymaximizing Eq. (8). This can be done numerically by applying R function optim(Nelder
& Mead, 1965). In both cases of exchangeable and first-order auto-regressive correlations, there is only one correlation
parameter involved in optimization, and the related computing is fast.

Step M-3: updating quantiles

For each subject i = 1, . . . , n, the quantiles are updated by the posterior mean for each margin j = 1, . . . , d, as follows:

q(t+1)
ij =

Γ
(t+1)
j,−j


Γ

(t+1)
−j,−j

−1 
q(t+1)
i,−j

T
, j ∈ Di,mis

Φ−1

Fj


yij|θ

(t+1)
j


, j ∈ Di,obs,

(10)

where Γ
(t+1)
j,−j denotes the jth row vector of matrix Γ (t+1) without the jth element, Γ (t+1)

−j,−j is a submatrix of matrix Γ (t+1)

without the jth row and the jth column, and q(t+1)
i,−j is the subvector of quantiles for subject i, q(t+1)

i , with the jth element
deleted. Note that the quantile updating is carried out by borrowing information from the other correlated variables via
matrix Γ (t+1).
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Step M-4: updating outcome values

Based on the updated parameter θ (t+1) and quantiles q(t+1)
ij , the outcome values are updated as follows:

y(t+1)
ij =


F−1
j


Φ


q(t+1)
ij |θ

(t+1)
ij


, j ∈ Di,mis

yij, j ∈ Di,obs.
(11)

3.2. Examples revisited

Now we revisit the examples outlined in Section 2.3 in connection to the EM algorithm.

Example-1: marginal parametric distribution

Example 1 is straightforward, and the marginal parameters and correlation parameters can be estimated by directly
applying the above EM algorithm.

Example-2: semi-parametric marginal distribution

Since the marginal CDFs are no longer parametric, the step of updating marginal parameters θ1, . . . , θd in the EM
algorithm is void. At each iteration, we need to update themissing values via StepM-4 and updatematrix Γ via StepM-2. In
addition, quantiles qij, j ∈ Di,mis are updated by Step M-3, and consequently the uniform variates uij, j ∈ Di,mis are updated
as follows,

u(t+1)
ij =

1
n


n

k=1

1(q(t)
kj < q(t)

ij ) +
1
2


, and q(t+1)

ij = Φ−1

u(t+1)
ij


, j = 1, 2, . . . , d, (12)

where the term 1
2 in Eq. (12) is used to avoid u(t+1)

ij = 0 leading to q(t+1)
ij = −∞, which causes numerical problem in the

EM algorithm.

3.3. Standard error calculation

Louis’ formula (Louis, 1982) is a well-known procedure useful to obtain standard errors of the estimates from the EM
algorithm. As shown in Eq. (13), the observed Fisher Information matrix can be obtained via two information matrices. The
first term in Eq. (13) is the expected full-data informationmatrix, while the second is the expectedmissing data information
matrix. For the ease of exposition, suppress index i in the following formulas.

I(θ̂ , Γ̂ ) = −∇
2ln {f (yobs|θ, Γ )} |θ=θ̂ ,Γ =Γ̂

= −Ifull + Imis

= −


∇

2ln {f (ymis, yobs|θ, Γ )} |θ=θ̂ ,Γ =Γ̂ f (ymis|yobs, θ̂ , Γ̂ )dymis

+


∇

2ln {f (ymis|yobs, θ, Γ )} |θ=θ̂ ,Γ =Γ̂ f (ymis|yobs, θ̂ , Γ̂ )dymis (13)

where ∇
2 denotes the second order derivative with respect to the model parameters, and (θ̂ , Γ̂ ) are the estimates obtained

as the final outputs of the EM algorithm. Therefore, the Fisher Information matrix is

I(θ̂ , Γ̂ ) =

n
i=1

Ii(θ̂ , Γ̂ ), (14)

where Ii(θ̂ , Γ̂ ) = −∇
2li(θ̂ , Γ̂ ), and li(θ̂ , Γ̂ ) is the observed log likelihood evaluated at the estimates for subject i, which can

be calculated numerically via the following expression:

li(θ̂ , Γ̂ ) =
1
2
ln(|Âi|) +

1
2


j∈Di,obs


1 − Âi,jj


q̂2ij −

1
2


j1≠j2∈Di,obs

Âi,j1j2 q̂ij1 q̂ij2 +


j∈Di,obs

ln

fj(yij|θ̂j)


. (15)

Here Ai = (Γi)
−1

= [Ai,j1j2 ]dm,i×dm,i , whereΓi is the submatrix ofΓ whose columns correspond to the observed variables in yi
for subject i, and dm,i counts the dimensions. By R function hessian, the Hessian function of Eq. (15) can both be numerically
carried out. This provides the observed Fisher information matrix I , and moreover the asymptotic variance for (θ̂ , Γ̂ ) is
I(θ̂ , Γ̂ )−1.
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Table 1
Simulation results of correlation (Kendall’s tau) parameters estimation in copula model for marginal skewed distributed data obtained by full data
likelihood, EM algorithm and Imputation methods with different missing percentage. (Standard error ratio is calculated by a ratio of two standard errors
between a method and the gold standard.)

%mis Full data Copula & EM Multiple imputation Hot deck imputation
bias(×10−2) std.err bias(×10−2) std.err ratio bias(×10−2) std.err ratio bias(×10−2) std.err ratio

20%
0.10 0.0440 −0.14 1.0250 −1.78 1.0727 0.04 1.1273
0.00 0.0402 −0.46 0.9851 −3.12 1.0995 −0.05 1.1144
0.05 0.0434 −0.20 1.0069 −2.36 1.1060 −0.01 1.0945

30%
−0.03 0.0454 −0.30 1.0639 −2.77 1.0771 −0.13 1.1718

−0.10 0.0416 −0.63 1.0673 −4.88 1.1370 −0.31 1.1563
0.04 0.0442 −0.32 1.0452 −3.65 1.0905 0.01 1.1516

50%
−0.15 0.0437 −0.09 1.1716 −4.32 1.2449 −0.15 1.2792
−0.14 0.0413 −0.55 1.1840 −7.10 1.2736 −0.46 1.3099
−0.11 0.0428 −0.43 1.1869 −5.99 1.2453 −0.40 1.2944

3.4. Initialization

It is known that the quality of initial values is critical to the accuracy and efficiency of the EM algorithm. The initial
parameters values (θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
d , Γ (0)) may be given by the estimates obtained from the complete case analysis, as

suggested by Joe (2005). The sequential updating by the peeling algorithm enjoys numerical stability for the estimation
of marginal regression parameters when the bias in the estimation of correlation parameters is asymptotically ignorable.
Although theoretically the initial valuesmay be set arbitrary, all numerical experiences have suggested that the closer initial
values are to the true values, the faster the algorithm converges.

4. Simulation study

We conduct simulation experiments to evaluate and compare the performance of the EM algorithm with the multiple
imputation method. In our experiments, the dimension of outcomes is set as d = 3, and dm = 1 or 2 for different subjects.
Three types of the correlation matrices Γ are considered: unstructured, exchangeable, and first-order autoregressive. Both
Multiple Imputation (Little and Rubin, 2002) and Hot-deck Imputation (Andridge and Little, 2010) are included in the
comparison.

Note that the R package of Multiple Imputation (R Package ‘‘MI ’’) applied here is developed under multivariate normal
distributions, so the skewness of the marginal distributions for outcomes may result in estimation bias. In Hot-Deck
Imputation (R Package ‘‘HotDeckImputation’’), as discussed above, each missing value is imputed by a randomly drawn
similar record in terms of the nearest neighbor criterion. To adjust for confounders, Hot-Deck Imputation is adopted through
the following steps. First, we run regression on the complete cases; second, impute residuals of the missing data, and then
finally obtain imputed missing outcomes that will be used to run regression analysis on the ‘‘full’’ outcomes to yield the
estimates of model parameters.

A naive approach is to use marginal data to obtain estimate of CDF Fj(yj|θ̂j), j = 1, . . . , d, if Fj is a parametric
model, or F̂j(yj), j = 1, . . . , d by empirical CDF if Fj is nonparametric model, and make inverse-normal transformation
q̂j = Φ−1(Fj(yj|θ̂j)) or q̂j = Φ−1(F̂j(yj)), which are used to calculate cor(q̂j1 , q̂j2). Since the naive approach only uses
marginal information and available data. Because it is inferior to imputation methods that replace the missing data with
plausible values. So in this section, we did not include the naive approach in the comparison.

4.1. Skewed marginal model

We first examine the EM algorithm in the setting of the semi-parametric model discussed in Example-2, Section 2.3.
In this case, only correlation parameters (Kendall’s tau) are updated. To generate data, the marginal distributions are set
as gamma distribution with the shape parameter α = 0.2 and rate parameter β = 0.1, leading to the skewness 4.47.
The correlation matrix Γ with γ12 = 0.3, γ13 = 0.5, γ23 = 0.4 is used, with the corresponding Kendall’s tau being
(0.1940, 0.3333, 0.2620). We compare the results obtained from the full data without missingness (regarded as the gold
standard) to the results obtained by the EM algorithm, Multiple Imputation, and Hot-Deck Imputation with incomplete
data. The missingness percent varies from 20% to 50%. The sample size is fixed at 200, while 1000 replicates are run to draw
summary statistics.

As shown in Table 1, with no surprise, in such a case of highly skewed distributions, the estimates of three Kendall’s
tau parameters obtained from Multiple Imputation are more biased. The estimation results from the EM algorithm and
Hot-Deck Imputation are comparable, but the EM algorithm method provides smaller empirical standard errors. In both
simple cases above, the EM algorithm works well.
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Table 2
Simulation results concerning estimation of Pearson correlation and marginal regression parameters in the copula model for partially misaligned missing
at random data obtained EM algorithm, compared with the gold standard with full data, Multiple Imputation and Hot-Deck Imputation.

Parameter True value Full data Copula&EM Multiple imputation Hot-deck imputation
Estimate std.err Estimate std.err Estimate std.err Estimate std.err

β10 0 −0.0012 0.143 0.0596 0.1466/0.1488 −0.0012 0.143 −0.0012 0.143
β11 1 1.0030 0.1424 0.9425 0.1451/0.1485 1.0030 0.1424 1.0030 0.1424
β12 3 3.0003 0.0496 3.0000 0.0498/0.0528 3.0003 0.0496 3.0003 0.0496
σ1 1 0.9975 0.051 1.0446 0.0566/0.0522 0.9975 0.051 0.9975 0.051

β20 0 −0.0050 0.1435 −0.0087 0.189/0.2146 −0.0918 0.2134 −0.1405 0.2397
β21 2 2.0049 0.1413 2.0098 0.1864/0.2157 2.1654 0.2053 2.1989 0.2104
β22 2 2.0006 0.0514 2.0017 0.0648/0.0774 2.0015 0.0719 2.0020 0.0711
σ2 1 0.9977 0.0493 1.0918 0.0883/0.0754 0.9836 0.0796 0.9398 0.1046

β30 0 −0.0023 0.1474 0.1109 0.1915/0.1797 0.0503 0.2178 0.0424 0.2371
β31 3 3.0046 0.1481 2.8902 0.1936/0.1776 2.9111 0.2155 2.9160 0.2191
β32 1 1.0010 0.051 1.0005 0.0665/0.0634 0.9997 0.0745 1.0006 0.0737
σ3 1 0.9965 0.0508 0.9379 0.0615/0.0622 0.9946 0.0752 0.9662 0.0956

γ 0.5 0.5019 0.0408 0.4951 0.0606/0.0557 0.4409 0.1212 0.4178 0.1149

4.2. Misaligned missing data

Motivated from one of our collaborative projects on a quality of life study (see the detail in Section 5), we consider a
rather challengingmissing data pattern in this simulation study. That concerns the so-calledmisalignedmissingness, which
refers to a situation where two correlated variables have missing values on exclusive subsets of subjects. In a completely
misalignedmissing case,where there is no overlap between twomargins, Hot-Deck imputation fails towork, and themethod
of multiple imputation cannot effectively capture between-variable correlations, resulting in poor estimation of correlation
parameters. However, when the correlation matrix is specified by a structured form in the Gaussian copula model, the EM
algorithm is able to utilize the correlation structure for information sharing, and consequently the resulting estimation of
model parameters is highly satisfactory.

The simulation setup is given as follows. Following Example-1 in Section 2.3, we include two covariates X1 ∼ Bin(1, 0.5)
and X2 ∼ Γ (2, 1), and generate residuals ϵ in a linear model with µj = XTβj, j = 1, 2, 3 from a tri-variate normal with the
marginal N(0, 1) and first-order autoregressive correlation matrix with parameter γ = 0.5.

Themissingmechanism concernsmissing at random (MAR)with a partiallymisaligned patternwith specified as follows.
A tri-variate outcome (Y1, Y2, Y3)

′ is subject to be missing at random, where Y1 is fully observed, while each of Y2 and Y3 has
45%missing data that are partially misaligned, with only 10% of subjects have an overlap on the observed parts of Y2 and Y3.
The reason that a partial misalignment is considered here is to allow the Hot-Deck Imputation method possibly in the part
of the comparison. The EM algorithm procedure and notations follow as discussed in Example-1, Section 2.3. The missing
probability in the marginal of Y2 is,

P(R2 = 0|X1, Y2) =

0.45, if X1 = 1;
0.81, if X1 = 0, and Y2 > µ2;

0.09, if X1 = 0, and Y2 < µ2.

The missing probability in the third marginal Y3 is given by,

P(R3 = 0|R2) =

0, if R2 = 0;
0.45

1 − 0.45
, if R2 = 1. (16)

We compare the results obtained from the EM algorithm with those from the gold standard using the full data, the
multiple imputation and the Hot-Deck imputation. In addition, this comparison includes two types of standard errors: the
first type is the empirical standard error in four methods, and the other type is the average of 1000 model-based standard
errors obtained from Louis’ formula discussed in Section 3.3, which is only provided in the EM algorithm (see Table 2).

5. Data example

Nephrotic Syndrome (NS) is a common disease in pediatric patients with kidney disease. The typical symptom of this
disease is characterized by the presence of edema that significantly affects the health-related quality of life in children and
adolescents. The PROMIS (Fries et al., 2005; Gipson et al., 2013) is a well-validated instrument to assess pediatric patient’s
quality of life. The instrument consists 7 domains, but here we only choose 3 domains with missing misalignment pattern
for illustration. In the data, two QoL measures, pain and fatigue, are measured on two exclusive sets of subjects due to
some logistic difficulty at the clinic; out of 226 subjects, 107 subjects have measurements of pain, but no measurements of
fatigue, while the other 117 subjects have measurements of fatigue but no measurements of pain. In addition, two subjects
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Fig. 1. Plots of observed and predicted residuals from the EM algorithm.

have neither measurements of pain nor measurements of fatigue. Interestingly, measurements of anxiety have been fully
recorded on all 226 individuals with no missing data. In this case, Hot-Deck imputation does not work. We first apply the
complete case univariate analysis of each QoL domain score (Y1 = anxiety, Y2 = pain, Y3 = fatigue) on covariates of age,
gender, edema, race (white, black, and other as reference), and estimate the linear correlation coefficient of the residuals as
0.6830 between anxiety and pain and 0.5106 between anxiety and fatigue, which turns out to be approximately the square
of the correlation coefficient between anxiety and pain. This suggests us use first order autoregressive correlation for matrix
Γ in the copula model.

The EM algorithm has two advantages to handle this misaligned missing data pattern. One is that we can estimate both
marginal and correlations parameter adjusting for the confounders, where the information across the three QoL scores can
be shared to improve efficiency. The other is the prediction of the missing QoL scores by using the correlated QoL scores
together with the marginal regression models, which requires the availability of inverse correlation matrix, Γ −1.

The observed data and predicted data from the EM algorithm are all shown in Fig. 1. The triangles indicate patients with
missing fatigue data, and the circles correspond to patients with missing pain data. Between pain and fatigue QoL scores,
outcomes have no overlap. The circles and triangles are well distributed and appear to lie in elliptical in the first two scatter
plots. In the third plot, the reason that the predicted triangles appear a straight line is the use of AR-1 correlation matrix,
and the shape of these points may change to another pattern when a different correlation structure is used.

In Table 3, the standard errors for the estimates obtained by the multiple imputation are calculated by the conventional
method given by Little and Rubin (2002). Moreover, some findings in the results shown in Table 3 are noteworthy. First, the
estimated rank-based correlations Kendall’s τ and Spearman’s ρ between anxiety and pain are, respectively, τ12 = 0.4805
and ρ12 = 0.6677, between anxiety and fatigue are τ13 = 0.3110 and ρ13 = 0.4524, and between pain and fatigue are
τ23 = 0.4805 and ρ23 = 0.6677. In addition, the estimated correlation parameter by the multiple imputation approach is
clearly smaller than that obtained by the EM algorithm. This is because the key difference is that the EM algorithm makes
use of the correlation structure to access the entire data, whereas the imputation method does not. Imputation methods
are based on available observed information, but not on the correlation structure. Moreover, the EM algorithm provides a
straightforward calculation of asymptotic standard error of the correlation parameter for inference; for example, p-value
for H0 : γ = 0 is of practical importance.

In addition, with regard to the effect of edema in pain, according to clinical information available onMayo ClinicWebsite,
pain is not regarded as one of key symptoms associated with edema. Both results obtained by the EM algorithm and the
univariate analysis are in the agreement with this clinical information, indicating no significant effect of edema on pain
score, while the multiple imputation method reports an opposite result.

6. Discussion

This paper presents a Gaussian copula framework that provides both marginal Pearson correlations, and marginal rank-
based correlation in the presence of missing data. The EM-algorithm is developed and implemented to estimate both
marginal parameters and correlation parameters. The proposed methodology allows to adjust for confounding factors via
marginal regression models to obtain adjusted marginal correlation estimates, which are useful in practice. We propose a
peeling procedure in theM-step to facilitate the computation of updating parameter values. In addition, missing valuesmay
also be updated as part of the EM-algorithm.

The EMalgorithmoutperforms imputation-basedmethods in two aspects. First,when themarginal outcomes are skewed,
the classical Multiple Imputation method implemented under the multivariate normality does not work well, while the
Hot-Deck Imputation approachworks reasonably well. Second, whenmissing data patterns are fully or severely misaligned,
as shown in our motivating example of the quality-of-life study, Hot-Deck Imputation approach does not work, and the
multiple imputation cannot effectively utilize the correlation structure in data imputation and parameter estimation. When
the correlationmatrix is structured, EM algorithm can fully access the correlation structure in the Gaussian copula, and share
information across different outcome variables, and therefore the resulting estimates from the EMalgorithmare satisfactory.
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Table 3
Estimation of correlation and marginal regression parameters in the copula model for quality of life study obtained by univariate analysis, EM algorithm
and Multiple Imputation.

Outcome Covariates Univariate analysis Copula&EM Multiple imputation
estimate std.err estimate std.err estimate std.err

Anxiety

Intercept 40.5406 4.1387 39.3566 4.4013 40.5406 4.1387
Age 0.0068 0.2451 0.0879 0.2607 0.0068 0.2451
Gender 1.8753 1.4392 1.8749 1.5306 1.8753 1.4392
Edema 5.2453 2.1133 5.0332 2.2474 5.2453 2.1133
White 0.4908 2.0272 0.8502 2.1558 0.4908 2.0272
Black 4.7095 2.3491 4.5299 2.4981 4.7095 2.3491
σ 10.33 a 10.9813 0.5165 10.2107 a

Pain

Intercept 41.3243 6.1947 36.9533 7.8865 45.1838 5.7978
Age 0.0649 0.3575 0.3587 0.4551 −0.0029 0.3418
Gender 0.3423 2.0304 0.1196 2.5849 0.3112 1.9516
Edema 6.0597 3.3437 4.8594 4.2569 7.7273 3.2138
White 1.2991 3.3331 2.8328 4.2434 −1.3024 3.1549
Black 6.8171 3.7939 6.5658 4.8300 3.5309 3.5994
σ 10.58 a 13.4695 0.8805 11.2709 a

Fatigue

Intercept 30.9033 5.5260 30.9030 4.6716 31.5289 4.6886
Age 0.7043 0.3275 0.7043 0.2768 0.6351 0.2844
Gender 0.6004 1.9962 0.6005 1.6876 0.7472 1.6722
Edema 7.7774 2.6296 7.7774 2.2230 8.0216 2.2691
White 3.6899 2.4766 3.6900 2.0937 3.2258 2.1573
Black 7.1261 2.8784 7.1261 2.4334 7.0781 2.5138
σ 9.568 a 8.0890 0.5504 9.2272 a

Correlation γ – – 0.6851 0.0395 0.4001 –
a Unavailable in R function lm for linear regression.

Note that structured correlation (e.g., exchangeable) is seen in other families of copulas, such as Archimedean copulas, in
which expansion of the EM algorithm with misaligned missing data is feasible and worth a further study.

It has beenobserved fromboth simulation studies anddata analysis that the estimationofmarginal parameters appears to
be stable in the iterations of the EM algorithm. Thismay be due to (i) that the copulamodel provides a separable formulation
for the first moment and the second moment, so that any misspecification of one model component has little effect on the
other; and (ii) the initial values are given by consistent estimators of the marginal regression parameters, as suggested by
Joe (2005), and such consistency is preserved when the bias in the second moment estimation is asymptotically ignorable.
It is interesting to note that Segers et al. (2014) proposed a one-step estimation for correlation parameters in the Gaussian
copula, which is shown to be efficient by a novel one-step adjustment, and this approach may be applied to improve the
M-step of the EM algorithm to achieve estimation consistency.

In this paper we considered the EM algorithm for balanced data generated from themultivariate Gaussian copula model.
We envision that the EM algorithm may be generalized to handle unbalanced data if the correlation matrix for different
unbalanced data forms can be thought as of nested submatrices. This nesting property may be easily satisfied in some
common correlation structures, such as exchangeable and AR-1 correlation structures that contain only one correlation
parameter in submatrices of different dimensionality. In the general case of unstructured correlation matrix, unbalanced
data may require a sophisticated model for correlations, and consequently the EM algorithm may become nontrivial to
implement, and some alternative approaches may be worth a future exploration.

In this paper we focus on the Gaussian copula dependence model due largely to its mathematical convenience, such
as its flexibility to handle an arbitrary dimension of multivariate outcomes and the separability between the marginal
mean model and the copula dependence model. In effect, the EM algorithm developed in a parametric Gaussian copula
framework may be sensitive to model misspecification. Copula selection is still an open problem in this field albeit some
limited approaches available in the literature. This problem becomes more challenging when the dimension of variables is
arbitrary, as implemented in this paper. This is because there are not many copulas available in the literature that allow to
analyze data with arbitrary dimensions, and the nonparametric versionmay suffer the curse of dimensionality and typically
require lot of data to achieve satisfactory estimation. The class of vine copulas provides many flexible formulation of copula
model but its model selection is still computationally prohibited for data of relatively large dimension. Model diagnostics
are required before to draw final conclusions. Several authors have proposed diagnostic methods, such as Masarotto and
Varin et al. (2012); Joe (1997); Genest et al. (1995); Ané and Kharoubi (2003); Huang and Prokhorov (2014); Scaillet (2007),
among others. However, how these diagnostic approaches may perform in the case of incomplete data remains unknown
and is an interesting future work.

For the case of completely misaligned missingness, when the correlation matrix is unstructured, the correlation
parameters are not fully identifiable. Manski (2003) introduced several approaches for partial identification problem, and
Fan and Zhu (2009) developed a method to determine the bounds, within which the estimates of correlation parameters of
a copula model are partially identified by a parameter set. Following the notation given in Fan and Zhu (2009), we consider



W. Ding, P.X.-K. Song / Computational Statistics and Data Analysis 101 (2016) 1–11 11

µ(x, y) = xy for the problem of covariance estimation. This function is super-modular because its cross-derivative is 1, and
this function is symmetric and marginal variances are finite. Thus, according to Fan and Zhu (2009) theory, we can establish
a partial identification range for the correlation parameter in the presence of misaligned missing data with the lower and
upper bounds, denoted by γ L

j1,j2
and γ U

j1,j2
. They are the lower and upper bounds of correlation parameter γj1,j2 given by

γ L
j1,j2

=

 1
0


F−1
j1

(u|θj1)F
−1
j2

(1 − u|θj2)

du − µj1µj2


/σj1σj2 , and γ U

j1,j2
=

 1
0


F−1
j1

(u|θj1)F
−1
j2

(u|θj2)

du − µj1µj2


/σj1σj2 ,

where quantiles functions F−1
j1

and F−1
j2

may be estimated by available data of yj1 and yj2 . This direction of research is worth
a thorough exploration.
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