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SUMMARY

This paper concerns regression methodology for assessing relationships between multi-
dimensional response variables and covariates that are correlated within a network. To address
analytical challenges associated with the integration of network topology into the regression anal-
ysis, we propose a hybrid quadratic inference method that uses both prior and data-driven cor-
relations among network nodes. A Godambe information-based tuning strategy is developed to
allocate weights between the prior and data-driven network structures, so the estimator is effi-
cient. The proposed method is conceptually simple and computationally fast, and has appealing
large-sample properties. It is evaluated by simulation, and its application is illustrated using neu-
roimaging data from an association study of the effects of iron deficiency on auditory recognition
memory in infants.

Some key words: Estimating function; Event-related potential; Generalized method of moments; Hybrid quadratic
inference function; Shrinkage.

1. INTRODUCTION

Data collected from networks are common in practice. A network refers to a set of nodes or
vertices which are joined in pairs by edges (Newman, 2010). An important feature of a network
is that, unlike in a space-time system, between-node distance may not be defined precisely by
a numerical metric. In this paper we discuss regression analysis of multi-dimensional response
variables on covariates that are collected from networks. Although considerable attention has
been paid to methods of learning network topology, little work has been done on regression,
which plays a central role in the study of response-covariate relationships. Because data from a
network are correlated across nodes, to achieve high statistical efficiency one needs to incorpo-
rate appropriate dependence structures into inference, an issue that we address here.

Networked data have more complex dependence mechanisms than can be described by con-
ventional covariance or correlation matrices. For example, dependence symmetry among nodes
may not hold, and it may not be possible to model strength of dependence explicitly due to the
lack of a legitimate distance function. Our motivating example comes from a project, in col-
laboration with scientists at the Center for Human Growth and Development of the University
of Michigan, whose scientific objective is to evaluate whether iron deficiency affects auditory
recognition memory in infants and, if so, how. An infant’s memory capability is measured by elec-
trical activity in the brain during a period of 2000 milliseconds using an electroencephalography,
EEG, net consisting of 64-channel sensors on the scalp; see Fig. 1(a).

The data are collected at two times: when an infant hears his or her mother’s voice and when
he or she hears a stranger’s voice. At each time, three event-related potentials, P2, P750 and late
slow wave, are recorded after standard data processing. These three event-related potentials are
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(a) (b)

Fig. 1. (a) Layout of the 64-channel sensor net, where the six outlined clusters of nodes relate to auditory recognition
memory and the remaining nodes belong to an additional cluster. (b) Sparse graphical representation of the learned

network among electrodes based on the late slow wave data under voice stimulus from a stranger.

widely used as primary outcomes of auditory recognition memory (Siddappa et al., 2004; Mai
et al., 2012). In this paper we consider only the late slow wave outcome. Such measurements
from the 64 electrodes are correlated in the EEG net, and the correlation is highly clustered
according to subregions of memory functionality. Correlations of late slow wave measurements
are not necessarily symmetric over the 64 nodes. Standard analysis of the event-related potential
data using spatial analysis-of-variance mixed-effects models (Gevins & Smith, 2000; Fields &
Kuperberg, 2012) assumes implicitly symmetric exchangeable correlations among the 64 nodes
for late slow wave data, and fails to detect significant association between iron deficiency and
late slow wave activity.

To improve upon the standard analysis, we treat the EEG net as a network and develop a flex-
ible dependence model that can better reflect the underlying relationships among the electrodes,
for instance allowing for clustered and asymmetric dependence relationships. In particular, we
develop a strategy to combine two sources of knowledge concerning the network topology: our
collaborators’ expertise regarding established or prior knowledge about subregions of memory
functionality, and dependencies learned from data. Some popular statistical methods that have
been used to learn sparse conditional dependence structures of networks include: sparse par-
tial correlation (Peng et al., 2009), implemented in the R (R Development Core Team, 2016)
package space; the graphical lasso (Yuan & Lin, 2007), implemented in the R package glasso;
neighbourhood selection (Meinshausen & Buehlmann, 2006), also implemented in the R pack-
age glasso; and the sparse joint additive model (Voorman et al., 2014), implemented in the R
package spacejam.

We consider marginal regression for networked data, which allows various forms of depen-
dence among nodes and can easily handle categorical outcomes. For estimation of regression
coefficients in the marginal model, both generalized estimating equations (Liang & Zeger, 1986)
and quadratic inference functions (Qu et al., 2000) have been extensively studied. However, these
methods cannot be applied directly to networked data because of challenges in incorporating net-
work dependence structures. One desirable method for fitting the marginal model under unstruc-
tured correlation is the adaptive estimating equation method of Qu & Lindsay (2003), which does
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Regression analysis of networked data 3

not require the inverse of a correlation matrix. A disadvantage of using unstructured correlation
in generalized estimating equations or Qu & Lindsay’s adaptive quadratic inference function is
the involvement of a large number of nuisance parameters in the estimation, leading to potential
loss of estimation efficiency and numerical instability. Many authors have advocated incorporat-
ing correlation structures to achieve good estimation efficiency; see, for example, Pan (2001),
Qu et al. (2008) and Zhou & Qu (2012).

Our strategy of combining two sources of network topology follows the linear shrinkage esti-
mation approach of Stein (1956), which is discussed by Ledoit & Wolf (2004) in the context of
covariance matrix estimation. We propose to shrink an unstructured covariance matrix towards a
prior or target network structure, represented by an adjacency matrix with elements 0 representing
no connection and elements 1 representing the existence of a connection between nodes. Follow-
ing Hansen (1982), we construct an over-identified estimating function with a shrinkage tuning
parameter determined by minimizing the inverse of the Godambe information. Our estimation
method allocates higher weights to more relevant correlation structures while down-weighting
others. The process of tuning does not affect estimation consistency or asymptotic normality but
gains efficiency when done properly.

2. FRAMEWORK

2·1. Estimating functions

Suppose that the response variable yi j and the associated p-dimensional covariate xi j are mea-
sured at node, or vertex, j for subject i ( j = 1, . . . , m; i = 1, . . . , n). Let yi = (yi1, . . . , yim)T and
xi = (xi1, . . . , xim)T, which is an m × p matrix, and let (yi , xi ) (i = 1, . . . , n) be independent and
identically distributed data from n subjects. To perform a regression analysis of the networked
data, we adopt a population-average model framework with mean model μi j = E(yi j | xi j ) =
μ(xT

i jβ), where μ(·) is a known link function, β is a p-dimensional parameter vector of interest,
and μi = (μi1, . . . , μim)T.

To proceed with the quasilikelihood approach to inference on β, according to Liang & Zeger
(1986), the second moment of yi is specified by Vi = A1/2

i R(α)A1/2
i , with R(α) a working cor-

relation matrix and Ai the diagonal matrix of marginal variances var(yi j | xi j ) = φv(μi j ), where
v(·) is the variance function and φ the dispersion parameter. Generalized estimating equations
(Liang & Zeger, 1986) provide an estimate of β by solving the equation

∑n
i=1 μ̇T

i V −1
i (yi − μi ) =

0, where μ̇i (·) is the gradient vector of μi (·) with respect to β; see Song (2007, Ch. 2 and 5).
Because the number of nodes in a network is fixed, we write the variance Vi as simply V . Under
regularity conditions, the resulting generalized estimating equations estimator is consistent and
asymptotically normal, but may have low efficiency if the working correlation R(α) does not
represent the true correlation structure adequately enough.

Many strategies have been proposed to improve the efficiency of generalized estimating equa-
tions estimators. A popular approach is the quadratic inference function procedure of Qu et al.
(2000), which assumes that the inverse of the working correlation matrix, R−1, may be expanded
approximately as a linear combination of basis matrices,

R−1(α) =
K∑

k=0

ak Mk, (1)

where M0 is the identity matrix, Mk (k = 1, . . . , K ) are known symmetric basis matrices with
elements equal to either 0 or 1, and the ak are unknown coefficients that may depend on the
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Fig. 2. Graphical display of basis matrices (a) Mcomp (M1), (b) Mchain (M∗
1 ), and

(c) M∗
2 for a three-node network.

parameter α. Then, the generalized estimating equations may be written as a linear combination
of estimating functions given by the extended score vector

q̄n(β) = 1

n

n∑
i=1

qi (β) = 1

n

n∑
i=1

⎛
⎜⎜⎜⎜⎜⎝

μ̇T
i A−1

i (yi − μi )

μ̇T
i A−1/2

i M1 A−1/2
i (yi − μi )

...

μ̇T
i A−1/2

i MK A−1/2
i (yi − μi )

⎞
⎟⎟⎟⎟⎟⎠ , (2)

where the dimension of q̄n(β) is p(K + 1). Unlike generalized estimating equations, the
quadratic inference function does not require estimation of the nuisance parameter α. Because
q̄n(β) is an over-identified score vector, the equation q̄n(β) = 0 has no solution. Instead, simi-
lar to generalized method of moments (Hansen, 1982), the quadratic inference function method
minimizes a quadratic objective function of the form

nq̄T
n(β)�−1(β)q̄n(β), (3)

where the optimal weighting matrix is �(β) = var{qi (β)}, which may be consistently estimated
by the sample covariance matrix �̄n = n−1∑n

i=1 qi (β)qT
i (β). In implementation, we adopt the

unique Moore–Penrose generalized inverse in (3) to ensure numerical stability, as the matrix �̄n

may be singular (Hu & Song, 2012).

2·2. Graphical interpretation of basis matrices

We now present some geometric insights into the connection between basis matrices and net-
work topology, using two popular correlation structures to illustrate how knowledge of the net-
work topology may aid estimation. For ease of discussion, consider a three-dimensional network.
The first example is the exchangeable correlation matrix, which according to Qu et al. (2000)
has two basis matrices: M0 = I , and M1 which has 0 on the diagonal and 1 elsewhere. The other
example is the first-order autoregressive, or AR(1), correlation, which has three basis matrices:
M0 = I , M∗

1 which has 1 on the subdiagonals and 0 elsewhere, and M∗
2 which has 1 in the two

corner entries of the diagonal and 0 elsewhere.
These basis matrices may be viewed as adjacency matrices with the corresponding graphi-

cal representations displayed in Fig. 2. Matrix M0 = I corresponds to the adjacency matrix of
an independence graph in which all nodes are disconnected. The basis matrix M1 in Fig. 2(a)
from the exchangeable correlation gives the adjacency matrix of a complete graph, denoted by
Mcomp. For the two basis matrices of the AR(1) correlation, M∗

1 in Fig. 2(b) represents the adja-
cency matrix of a chain graph, denoted by Mchain, and the other matrix M∗

2 in Fig. 2(c) indicates
that both the beginning and end nodes are absorbing in a chain graph. Such graphical represen-
tation of between-node connectivity is a typical form of network topology knowledge available
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Regression analysis of networked data 5

from scientists or from a network learned by inverting the correlation matrix obtained from train-
ing or pilot study data. In the framework of quadratic inference function theory, it is feasible to
incorporate adjacency matrices in inference via equation (2) for the parameters in regression
models. The key insight is that each nonzero off-diagonal element in the adjacency, or basis,
matrix corresponds to an edge in a graphical model that describes the existence of conditional
dependence between two nodes given the other nodes. Since no numerical value for connec-
tion strength is available in an adjacency matrix, such a matrix is particularly suitable for repre-
senting prior knowledge about a network topology. In the case of exchangeable correlation, the
complete network adjacency matrix Mcomp is regarded as being sufficient, since the inverse of
the correlation matrix, R−1(α), can be fully represented by basis matrices I and Mcomp. In the
case of AR(1), the chain network adjacency matrix Mchain is partially sufficient, since it captures
only the conditional dependence between nodes without self-connectivity of the beginning and
end nodes.

2·3. Data-driven network topology

The quadratic inference function method may be generalized to networked data analysis if the
adjacency matrices are constructed in a reasonable manner. In practice, however, the underlying
graphical structures from the networked data are so complex that simple structures, such as the
complete graph in Fig. 2(a) and the chain graph in Fig. 2(b), are insufficient. Using the available
data, we can establish some data-driven knowledge via, for example, an unstructured dependency
in which all variances and covariances are estimated. A drawback of this approach is that in a
high-dimensional network, the inverse of the estimated covariance matrix could be computation-
ally unstable or prohibitively expensive to compute by standard software. One solution given by
Qu & Lindsay (2003) is the so-called adaptive procedure, which requires only estimation of the
covariance matrix. It follows from the Cayley–Hamilton theorem (Bhatia, 1997) that the inverse
of an m × m positive-definite matrix may be written as

V −1 = (−1)m−1

|V |
(

c1 I + c2V + · · · + cm−1V m−2 + V m−1
)

, (4)

where c j ( j = 1, . . . , m − 1) are certain suitable coefficients. Consequently, the optimal weight
matrix V −1μ̇ for a basic estimating function s = y − μ(β) lies in the space spanned by the
columns of μ̇, V μ̇, . . . , V m−1μ̇. For the sake of parsimony, Qu & Lindsay (2003) suggested
including in (4) only the gradient direction generated by the first two columns, μ̇ and V μ̇. This
gives the extended score vector

h̄n(β) =
(

h̄(1)
n

h̄(2)
n

)
= 1

n

n∑
i=1

(
μ̇T

i (yi − μi )

μ̇T
i V (yi − μi )

)
, (5)

where V is consistently estimated by V̂ = n−1∑n
i=1 si sT

i with si = yi − μi (β). Clearly, (5) does
not require the availability of basis matrices as given in (1). However, the number of parameters
to be estimated in V is large, especially in the case of complex networks, and thus overfitting may
occur in determining the network dependence structure. It is therefore critical to regularize the
covariance matrix estimation, so that the resulting estimated dependencies could strike a balance
between parsimony and quality of fit to improve statistical power.
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6 Y. ZHOU AND P. X.-K. SONG

3. PROPOSED METHOD

3·1. Hybrid quadratic inference function

Inspired by the idea of shrinkage estimation (Stein, 1956), our regularization procedure
involves shrinking the estimation of the covariance V towards a known prior structure �, a given
adjacency matrix, e.g., provided by an expert. We propose to construct the extended score

ḡn(β | γ ) = 1

n

n∑
i=1

gi (β | γ ) = 1

n

n∑
i=1

⎛
⎝ μ̇T

i A−1
i (yi − μi )

μ̇T
i

{
γ A−1/2

i �A−1/2
i + (1 − γ )V

}
(yi − μi )

⎞
⎠ , (6)

where γ ∈ [0, 1] denotes the shrinkage intensity coefficient. The right-most expression in (6)
is intended to provide an improvement in estimation efficiency. Let Ui (γ ) = γ A−1/2

i �A−1/2
i +

(1 − γ )V , a linear shrinkage estimator of V (Ledoit & Wolf, 2004). For γ = 1 the shrinkage esti-
mator fully favours the prior target �, whereas for γ = 0 it reduces to the unrestricted covariance
V . The key feature of this approach is that it provides a systematic way to obtain a regularized
dependence structure, which outperforms both A−1/2

i �A−1/2
i and V in terms of numerical sta-

bility and statistical efficiency in the estimation of β.
The extended score ḡn in (6) may be rewritten as

ḡn(β | γ ) = γ

n

n∑
i=1

(
μ̇T

i A−1
i (yi − μi )

μ̇T
i A−1/2

i �A−1/2
i (yi − μi )

)
+ (1 − γ )

n

n∑
i=1

(
μ̇T

i A−1
i (yi − μi )

μ̇T
i V (yi − μi )

)
, (7)

and so can be expressed as γ f̄n(β | �) + (1 − γ )h̄n(β | V ), where γ describes the relative
weighting of importance given to f̄n versus h̄n . We call (7) the hybrid extended score vector;
it is based on unbiased estimating functions. Note that f̄n(β | �) can produce poor results if the
target network structure � is noninformative and far from the truth; similarly, h̄n(β | V ) may
lose efficiency if a prior dependence structure is known but not utilized. Therefore, by allocat-
ing higher weights to more relevant extended score vectors, ḡn can improve both computational
performance and statistical inference for β.

Consequently, given a shrinkage coefficient γ , we can estimate β by minimizing

Qn(β | γ ) = nḡT
n(β | γ )�−1(β | γ )ḡn(β | γ ), (8)

where � is consistently estimated by �̄n = n−1∑n
i=1 gi (β | γ )gT

i (β | γ ). Since the estimator of
β depends on the choice of shrinkage coefficient γ , it is denoted by β̂(γ ) below.

3·2. Asymptotic properties

According to Hansen’s theory of generalized method of moments, under certain regularity
conditions (Hansen, 1982; Harris & Mátyás, 1999), the estimator of β is not only consistent but
also asymptotically normally distributed. With a known target structure � and a fixed shrinkage
coefficient γ , these large-sample properties remain valid for the proposed estimator in (8). In
other words, β̂(γ ) → β0 in probability as n → ∞, and

√
n{β̂(γ ) − β0} → N {0, J−1(β0 | γ )}

in distribution as n → ∞, where J (β0 | γ ) = GT(β0 | γ )�−1(β0 | γ )G(β0 | γ ) is the Godambe
information of gi (β0 | γ ), provided that �̄n(β̂ | γ ) → �(β0 | γ ) in probability and ˙̄gn(β̂ | γ ) →
G(β0 | γ ) in probability, both of which can be routinely verified under Conditions A1–A6 in the
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Regression analysis of networked data 7

Appendix. The hybrid extended score vector gi (β0 | γ ) is constructed on the basis of a known
target structure �, so β̂(γ ) and J (β0 | γ ) depend not only on γ but also on �. For notational
convenience, the dependence on � is not shown explicitly except where necessary.

In addition to the above large-sample properties, the asymptotic χ2 distribution of the
quadratic inference function (Qu et al., 2000; Qu & Lindsay, 2003) can easily be extended to
(8); that is, the statistic Q̂n{β̂(γ ) | γ } tends to χ2

rank{�(β0|γ )}−p in distribution as n → ∞, which
is useful in testing for goodness of fit under the null hypothesis H0 : E(ḡn) = 0 (Hansen, 1982).
Furthermore, a generalized-method-of-moments-type test for a nested model can be derived.
Consider a partition, say β = {βA, βB}, with parameter of interest βA and nuisance parameter βB .
To test the null hypothesis H0 : βA = a0, a test statistic Qn{a0, β̃B(γ ) | γ } − Qn{β̂A(γ ), β̂B(γ ) |
γ }, where β̃B = arg minβB

Qn(a0, βB | γ ) and {β̂A(γ ), β̂B(γ )} = arg min(βA,βB)Qn(βA, βB | γ ),

tends to χ2
dim(a0)

in distribution as n → ∞. The degrees of freedom of this asymptotic χ2 distri-
bution under H0 : βA = a0 does not depend on γ .

3·3. Choice of the shrinkage coefficient

We wish to determine a shrinkage coefficient γ to find a balance between two types of network
dependence structure under a certain optimality criterion. We propose to select γ by minimizing
the trace of the inverse of the Godambe information matrix J (β0 | γ ), in order to maximize
estimation efficiency over γ ∈ [0, 1]:

γ̃ = arg min
γ∈[0,1]

tr{J−1(β0 | γ )}.

The Godambe information matrix may be consistently estimated by Ĵ {β̂(γ ) | γ } = ˙̄gT
n{β̂(γ ) |

γ }�̄−1
n {β̂(γ ) | γ } ˙̄gn{β̂(γ ) | γ }. Therefore, an estimated norm is η̂(γ ) = tr[ Ĵ−1{β̂(γ ) | γ }], which

is the sample counterpart of the norm η0(γ ) = tr{J−1(β0 | γ )}. The norm η0(γ ) is continuous
on γ ∈ [0, 1] and need not be a unimodal function of γ , so there may exist multiple shrinkage
coefficients that minimize η0(γ ). In the implementation, greedy searching over a dense grid
of γ values is desirable. Let γ ∗

0 = sup{γ } be the supremum of all such γ̃ minimizing η0(γ ).
The rationale for choosing the largest value of γ ∗

0 relates to preference of the prior dependence
structure � over the unrestricted covariance V . Although the choice of γ does not impact the
result of hypothesis testing, we favour established network knowledge. In this way, a unique
tuning value is obtained to achieve maximum efficiency.

The following lemma shows that the optimal shrinkage coefficient γ ∗
0 can be chosen consis-

tently as the sample size goes to infinity.

LEMMA 1. Let S0 = {γ : γ = arg minγ∈[0,1] η0(γ )} with η0(γ ) = tr{J−1(β0 | γ )} and S = {γ :

γ = arg minγ∈[0,1] η̂(γ )} with η̂(γ ) = tr[ Ĵ−1{β̂(γ ) | γ }]. Let γ ∗
0 = sup{S0} and γ̂ ∗ = sup{S}.

Suppose |S0| = |S| < ∞ and that both the sensitivity matrix G(β0 | γ ) and the variability matrix
�(β0 | γ ) are bounded for γ ∈ [0, 1]. Under Conditions A1–A6 in the Appendix, γ̂ ∗ → γ ∗

0 in
probability as n → ∞.

The proof of Lemma 1 is outlined in the Appendix. Following standard generalized-method-
of-moments arguments, we establish the following theorem.

THEOREM 1. Under Conditions A1–A6 in the Appendix, the regression parameter estima-
tor β̂(γ̂ ∗) at the optimal tuning γ̂ ∗ = sup{S} is asymptotically normal, i.e.,

√
n{β̂(γ̂ ∗) − β0} →

N {0, J−1(β0 | γ ∗
0 )} in distribution as n → ∞.
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8 Y. ZHOU AND P. X.-K. SONG

Theorem 1 indicates that the regression parameter estimator at the optimal shrinkage coeffi-
cient γ̂ ∗ is asymptotically normally distributed and more efficient than other estimators obtained
under an arbitrary γ ∈ [0, 1] \ S, because tr[J−1{β(γ̂ ∗) | γ̂ ∗}] � tr[J−1{β(γ ) | γ }].

4. SIMULATION EXPERIMENT

We conducted simulations to evaluate the performance of the proposed estimator, denoted by
β̂(�∗, γ̂ ∗), obtained under a prespecified adjacency matrix �∗ and the optimally selected shrink-
age coefficient γ̂ ∗. We consider both continuous and binary responses, and compare estimation
efficiency under three different network structures: a complete network, a chain network, and a
five-subregion network. Three types of correlation matrix R(α) are used in data generation.

N1: a complete network which uses the exchangeable correlation REX(α = 0·7) and �∗ =
Mcomp, because Mcomp provides an adjacency matrix of a complete network resembling
a subregion of similar neuro-nodes.

N2: a chain network which uses the AR(1) correlation RAR(α = 0·7) and �∗ = Mchain, because
Mchain gives an adjacency matrix of a chain network mimicking neuro-nodes along a nerve
branch.

N3: two networks of five subregions with function-specific clusters specified by
Ra
CL

= block-diag{REX(α = 0·7), RAR(α = 0·6), I (α = 0), REX(α = 0·5), RAR(α = 0·8)}
and Rb

CL
= block-diag{REX(α = 0·4), RAR(α = 0·6), I (α = 0), REX(α = 0·2), RAR(α =

0·8)}; �∗ is given by a prior target structure of the form �CL = block-diag{0, Mchain, 0, 0,

Mchain}.
For each scenario, 500 replications are performed, from which we obtain: the optimal

shrinkage coefficient γ̂ ∗ at each simulation using a grid search of 25 equally spaced points

over [0, 1]; the estimation bias (500p)−1∑500
s=1
∑p

l=1 ‖β̂l
(s) − β0l‖; the mean squared error

500−1∑500
s=1 ‖β̂(s) − β0‖2

2; and the total variance 500−1∑500
s=1 tr{ ˆvar(β̂(s))}. Here β̂(s) is the esti-

mate from the sth simulation and β0 is the true parameter. We then calculate the empirical rela-
tive efficiency and ratio of variances by calculating a ratio between the candidate and reference
methods. We also examine a goodness-of-fit test and a generalized-method-of-moments-type test
between nested models.

Here we present only results for continuous data; results for binary data are given in the Sup-
plementary Material. The continuous response variables are generated from a marginal model
yi j = xT

i jβ0 + εi j , where xi j = (x (1)
i j , x (2)

i j )T such that x (1)
i j and x (2)

i j are generated independently
from N ( j/m, 1) with varying means j/m over m nodes, εi = (εi1, . . . , εim)T ∼ N {0, R(α)}, and
β0 = (β1

0 , β2
0 )T = (1, 1)T; n is the sample size, taken to be 50, 100 or 500, and m is the number

of vertices. The sizes of the complete network N1 and the chain network N2 are set to m = 10
to mimic a subregion of the brain network, whereas the network of five subregions, N3, has
m = 50, 100 or 150, with the dimension of each block set to (m/5) × (m/5).

Table 1 summarizes the biases and relative efficiencies under the three network structures,
where the reference method is the oracle case, i.e., the generalized estimating equations with
the true correlation, in which the correlation parameter α is set to the true value; this method
is semiparametrically efficient. Here we focus on comparison of the proposed methods, includ-
ing: β̂(� = �∗, γ = γ̂ ∗), where both the prior structure �∗ and the unrestricted covariance V
are used; β̂(� = �∗, γ = 1), where only the prior structure �∗ is used; β̂(� = Mcomp, γ = 1),
where only the prior complete network is used; β̂(� = Mchain, γ = 1), where only the prior
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Regression analysis of networked data 9

Table 1. Empirical relative efficiency, ratio of variances, and bias of regression coefficients
over 500 simulations, where all values have been multiplied by 100. The generalized estimat-
ing equations oracle is the reference method; the hybrid quadratic inference function estimator
is denoted by β̂(�, γ ) under prior � and shrinkage coefficient γ ; empty entries represent values

greater than 103

n = 50 n = 100 n = 500

True network Method ERE Rvar Bias ERE Rvar Bias ERE Rvar Bias

Complete β̂(� = �∗, γ = γ̂ ∗) 123 79 5·14 113 89 3·38 100 97 1·43
β̂(� = �∗, γ = 1) 112 91 4·91 103 96 3·27 100 99 1·42

�∗ = Mcomp β̂(γ = 0) 123 79 5·14 113 89 3·38 100 97 1·43
m = 10 β̂(� = Mchain, γ = 1) 115 93 5·20 109 99 3·51 104 103 1·51

GEE independence 118 115 5·64 116 117 3·94 120 118 1·75
GEE unstructured 13·19 294 220 3·83 100 98 1·43
GEE oracle(R = RTrue) 100 100 4·66 100 100 3·24 100 100 1·42

Chain β̂(� = �∗, γ = γ̂ ∗) 113 89 4·23 107 96 2·81 101 100 1·21
β̂(� = �∗, γ = 1) 111 91 4·19 106 96 2·81 102 100 1·21

�∗ = Mchain β̂(γ = 0) 128 92 4·63 119 100 3·02 109 107 1·29
m = 10 β̂(� = Mcomp, γ = 1) 137 117 4·90 138 123 3·37 131 127 1·46

GEE independence 136 136 5·01 145 139 3·59 145 140 1·58
GEE unstructured 13·52 6·19 101 99 1·20
GEE oracle(R = RTrue) 100 100 4·00 100 100 2·72 100 100 1·19

Five-subregion β̂(� = �∗, γ = γ̂ ∗) 212 86 2·41 175 107 1·66 145 127 0·64
β̂(� = �∗, γ = 1) 250 217 2·60 255 227 2·00 254 236 0·84

�∗ = �CL β̂(γ = 0) 212 114 2·44 202 141 1·80 188 166 0·73
m = 100 β̂(� = Mcomp, γ = 1) 313 275 2·89 306 292 2·16 321 298 0·92

β̂(� = Mchain, γ = 1) 239 189 2·52 214 202 1·77 215 209 0·77
GEE independence 301 291 2·83 296 299 2·14 317 300 0·92
GEE oracle(R = RTrue) 100 100 1·71 100 100 1·24 100 100 0·53

GEE, generalized estimating equations; ERE, empirical relative efficiency; Rvar, ratio of variances.

chain network is used; and β̂(γ = 0), with only the unrestricted covariance V being used. Some
conventional methods are included in the comparison, namely generalized estimating equations
under independence correlation, representing the independence network, under unstructured cor-
relation, and under the true correlation. We also conducted additional simulation studies with
three basis matrices in (2), but the results are not shown here due to space limitations; one of
the simulations uses three basis matrices from the AR(1) correlation structure, see Fig. 2, and
the other uses the three matrices I , Mchain and Mcomp (Zhou & Qu, 2012). Including one more
basis matrix in (2) offers little improvement in terms of empirical relative efficiency and bias.
In the five-subregion network N3, results of the generalized estimating equations estimation
under unstructured correlation are not provided, due to numerical failure in the case of the 100-
dimensional network. In Table 1 we list results for N3 only in the case of Ra

CL
with m = 100; the

Supplementary Material reports full results for the other scenarios.
Table 1 shows that β̂(� = �∗, γ = γ̂ ∗), the hybrid quadratic inference estimator under a pre-

specified adjacency matrix �∗ and the optimally selected shrinkage coefficient γ̂ ∗, exhibits a
steady fall in relative efficiency and a steady rise in the ratio of variances as n increases. It
is not surprising to see that the generalized estimating equations estimator under unstructured
correlation performs the worst when n = 50 or n = 100, because in this case a large number of
correlations must be estimated. When the true network is the complete graph N1, the empiri-
cal relative efficiency and the ratio of variances of β̂(� = �∗, γ = γ̂ ∗) are very similar to those
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Fig. 3. Densities of γ̂ ∗ over 500 simulations: (a) n = 100; (b) n = 500; (c) patterns of the log norm of shrinkage
coefficient selection η0(γ ) = tr[J−1{β0 | γ,�∗, R(α)}] versus γ for β̂(� = �∗, γ = γ̂ ∗) under the five-subregion
network N3 with Ra

CL
and �∗ = �CL . Each panel displays the optimal γ ∗

0 for network size m = 50 (square), 100
(circle) and 500 (triangle) along with its distribution.

given by the data-driven β̂(γ = 0), regardless of sample size. When the true network is the chain
graph N2, the performance of β̂(� = �∗, γ = γ̂ ∗) becomes closer to that of the oracle general-
ized estimating equations as n increases. For the five-subregion graph N3, β̂(� = �∗, γ = γ̂ ∗)
is clearly the top performer and, in particular, is superior to β̂(� = �∗, γ = 1) and β̂(γ = 0).

Figure 3 displays the results of optimal shrinkage coefficient selection under Ra
CL

, which is
specified by a more realistic five-subregion network N3 with a varying network size of m =
50, 100 or 150. The density plots of the selected optimal shrinkage coefficient γ̂ ∗ for β̂(� =
�∗, γ = γ̂ ∗) show that the probability of γ̂ ∗ falling near the optimal value γ ∗

0 increases as the
sample size increases. This illustrates the selection consistency asserted in Lemma 1. Figure 3(c)
shows that the target structure �∗ = �CL tends to receive a higher weight γ̂ ∗ > 0·5 and hence is
more informative than the unrestricted covariance V as the network size increases.

We summarize in Fig. 4 the estimation efficiency results obtained under Ra
CL

and Rb
CL

with n =
100, 500 and �∗ = �CL. The proposed β̂(� = �∗, γ = γ̂ ∗), represented by line 2, outperforms
the other approaches. When n = 500, the proposed method utilizing both prior and data-driven
information, denoted by line 2, is clearly superior to the other approaches.

To investigate the performance of the test statistics given in § 3·2, we ran a simulation study
with the following settings. The full model takes the form yi j = xT

i jβ0 + θ zi + εi j , where zi is a
subject-level variable generated from a Bernoulli distribution with probability 0·5, and xi j and
εi j are generated by the same distributions as above. The null hypothesis is H0 : θ = 0, and the
alternative hypothesis is H1 : θ |= 0. Type I error rates are computed with θ = 0, while power is
calculated under θ = 0·2. The size and power of the generalized-method-of-moments-type test
are obtained by averaging over 25 candidate shrinkage coefficients in the range from 0 to 1 to
dampen the influence of γ selection.

Table 2 summarizes the empirical Type I error and power of the test statistics at significance
level 0·05 over 500 replications. The Type I error is well controlled in all cases, and the power
increases as the sample size increases. Specifically, when n = 500, the test based on β̂(� =
�∗, γ = 1) with an expert-prespecified prior target �∗ performs slightly better than the test based
on β̂(γ = 0) for the complete or chain network. When compared with the tests based on β̂(� =
�∗, γ ∈ [0, 1]), the results are only marginally different. These results demonstrate that the null
distribution for the proposed testing approach is insensitive to the choice of the prior network
structure � or of the shrinkage coefficient γ . However, the Wald test statistics, involving both β̂

and var(β̂), depend on the selection of � and γ .
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Fig. 4. Comparison of empirical relative efficiency (ERE) under the five-subregion network N3 with sample size n,
number of nodes m = 50, 100, 150 and �∗ = �CL: (a) Ra

CL
and n = 100; (b) Ra

CL
and n = 500; (c) Rb

CL
and n = 100;

(d) Rb
CL

and n = 500. In each panel the labelled lines indicate: 1, generalized estimating equations oracle where
the reference equals 1; 2, β̂(� = �∗, γ = γ̂ ∗); 3, β̂(γ = 0); 4, β̂(� = �∗, γ = 1); 5, β̂(� = Mchain, γ = 1); 6,

generalized estimating equations independence; 7, β̂(� = Mcomp, γ = 1).

Table 2. Average empirical Type I error rate and power of the test statistics
(%) at significance level 0·05 over 500 replications; the three network struc-
tures used are the complete network N1, the chain network N2, and the five-

subregion network N3 with Ra
CL

n = 50 n = 100 n = 500

Network β̂(�∗, γ ) Size Power Size Power Size Power

Complete
�∗ = Mcomp γ = 0 3·0 11·4 6·2 24·2 5·2 76·4
m = 10 γ = 1 2·8 10·0 6·6 23·4 4·6 77·2

γ ∈ [0, 1] 3·1 11·2 6·3 24·3 5·0 76·4
Chain
�∗ = Mchain γ = 0 4·2 15·6 6·2 36·6 5·4 95·2
m = 10 γ = 1 3·8 15·4 6·0 39·6 4·6 95·8

γ ∈ [0, 1] 4·0 15·4 6·1 38·0 5·1 95·5
Five-subregion
�∗ = �CL γ = 0 4·4 79·6 5·6 99·2 5·6 100
m = 100 γ = 1 4·8 65·6 6·0 95·8 4·8 100

γ ∈ [0, 1] 4·3 78·4 5·5 98·6 5·6 100

5. DATA EXAMPLE: INFANT MEMORY STUDY

We illustrate the proposed method by applying it to the infant auditory recognition mem-
ory study discussed in § 1. Electroencephalogram data were recorded from 161 two-month-old
infants using a 64-channel HydroCel Geodesic Sensor Net, from which event-related poten-
tials were observed. Based on serum ferritin and zinc protoporphyrin levels in cord blood
measured at birth, 52 of the infants were classified as iron-deficient whereas the others were
classed as iron-sufficient. The primary scientific objective of this study was to evaluate the
effects of prenatal and postnatal environmental exposures, such as lead and pesticides, and iron
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12 Y. ZHOU AND P. X.-K. SONG

Table 3. Estimated regression coefficients β̂ for the infant memory data with respect to mother’s
voice stimulus (∗: p-value < 0·05), with estimated standard errors in parentheses. The first two
columns of values are for β̂(� = �∗, γ = γ̂ ∗) under two types of network structure suggested by
our collaborators with different optimal shrinkage coefficients; the third and fourth columns of
values are for β̂(γ = 0) and the spatial analysis-of-variance mixed-effects model; the final row

lists the estimated sums of variances for β̂

�∗ = �7comp �∗ = �stranger Spatial ANOVA
Parameter γ̂ ∗ = 0·875 γ̂ ∗ = 0·583 γ = 0 mixed-effects model

age −0·003 (0·002) −0·003 (0·001) −0·003 (0·001)* −0·001 (0·002)
lead −0·006 (0·003) −0·005 (0·003) −0·006 (0·003)* 0·000 (0·004)
group 0·158 (0·174) 0·158 (0·174) 0·176 (0·173) 0·587 (0·271)*
left fc −0·803 (0·220)* −0·854 (0·218)* −0·811 (0·220)* −0·824 (0·335)*
middle fc −0·360 (0·189) −0·338 (0·183) −0·363 (0·186) −0·580 (0·275)*
right fc −1·375 (0·218)* −1·327 (0·215)* −1·373 (0·218)* −1·045 (0·343)*
left po −0·167 (0·259) −0·359 (0·251) −0·200 (0·251) 0·466 (0·370)
middle po −0·056 (0·281) −0·110 (0·280) −0·071 (0·282) 1·566 (0·367)*
right po 0·573 (0·240)* 0·603 (0·230)* 0·559 (0·229)* 1·065 (0·392)*
group × left fc 0·714 (0·344)* 0·571 (0·380) 0·482 (0·374) −1·143 (0·762)
group × middle fc 0·120 (0·312) 0·092 (0·339) −0·081 (0·336) −1·167 (0·703)
group × right fc −0·462 (0·379) −0·458 (0·388) −0·612 (0·390) −1·101 (0·746)
group × left po 0·056 (0·392) 0·167 (0·413) 0·246 (0·410) 0·207 (0·593)
group × middle po −0·112 (0·484) −0·080 (0·480) −0·006 (0·491) −0·277 (0·689)
group × right po −1·427 (0·374)* −1·417 (0·366)* −1·337 (0·367)* −0·959 (0·689)

tr{ ˆvar(β̂)} 1·263 1·306 1·314 3·763

fc, frontal-central; po, parietal-occipital; ANOVA, analysis of variance.

deficiency on neuro-developmental outcomes. After pre-processing, the data from 56 nodes
were used.

The outcome yi j considered in this data analysis is a continuous variable of late slow wave
activity related to the event of memory updating, which was measured as a response to the
mother’s voice stimulus. Nine covariates are included: centred infant age xi1; centred lead con-
centration in cord blood xi2; iron status xi3, a binary measurement with 1 for iron-deficient and
0 for iron-sufficient; and six dummy variables for seven brain hemisphere regions, namely left
frontal-central x4 j , middle frontal-central x5 j , right frontal-central x6 j , left parietal-occipital x7 j ,
middle parietal-occipital x8 j , right parietal-occipital x9 j , and other central as the reference. More
details are provided in the Supplementary Material. In this analysis, interaction effects between
iron status and hemisphere regions, i.e., xi3x4 j , xi3x5 j , xi3x6 j , xi3x7 j , xi3x8 j and xi3x9 j , are of
key interest, as they enable us to assess whether iron status could alter the amplitude of memory
updating under the mother’s voice stimulus over the seven brain regions. Consider the marginal
linear model

E(yi j | xi ) = β0 + β1xi1 + β2xi2 + β3xi3 + β4x4 j + β5x5 j + β6x6 j + β7x7 j

+ β8x8 j + β9x9 j + β10xi3x4 j + β11xi3x5 j + β12xi3x6 j + β13xi3x7 j

+ β14xi3x8 j + β15xi3x9 j (i = 1, . . . , 161; j = 1, . . . , 56).

Table 3 reports the results of regression coefficient estimation, including point estimates,
standard errors and sum-of-variance estimates obtained by several methods. The methods are:
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Regression analysis of networked data 13

the spatial analysis-of-variance mixed-effects model, β̂(γ = 0), β̂(� = �∗, γ = 1), and the pro-
posed β̂(� = �∗, γ = γ̂ ∗) with the optimal tuning γ̂ ∗. Upon consultation with our collaborators,
we chose to consider two types of prior target �∗ for the hybrid quadratic inference function:
one is a seven-block complete network �7comp = block-diag{Mcomp, . . . , Mcomp} based on the
seven-block hemisphere, see Fig. 1(a), and the other is a sparse network structure learned from
the separate late slow wave data under a stranger’s voice stimulus using the R package space with
a threshold 0·1, where the topology of �stranger is as displayed in Fig. 1(b).

As shown in Table 3, β̂(�∗ = �7comp, γ̂
∗ = 0·875) yields the smallest estimated total of vari-

ances tr{ ˆvar(β̂)} = 1·263 of the three different hybrid quadratic inference function methods and
the spatial analysis-of-variance estimator. The prior target �7comp is favoured with γ̂ ∗ = 0·875,
and thus it is informative for unveiling the dependence of late slow wave outcomes among the
56 nodes compared to the fully data-driven covariance matrix. The second-best performer is
β̂(�∗ = �stranger, γ̂

∗ = 0·583), with tr{ ˆvar(β̂)} = 1·306, and γ̂ ∗ = 0·583 suggests that the prior
target �stranger is slightly more favourable than the data-driven dependence structure. Although
these top two methods provide similar parameter estimates, the former enables us to identify more
significant group-region interaction effects than does the latter. For example, the interaction effect
β̂group×left fc = 0·714 is statistically significant, implying that the expected late slow wave ampli-
tude is elevated by 0·714 units in the iron-deficient group over the iron-sufficient group in the
left frontal-central subregion. Likewise, the significant interaction effect β̂group×right po = −1·427
suggests that the expected late slow wave amplitude is 1·427 units lower in the iron-deficient
group than in the iron-sufficient group in the right parietal-occipital subregion. In summary, by
allocating higher weights to more relevant network structures in the estimation and inference, the
proposed hybrid quadratic inference function method shows promise in improving the statistical
power of the networked data analysis.

6. DISCUSSION

Although it is difficult to specify a very informative prior network topology, our simulation
shows promise of improvement in efficiency when the prior structure captures part of the true
network topology. That being said, our method requires estimation of a common covariance V
across all subjects. In practice, networked data may not be collected from networks that have the
same number of vertices and could be unbalanced due to data missingness or experimental con-
straints. To improve the proposed method for unbalanced networked data, the sample covariance
matrix could possibly be obtained by the method of Qu et al. (2010).

Methods of sparse graph estimation are useful statistical tools for learning the target structure
� from networked data. In practice, either training data or pilot study data may not always be
available. If the data are first analysed to obtain � and then the same data reanalysed to yield
results for the regression model, overfitting may occur. In such a situation, some adjustments may
be needed to reach proper inference. Nevertheless, the consistency of our hybrid quadratic infer-
ence function estimation method relies only on the unbiasedness of extended scores, a feature
which is independent of the choice of � and can be justified by the goodness-of-fit test provided
in the paper.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes additional simulation results
for networked continuous data and networked binary data.

APPENDIX

The following regularity conditions are needed to establish the asymptotic properties of the hybrid
quadratic inference function estimator:

Condition A1. β0 lies in the interior of a compact parameter space B ⊂ R
p;

Condition A2. gi (β | �, γ ) is continuously differentiable in a neighbourhood N of β0;

Condition A3. E{gi (β | �, γ )} = 0 for all i if and only if β = β0, and E{‖gi (β0 | �, γ )‖2} is finite,
where ‖·‖ is the Euclidean norm;

Condition A4. E{supβ∈N ‖∂gi (β | �, γ )/∂βT‖} < ∞;

Condition A5.
√

n ḡn(β0 | �, γ ) → N {0, �(β0 | �, γ )} in distribution as n → ∞, where �(β0 |
�, γ ) = cov{gi (β0 | �, γ )};

Condition A6. J (β0 | �, γ ) = GT(β0 | �, γ )�−1(β0 | �, γ )G(β0 | �, γ ) is nonsingular, where
G(β0 | �, γ ) = E{∂gi (β0 | �, γ )/∂βT}.

Proof of Lemma 1

Given a target structure �, and under the regularity conditions stated above, for a given γ , β̂(γ )

obtained by minimizing the hybrid quadratic inference function (8) is consistent and asymptotically nor-
mal. In addition, since the weighting covariance matrix �̄n(β̂ | γ ) tends to �(β0 | γ ) in probability and
˙̄gn(β̂ | γ ) → G(β0 | γ ) in probability, the inverse of the Godambe information matrix J−1(β0 | γ ) of gi

may be consistently estimated by Ĵ−1(β̂(γ ) | γ ) = { ˙̄gT
n(β̂(γ ) | γ )�̄−1

n (β̂(γ ) | γ ) ˙̄gn(β̂(γ ) | γ )}−1. It follows
that tr{ Ĵ−1(β̂(γ ) | γ )} → tr{J−1(β0 | γ )} in probability as n → ∞.

Write η̂(γ ) = tr{ Ĵ−1(β̂(γ ) | γ )}, and let η0(γ ) = tr{J−1(β0 | γ )}. It follows that η̂(γ ) − η0(γ ) → 0 in
probability pointwise in γ on the compact set [0, 1]. To show that η̂(γ ) is stochastically equicontinuous, we
check a stochastic Lipschitz-type condition on η̂(γ ): E{supγ∈[0,1] |∂η̂(γ )/∂γ |} < ∞. Applying Lemma 1
of Wang et al. (1986), we have

∂η̂(γ )

∂γ
= −tr{Ŵ (γ ) Ĵ−2(γ )} � ρ{Ŵ (γ )} tr{ Ĵ−2(γ )} � p{max

i, j
|Ŵi j |} tr{ Ĵ−2(γ )},

where Ŵ (γ ) is given in (A1) below and ρ{Ŵ (γ )} is the spectral radius of a p × p real symmetric matrix
Ŵ (γ ). Note that

Ŵ (γ ) = ∂ Ĵ {β̂(γ ) | γ }
∂γ

= ∂ ˙̄gT
n

∂γ
�̄−1

n
˙̄gn + ˙̄gT

n�̄
−1
n

∂ ˙̄gn

∂γ
− ˙̄gT

n�̄
−1
n

∂�̄n

∂γ
�̄−1

n
˙̄gn (A1)

with ∂ ˙̄gn/∂γ = ∂ f̄n/∂β − ∂ h̄n/∂β. For sufficiently large n, ˙̄gn is continuous on γ ∈ [0, 1] and hence
bounded. Since �̄n is also bounded and positive definite on γ ∈ [0, 1], so is �̄−1

n . In addition, the expres-
sion �̄n(γ ) = n−1

∑n
i=1{γ fi + (1 − γ )hi }{γ fi + (1 − γ )hi }T implies that ∂�̄n(γ )/∂γ is continuous on

 at U
niversity of M

ichigan on A
pril 29, 2016

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://biomet.oxfordjournals.org/


Regression analysis of networked data 15

[0, 1], and so ∂�̄n(γ )/∂γ is bounded elementwise as well. Hence, each term in (A1) is bounded elemen-
twise on γ ∈ [0, 1], and we have maxi, j |Ŵi j | < ∞. On the other hand, the regularity conditions ensure
that tr{ Ĵ−2(γ )} < ∞. Therefore ∂η̂(γ )/∂γ can be bounded uniformly, and the Lipschitz-type condition
is satisfied. Then we obtain uniformity of convergence (Newey, 1991), supγ∈[0,1] |η̂(γ ) − η0(γ )| → 0 in
probability. Finally, since S0 = {γ : γ = arg minγ∈[0,1] η0(γ )} and S = {γ : γ = arg minγ∈[0,1] η̂(γ )} with
|S0| = |S| < ∞, we have γ̂ ∗ → γ ∗

0 in probability as n → ∞, where γ ∗
0 = sup{S0} and γ̂ ∗ = sup{S}.
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HARRIS, D. & MÁTYÁS, L. (1999). Introduction to the generalized method of moments estimation. In Generalized

Method of Moments Estimation. New York: Cambridge University Press, pp. 3–30.
HU, Y. N. & SONG, P. X. K. (2012). Sample size determination for quadratic inference functions in longitudinal design

with dichotomous outcomes. Statist. Med. 31, 787–800.
LEDOIT, O. & WOLF, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. J. Mult.

Anal. 88, 365–411.
LIANG, K. Y. &ZEGER, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22.
MAI, X. Q., XU, L., LI, M. Y., SHAO, J., ZHAO, Z. Y., DEREGNIER, R. A., NELSON, C. A. & LOZOFF, B. (2012). Audi-

tory recognition memory in 2-month-old infants as assessed by event-related potentials. Dev. Neuropsychol. 37,
400–14.

MEINSHAUSEN, N. & BUEHLMANN, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann.
Statist. 34, 1436–62.

NEWEY, W. K. (1991). Uniform convergence in probability and stochastic equicontinuity. Econometrica 59, 1161–7.
NEWMAN, M. (2010). Networks: An Introduction. Oxford: Oxford University Press.
PAN, W. (2001). Akaike’s information criterion in generalized estimating equations. Biometrics 57, 120–5.
PENG, J.,WANG, P., ZHOU, N. & ZHU, J. (2009). Partial correlation estimation by joint sparse regression models. J. Am.

Statist. Assoc. 104, 735–46.
QU, A. & LINDSAY, B. G. (2003). Building adaptive estimating equations when inverse of covariance estimation is

difficult. J. R. Statist. Soc. B 65, 127–42.
QU, A., LINDSAY, B. G. & LI, B. (2000). Improving generalised estimating equations using quadratic inference func-

tions. Biometrika 87, 823–36.
QU, A., LEE, J. J. & LINDSAY, B. G. (2008). Model diagnostic tests for selecting informative correlation structure in

correlated data. Biometrika 95, 891–905.
QU, A., LINDSAY, B. G. & LU, L. (2010). Highly efficient aggregate unbiased estimating functions approach for

correlated data with missing at random. J. Am. Statist. Assoc. 105, 194–204.
R DEVELOPMENT CORE TEAM (2016). R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.
SIDDAPPA, A. M., GEORGIEFF, M. K., WEWERKA, S., WORWA, C., NELSON, C. A. & DEREGNIER, R. A. (2004). Iron

deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatric Res. 55, 1034–41.
SONG, P. X. K. (2007). Correlated Data Analysis: Modeling, Analytics, and Applications. New York: Springer.
STEIN, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proc.

3rd Berkeley Symp. Math. Statist. Prob., vol. 1. Berkeley: University of California Press, pp. 197–206.
VOORMAN, A., SHOJAIE, A. & WITTEN, D. (2014). Graph estimation with joint additive models. Biometrika 101,

85–101.
WANG, S. D.,KUO, T. S. &HSU, C. F. (1986). Trace bounds on the solution of the algebraic matrix Riccati and Lyapunov

equation. IEEE Trans. Auto. Contr. 31, 654–6.
YUAN, M. & LIN, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika 94, 19–35.
ZHOU, J. & QU, A. (2012). Informative estimation and selection of correlation structure for longitudinal data. J. Am.

Statist. Assoc. 107, 701–10.

[Received September 2014. Revised November 2015]

 at U
niversity of M

ichigan on A
pril 29, 2016

http://biom
et.oxfordjournals.org/

D
ow

nloaded from
 

http://www.R-project.org
http://biomet.oxfordjournals.org/

	Introduction
	Framework
	Estimating functions
	Graphical interpretation of basis matrices
	Data-driven network topology

	Proposed method
	Hybrid quadratic inference function
	Asymptotic properties
	Choice of the shrinkage coefficient

	Simulation experiment
	Data example: infant memory study
	Discussion

