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Varying Index Coefficient Models
Shujie MA and Peter X.-K. SONG

It has been a long history of using interactions in regression analysis to investigate alterations in covariate-effects on response variables. In
this article, we aim to address two kinds of new challenges arising from the inclusion of such high-order effects in the regression model for
complex data. The first kind concerns a situation where interaction effects of individual covariates are weak but those of combined covariates
are strong, and the other kind pertains to the presence of nonlinear interactive effects directed by low-effect covariates. We propose a new
class of semiparametric models with varying index coefficients, which enables us to model and assess nonlinear interaction effects between
grouped covariates on the response variable. As a result, most of the existing semiparametric regression models are special cases of our
proposed models. We develop a numerically stable and computationally fast estimation procedure using both profile least squares method
and local fitting. We establish both estimation consistency and asymptotic normality for the proposed estimators of index coefficients as
well as the oracle property for the nonparametric function estimator. In addition, a generalized likelihood ratio test is provided to test for
the existence of interaction effects or the existence of nonlinear interaction effects. Our models and estimation methods are illustrated by
simulation studies, and by an analysis of child growth data to evaluate alterations in growth rates incurred by mother’s exposures to endocrine
disrupting compounds during pregnancy. Supplementary materials for this article are available online.
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1. INTRODUCTION

Being an important generalization of the classical linear
model, varying coefficient models (VCMs) proposed by Hastie
and Tibishirani (1993) have been widely applied in real data
applications. See also, for example, Cai, Fan, and, Li (2000)
and Fan and Zhang (2008) , among others. An important feature
of the VCM is that the coefficients of covariates are allowed to
change with some other variables through smooth functions, so
nonlinear interactions may be assessed. We consider a VCM of
the form

Y =
d∑

l=1

ml (Z) Xl + ε, (1)

where Y is the response variable, (Z, XT)T is a vector of pre-
dictors consisting of a scalar Z and a d-dimensional vector
X = (X1, X2, . . . , Xd )T with X1 = 1, ε is the error term with
mean 0, and ml (·), l = 1, . . . , d, are unknown smooth functions.
Such specification of VCM in (1) may be inadequate to address
two types of challenges in the analysis of complex data struc-
tures. First, variable Z is of low effect (e.g., exposure to a certain
pesticide contained in food), so the interaction effect between Z
and Xl is hardly detectable. Second, as in our motivating exam-
ple, variable Z is multidimensional (e.g., simultaneous exposure
to many chemical components), so estimation of the coefficient
function ml (Z) will be cumbered by the curse of dimensional-
ity. To overcome such challenges and achieve both dimension
reduction and sensible model interpretation, we propose a class
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of varying index coefficient models (VICM) given as

Y = m (Z, X,β) + ε =
d∑

l=1

ml(ZTβ l)Xl + ε, (2)

where β l = (βl1, . . . , βlp)T are the coefficient vectors that vary
across different covariates Xl , with βlk being the loading weight
for the kth component Zk of Z. As discussed in Section 2, such
varying β l in model (2) differentiate the VICM substantially
from the existing models in the literature.

The development of model (2) is motivated by one of our
collaborative projects in environmental health sciences. In this
study, 214 children with age of 8.1 to 13.8 years old are sam-
pled to assess the impact of in utero exposure to mixtures of
endocrine disrupting compounds (EDCs) such as bisphenol a
(BPA) and phthalates on child growth and weight status from
birth through adolescence. Exposure to 10 EDC agents is mea-
sured from mother’s blood samples collected during the third
trimester of pregnancy. The central statistical task is to inves-
tigate whether or not, and if so in which form, fetal exposure
to these EDCs at sensitive life stages could modify growth ve-
locity throughout childhood and adolescence. Phthalates are a
diverse class of high-production industrial chemicals that are
widely used as plasticizers to make plastics more flexible, while
bisphenol a (BPA) is a high-production chemical that is popu-
larly used in the manufacture of polycarbonate plastics, epoxy
resins, and thermal paper. In the U.S., both BPA and phthalates
are still in use, and humans are constantly exposed. According
to Meeker (2012), there is great public health concern regarding
the potential developmental and reproductive effects resulting
from the near ubiquitous environmental exposure to known or
suspected EDCs currently experienced among pregnant women
and children. It is known that EDCs may affect tempo of physical
growth (i.e., weight status) across sensitive periods of develop-
ment in childhood, which in itself is related to chronic disease
risk (Grun and Blumberg 2009; Hatch et al. 2010; La Merrill and
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Figure 1. Plots of the estimated m functions against the index ZTβ

scaled on [−2, 2] for the four groups: (1) age≤ 10, gender=boy (solid
line); (2) age≤ 10, gender=girl (dotted line); (3) age> 10, gender=boy
(thin line); (4) age > 10, gender=girl (dashed dotted line).

Birnbaum 2011) as well as to timing and tempo of sexual mat-
uration. In reality, pregnant women and children are exposed to
complex mixtures of chemicals in the environment, and thus, it
has become of great importance to study health impacts related
to exposure to mixtures of EDCs. Several studies showed that
mixtures of reproductive toxicants may disrupt complex signal-
ing pathways and result in cumulative effects on child’s growth
(Rider et al. 2010).

During the stage of data cleaning, two EDCs agents are re-
moved, resulting in eight EDCs used in our analysis. In the
data analysis, we need to answer three important questions: (i)
Does exposure to the mixture of the eight EDCs modify the
pattern of growth rate? (ii) If so, which EDC components are
responsible for the modification? (iii) In which form (linear or
nonlinear) does the mixture of EDCs modify the growth pat-
tern? To explore how the mixture of the eight EDCs possibly
modifies the association between weight and age as well as that
between weight and gender, in a preliminary analysis we stratify
the children into four groups: age ≤10 or > 10, and gender=0
(boy) or 1 (girl), where age 10 is regarded as the beginning
of puberty for girls. For each group, we run regression analy-
sis using the single-index model E(Y |Z) = m(ZTβ), where Y
is the logarithm of weight at current age, Z is a vector of the
eight log-transformed EDC agents. Figure 1 displays four esti-
mated m functions against index ZTβ scaled on [−2, 2], each
for one group. These estimated curves demonstrate clearly dif-
ferent patterns; for example, girl’s weight growth appears to be
more affected by the exposure, so does the weight growth dur-
ing puberty (age 10–14). Such preliminary evidence suggests
nonlinear interaction effects of the EDC exposure with age and
gender. Arguably, the proposed VICM (2) is specified to capture
alterations in growth rate patterns directed by the EDC exposure
ZTβ l , where covariates are as gender and age.

The proposed VICM (2) is flexible, which encompasses var-
ious existing semiparametric models, and the details about the
relationship of the VICM to the existing models are discussed
in Section 2. In the rest of this section, we focus on the aspect of

our contributions to statistical methodology. To address the three
questions in the data analysis, we are interested in estimation and
inference on both the loading coefficients β = (βT

1 , . . . ,βT
d )T

and the nonparametric functions ml (·). For the β, we develop
a profile least squares estimation (PLSE) procedure in which
each ml (·) is approximated by B-spline basis functions (de Boor
2001). An important methodological merit of our approach is the
ease of simultaneously approximating multiple nonparametric
functions to create a single objective function for β, so that the
PLSE can be established in a straightforward manner. In the lit-
erature, another version of the PLSE has been considered in the
context of single-index models via kernel smoothing by Liang
et al. (2010) and Cui, Härdle, and Zhu (2011), among others.
However, their kernel-based PLSE may become very compli-
cated to deal with the issue of simultaneously handling multiple
nonparametric functions, unless some iterative procedures such
as backfitting (Hastie and Tibshirani 1990; Mammen, Linton,
and Nielsen 1999; Opsomer and Ruppert 1997) are invoked. A
consequence of using iterative procedures is that the profile esti-
mation is no longer available. Moreover, some other commonly
used kernel-based methods in the single-index model, such as
the backfitting approach proposed by Carroll et al. (1997) and
the minimum average variance estimation (MAVE) developed
by Xia and Li (1999), Xia, Tong, and Li (1999), and Xia and
Härdle (2006), cannot be directly applied in the VICM. On the
other hand, the spline estimation approach is also known to be
computationally faster than kernel smoothing in semiparamet-
ric models (Ma, Song, and Wang 2013; Wang and Yang 2009a;
Wang et al. 2011). For the proposed PLSE approach to esti-
mation and inference of parameter β, this article has made the
following contributions: (i) we establish root-n consistency and
asymptotic normality of the PLSE for β. Because the PLSE is
to minimize a single objective function, unlike iterative meth-
ods (e.g., backfitting), PLSE does not require root-n consistent
initial estimators for the large sample properties. (ii) We derive
an asymptotic formula for the gradient of the objective func-
tion, which makes the PLSE very easy to be implemented and
computationally fast through nonlinear optimization. (iii) Since
the PLSE of β implicitly involves the spline estimates of the
nonparametric functions with a divergent number of nuisance
parameters, the classical asymptotic theory cannot be directly
applied in our setting. We provide a new pathway to establish
the asymptotic normality for the PLSE of β. Subsequently, we
devise a Wald chi-square testing procedure for β based on the
asymptotic distribution of the estimator.

In regard to estimation and inference for the nonparametric
ml(·) functions, although the one-step spline approximation can
give a quick estimation of the multiple nonparametric functions,
according to Stone (1985), no asymptotic distribution is avail-
able for the resulting estimators. To overcome this, we propose
to update these splines estimators by the means of local linear
smoothing, and show that the resulting estimators enjoy the ora-
cle property; that is, they have the same asymptotic distribution
as that of the univariate oracle estimators under the assumption
that all the other nonparametric functions were known. This
two-step estimation approach is also used in Wang and Yang
(2007), Wang and Yang (2009b), and Liu and Yang (2010), in
which they use piecewise constant or linear splines in the first
step of splines estimation. In this article, we derive the uniform
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oracle efficiency without restricting the order of splines used in
the first step. As a result, our method provides greater flexibility
in estimation and inference.

The rest of this article is organized as follows. Section 2 states
relationships between the VICM and some important existing
models. Section 3 introduces the PLSE and presents asymptotic
properties of the proposed estimators. Section 4 discusses the
two-step estimation for the nonparametric function ml (·) and in-
ference for the parameter β and ml (·). In Section 5, we describe
the procedure of implementation. In Section 6, we evaluate finite
sample properties of the proposed estimation and inference pro-
cedures via simulation studies. Section 7 illustrates the proposed
model and method through the analysis of child growth data.
Some concluding remarks are given in Section 8. All technical
details including detailed proofs are provided in the Appendix
and the online supplemental materials.

2. RELATIONSHIP TO THE EXISTING MODELS

We begin by noting that in the VICM (2), the loading coeffi-
cient vectors β l vary with X-covariates as opposed to a common
loading coefficient vector assumed in the single-index coeffi-
cient model (SICM) proposed by Xia and Li (1999), Fan, Yao,
and Cai (2003), and Xue and Wang (2012). Because of such
a difference in model specification, these two classes of mod-
els behave rather differently to characterize interaction effects,
which are of central interest in our motivating examples. Some
of the key differences are summarized as follows:

1. Allowing different loading vectors β l in the VICM enables
to engage different components of Z to modify slope func-
tions of Xl . This is particularly useful to address the second
question in our data analysis: which components of EDC
agents are responsible for modifying covariate effects. In
practice, it seems natural to start with a model with all
components of Z in each function ml (·), and then let data
at hand to pick up an important subset Zl of Z interacting
with Xl by the means of, for example, a hypothesis testing
procedure. Thus, a VICM ( 2) used for interpretation may
take the form

Y = m (Z, X,β) =
d∑

l=1

ml

(
ZT

l β l

)
Xl + ε,

where Zl in different indices may be completely or par-
tially overlapped, or completely exclusive. Clearly, the
VICM provides flexibility of practical importance for
proper interpretation of nonlinear interaction effects. On
the contrary, the SICM does not have such flexibility and
thus loses desirable model fitting and interpretation. More
details may be found in Section 7 of the data application.

2. It is interesting to observe that the VICM can be used to as-
sess nonlinear interactions but the SICM cannot. Consider
the case of ml (·) being linear functions. In the VICM, the
linear function ml (u) = al + u, turns model (2) into

Y = a1 +
d∑

l=2

alXl +
p∑

k=1

β1kZk +
d∑

l=2

p∑
k=1

βlkZkXl + ε.

In the SICM, the linear function ml (u) = al + blu, leads
the SICM to the form

Y = a1+
d∑

l=2

alXl+
p∑

k=1

b1βkZk+
d∑

l=2

p∑
k=1

blβkZkXl + ε,

which, apparently, is a linear model with ill-defined inter-
action effects because usually interaction effects do not
satisfy βlk = blβk . Thus, the SICM is short of proper in-
terpretability, and does not allow to test regular interaction
effects between each Zk and Xl .

3. When the β l vectors are given, the SICM and the VICM
give rise to different nonparametric models; the former
is a varying-coefficient model that technically involves
one nonparametric function, and the latter is an additive
model that contains multiple nonparametric functions in
estimation and inference.

In the literature, the varying-coefficient single-index model
(VCSIM, Wong, lp, and Zhang 2008) is another popular semi-
parametric model whose specification appears to be similar to
that of the VICM. A VCSIM takes the form

Y = m(ZTβ) +
d∑

l=1

αl (U ) Xl + ε,

which is an extension of the partially linear single-index model
(PLSIM, Carroll et al. 1997), where coefficients of covariates
Xl vary with a scalar variable U. As a matter of fact, the VCSIM
and VICM are clearly distinct. The VCSIM does not suit for the
purpose of assessing alterations in effects of Xl directed by a
set of multiple variables Z1, . . . , Zp.

Albeit the aforementioned differences, technically both SICM
and VCSIM may be regarded as special cases of the VICM by
forcing common β for the SICM and using one single variable U
(or p = 1) in the index for the VCSIM. The class of VICM mod-
els specified by (2) is quite general. Besides the SICM and the
VCSIM, it encompasses many other existing models as special
cases, such as the linear regression model when ml (·) are as-
sumed to be constant or linear function; the single-index model
when d = 1; the partial linear single-index model (PLSIM, Car-
roll et al. 1997; Liang et al. 2010; Lu et al. 2006; Xia, Tong, and
Li 1999) when ml (·) are set as constant for l ≥ 2; the additive
index models when Xl ≡ 1 for all 1 ≤ l ≤ d; the additive model
(Hastie and Tibshirani 1990; Wang and Yang 2007) when β l are
given and Xl ≡ 1; the partially linear additive model (PLAM,
Ma and Yang 2011; Wang et al. 2011) when some of ml (·) are
specified as constant; and the varying coefficient model (Härdle,
Hall, and Ichimura 1993) when one variable is included in the
nonparametric functions.

3. PROFILE LEAST SQUARES ESTIMATION

Denote an index by Ul

(
β l

) = ZTβ l , which is assumed to
be confined in a compact set [a, b], and without loss of gen-
erality, set [a, b] = [0, 1]. For the error term ε, we assume
E (ε |Z, X ) = 0 and var(ε |Z, X ) = σ 2 (Z, X). For the sake of
identifiability, let β = (βT

1 , . . . ,βT
d )T belong to the parameter

space:

� = {
β = (

βT
l : 1 ≤ l ≤ d

)T
:
∥∥β l

∥∥
2 = 1, βl1 > 0,β l ∈ Rp

}
,
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where ‖·‖2 denotes the L2 norm of a vector such that ‖ζ‖2 =
(|ζ1|2 + · · · + |ζs |2)1/2 for any vector ζ = (ζ1, . . . , ζs)T ∈ Rs .
Here, we assume βl1 > 0 for all l = 1, . . . , d for identifia-
bility. In practice, we can let βlkl

> 0 for any 1 ≤ kl ≤ p.
Suppose (Yi, Zi , Xi , Ui(β)), 1 ≤ i ≤ n, are the iid realizations
of (Y, Z, X, U(β)), where U(β) = (

U1(β1), . . . , Ud (βd )
)T

and
β ∈�. We propose an estimation of parameter β by a profile
least square procedure. Fixing β, we estimate nonparametric
functions ml (ul) by the means of B-splines described as fol-
lows. Let Gn denote the space of polynomial splines of order q.
Consider a knot sequence with N ≡ Nn interior knots, denoted
by

ξ1 = · · · = 0 = ξq < ξq+1 < · · · < ξq+N < 1 = ξN+q+1

= · · · = ξN+2q,

where N increases along with the number of subjects n. Space
Gn consists of functions, say 	 , satisfying (i) 	 is a polyno-
mial of degree q − 1 on each of subintervals Is = [ξs, ξs+1),
s = 0, . . . , Nn − 1, and INn

= [ξNn
, 1]; (ii) for q ≥ 2, function

	 is q − 2 times continuously differentiable on [0, 1]. For
0 ≤ s ≤ Nn, let Hs = ξs+1 − ξs be the distance between neigh-
boring knots and let H = max0≤s≤Nn

Hs . Following Zhou, Shen,
and Wolfe (1998), to study asymptotic properties of the spline
estimator of ml(·) , we assume that max0≤s≤Nn−1 |Hs+1 − Hs | =
o(N−1) and H/ min0≤s≤Nn

Hs ≤ M , where M > 0 is a prede-
termined constant. Such an assumption assures that M−1 <

NnH < M , which is necessary for numerical implementation.
Let Jn = Nn + q. Denote the qth order B spline basis for
Gn (de Boor 2001, p. 89) as Bq(u) = (Bs,q(u) : 1 ≤ s ≤ Jn)T,
u ∈ [0, 1], with some q ≥ 2. Then, the nonparametric functions
ml(ul), l = 1, . . . , d, are estimated by the spline functions

m̂l(ul,β) =
Jn∑

s=1

Bs,q (ul) λ̂s,l(β) = Bq (ul)
T λ̂l(β), (3)

where λ̂(β) = (̂λ1(β)T, . . . , λ̂d (β)T)T, with λ̂l(β) = (̂λs,l(β) :
1 ≤ s ≤ Jn)T, is given by

λ̂(β) = argminλ∈RdJn

n∑
i=1

{
Yi−

d∑
l=1

Jn∑
s=1

Bs,q

(
Uil(β l)

)
λs,lXil

}2

.

(4)

Denote Di(β) = (Di,sl(β l), 1 ≤ s ≤ Jn, 1 ≤ l ≤ d)T

with Di,sl(β l) = Bs,q(Uil(β l))Xil and D(β) =
[(D1(β), . . . , Dn(β))T]n×Jnd . Thus, the solution to (4) is
expressed as

λ̂(β) = {D(β)TD(β)}−1D(β)TY, (5)

where Y = (Y1, . . . , Yn)T. The estimation procedure of β re-
quires estimates of both ml and its first-order derivative ṁl .
According to de Boor (2001, p. 116), ṁl can be approximated
by the spline functions of one order lower than that of ml . That
is, a spline estimator of ṁl is given by

̂̇ml(ul,β) =
Jn∑

s=1

Ḃs,q (ul) λ̂s,l(β) =
Jn∑

s=2

Bs,q−1 (ul) ω̂s,l(β),

(6)

where

ω̂s,l(β) = (q − 1) {̂λs,l(β) − λ̂s−1,l(β)}/(ξs+q−1 − ξs),

for 2 ≤ s ≤ Jn. In addition, ̂̇ml(ul,β) can be reexpressed aŝ̇ml(ul,β) = Bq−1(ul)TD1λ̂l(β), where Bq−1(ul) = (Bs,q−1(ul) :
2 ≤ s ≤ Jn)T and

D1 = (q − 1)

×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

ξq+1 − ξ2

1

ξq+1 − ξ2
0 · · · 0

0
−1

ξq+2 − ξ3

1

ξq+2 − ξ3
· · · 0

.

.

.
.
.
.

. . .
. . .

.

.

.

0 0 · · · −1

ξN+2q−1 − ξN+q

1

ξN+2q−1 − ξN+q

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(Jn−1)×Jn

.

(7)

In the estimation of β, to ensure identifiability, we exclude
the first component βl1 of β l by setting βl1 = (1 − ‖β l,−1‖2

2)1/2,
where β l,−1 = (βl2, . . . , βlp)T, for all 1 ≤ l ≤ d (see Cui,
Härdle, and Zhu 2011), and reformulate the parameter space
of β l , l = 1, . . . , d, as

�−1 = [{(
1 − ‖β l,−1‖2

2

)1/2
, βl2, . . . , βlp

}T
: ‖β l,−1‖2

2 < 1
]
.

Let β l,−1 = (βl2, . . . , βlp)T and let Jl=∂β l/∂βT
l,−1 be

the Jacobian matrix of size p × (p − 1), which is

Jl = ( −βT
l,−1/

√
1 − ‖β l,−1‖2

2

Ip−1
). Denote the estimator of β−1 =

(βT
1,−1, . . . ,β

T
d,−1)T by β̂−1 = (β̂1,−1, . . . , β̂d,−1)T, which can

be obtained by β̂−1 = arg minβ−1∈�−1 Ln(β), where

Ln(β) = 2−1
n∑

i=1

{
Yi −

d∑
l=1

Jn∑
s=1

Bs,l

(
Uil(β l)

)
λ̂s,l(β)Xil

}2

,

β−1 ∈ �−1. (8)

Moreover, one can obtain β̂−1 as the solution of the following
estimation equations:

∂Ln(β)/∂β−1

= −
n∑

i=1

{
Yi −

d∑
l=1

Jn∑
s=1

Bs,l

(
Uil(β l)

)
λ̂s,l(β)Xil

}

×

⎡⎢⎢⎣
{̂̇m1(Ui1(β1),β)Xi1JT

1 Zi + (∂λ̂(β)T/∂β1,−1)Di(β)
}

...{̂̇md (Uid (βd ),β)XidJT
d Zi + (∂λ̂(β)T/∂βd,−1)Di(β)

}
⎤⎥⎥⎦

= 0, (9)

where ̂̇ml(,β) is given in (6). Now, define the space M as a
collection of functions with finite L2 norm on [0, 1]d × Rd by

M =
{

g (u, x) =
d∑

l=1

gl (ul) xl, Egl (Ul)
2 < ∞

}
,

where u = (u1, . . . , ud )T and x = (x1, . . . , xd )T. To study the
large-sample properties of parameter estimators, let β0 =
{(β0

1)T, . . . , (β0
d )T}T with β0

l = {β0
l1, (β0

l,−1)T}T and β0
l,−1 =

(β0
l2, . . . , β

0
lp)T for 1 ≤ l ≤ d be the true parameters in model
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(2). For 1 ≤ k ≤ p, define g0
k as the one satisfying:

P (Zk) = g0
k (U(β0), X) =

d∑
l=1

g0
l,k

(
Ul

(
β0

l

))
Xl

= arg min
g∈M

E{Zk − g(U(β0), X)}2.

(10)

Let P (Z) = {P (Z1), . . . , P (Zp)}T, Z̃ = Z − P (Z) and


(X, Z,β0) = [{
ṁl

(
Ul

(
β0

l

)
,β0)XlJT

l Z̃
}T

, 1 ≤ l ≤ d
]T

.

(11)

Here, 
(X, Z,β0) is a vector with (p − 1) d elements. For any
matrix A, denote A⊗2 = AAT. For any positive numbers an and
bn, let an 	 bn denote that an/bn = o (1). Let r with r ≥ 2 be
the smoothness order of the coefficient functions ml (·) as given
in Condition (C2) in the Appendix.

Theorem 1. Under Conditions (C1)–(C5) in the Appendix,
and n1/(2r+2) 	 N 	 n1/4, we have (i) (consistency) ‖β̂−1 −
β0

−1‖2 = Op(n−1/2); (ii) (asymptotic normality) as n → ∞,
√

n
(
β̂−1 − β0

−1

)
=

{
n−1

n∑
i=1



(
Xi , Zi ,β

0)⊗2

}−1

×
{

n−1/2
n∑

i=1

(Yi − m (Zi , Xi)) 

(
Xi , Zi ,β

0)}+ op (1) .

Moreover
√

n(β̂−1 − β0
−1)

d→ Nd(p−1)(0, �), as n → ∞,
where

� = [E{
(X, Z,β0)⊗2}]−1[E{σ 2(Z, X)
(X, Z,β0)⊗2}]
× [E{
(X, Z,β0)⊗2}]−1. (12)

Remark 1. If we assume homoscedasticity to the random
noise ε in model (2), that is, σ 2 (Z, X) = σ 2 for some constant
σ 2 > 0, then the asymptotic variance matrix given in (12 ) is
reduced to

� = σ 2[E{
(X, Z,β0)⊗2}]−1. (13)

Let J= ⊕d
l=1Jl =diag(J1, . . . , Jd ) be the direct sum of Jaco-

bian matrices J1, . . . , Jd and its dimension is dp × d(p − 1).
For 1 ≤ l ≤ d, βl1 is estimated by β̂l1 = (1 −∑p

k=2 β̂2
lk)1/2. Let

β̂ l = (β̂l1, . . . , β̂lp)T. Both consistency and asymptotic normal-

ity of β̂ = (β̂
T
1 , . . . .̂β

T
d )T follow directly from Theorem 1 with

an application of the multivariate delta method. Thus, we obtain√
n(β̂ − β0)

d→ Ndp(0, J�JT), n → ∞.
Next, we consider the spline estimator of the nonparametric

function ml (·) given as follows:

m̂l(ul, β̂) =
Jn∑

s=1

Bs,q (ul) λ̂s,l(β̂) = Bq (ul)
T λ̂l(β̂), (14)

where λ̂(β̂) = (̂λ1(β̂)T, . . . , λ̂d (β̂)T)T with λ̂l(β̂) = (̂λs,l(β̂) :
1 ≤ s ≤ Jn)T given by (5) in which β is replaced with β̂. The
following theorem provides the convergence rate of m̂l(ul, β̂).

Theorem 2. Under Conditions (C1)–(C5) in the Appendix,
and n1/(2r+2) 	 N 	 n1/4, we have for each 1 ≤ l ≤ d,

|m̂l(ul, β̂) − ml(ul)| = Op(
√

N/n + N−r ) uniformly for any
ul ∈ [0, 1].

Remark 2. The order assumptions regarding N, that is,
n1/(2r+2) 	 N 	 n1/4, in Theorem 2 implies that N 
 n1/(2r+1),
which is the optimal order for the number of interior knots
needed to estimate the nonparametric functions. The resulting
convergence rate is then Op(n−r/(2r+1)). For example, when
r = 2, the optimal convergence rate is Op(n−2/5).

Remark 3. To estimate the asymptotic covariance matrix �

given in (12), we need to estimate 
(X, Z,β0) given by (11).
There, Z̃ can be estimated by Ẑ = Z − Pn(Z), with Pn(Z) =
{Pn(Z1), . . . , Pn(Zp)}T and Pn(Zk) = ∑d

l=1 ĝ0
l,k(Ul(β̂), β̂)Xl ,

where ĝ0
l,k(·, β̂) is the spline estimate of g0

l,k (·) obtained by car-
rying out the same procedure as for m̂l(·, β̂) with the response
Y replaced by Zk . Thus, 
(X, Z,β0) is estimated by


̂(X, Z, β̂) = [ {̂̇ml(Ul(β̂ l), β̂)XlJT
l Ẑ
}T

, 1 ≤ l ≤ d
]T

,

and the resulting estimate of � defined in (12) is given by

�̂ = n

{
n∑

i=1


̂(Xi , Zi , β̂)⊗2

}−1

×
{

n∑
i=1

ê2 (Zi , Xi) 
̂(Xi , Zi , β̂)⊗2

}
(15)

×
{

n∑
i=1


̂(Xi , Zi , β̂)⊗2

}−1

,

where ê(Xi , Zi) = Yi −∑d
l=1 m̂l(ZT

i β̂ l , β̂)Xil . For the ho-
moscedasticity case, � in (13) is estimated by

�̂ = σ̂ 2n

{
n∑

i=1


̂
(
Xi , Zi , β̂

)⊗2

}−1

, (16)

where σ̂ 2 = ∑n
i=1 ê2(Xi , Zi)/{n − d(Jn + p)}.

4. INFERENCE

4.1 Oracle Property of a Two-Step Estimation for ml(·)
In Theorem 2, we show that the spline estimator m̂l(·, β̂)

obtained from the profile estimation procedure in (14) is a
consistent estimator of ml(·). The asymptotic distribution of
m̂l(·, β̂), however, is not available. Thus, no measure of confi-
dence can be established in statistical inference. To overcome
this, we consider a two-step spline backfitted local linear
(SBLL) estimation for the nonparametric function ml(·), for
which the spline estimate m̂l(·, β̂) given in (14) will be used as
the initial estimate. Here, we establish the asymptotic normality
for the SBLL estimators. The SBLL estimation proceeds as
follows. Without loss of generality, we focus on the estimation
of the first nonparametric function m1 (·). The spline estimates
m̂l(·, β̂), l ≥ 2, given in (14) are used as the initial estimates
and held fixed in the estimation of m1 (·), and all the other
functions can be estimated in a similar fashion. When ml (·)
for l ≥ 2 were known, we could define the oracle pseudore-
sponse Yi,1 = Yi −∑d

l=2 ml(ZT
i β̂ l)Xil = m1(ZT

i β̂1)Xi1 + εi ,
where β̂ l are the PLSE given in Section 3. For each given
u1, m1(u1) is estimated by the means of local linear fitting,
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namely m̃LL,1(u1, β̂) = â(β̂), where â(β̂) and b̂(β̂) minimize
the following local kernel objective function:

n∑
i=1

{Yi,1 − aXi1 − b(Ui1(β̂1) − u1)Xi1}2Kh1 (Ui1(β̂1) − u1).

Here, Kh1 (u) = K (u/h1) /h1 is a symmetric kernel function
and h1 is a bandwidth. Let

C(u1, β̂1)

=

⎡⎢⎣ X11 · · · X1n

X11{(U11(β̂1) − u1) · · · X1n{(U1n(β̂1) − u1)

/h1} /h1}

⎤⎥⎦
T

,

W(u1, β̂1)

= diag{Kh1 (U11(β̂1) − u1), . . . , Kh1 (U1n(β̂1) − u1)},
and Y1 = (Y1,1, . . . , Yn,1)T. Then, we have

â(β̂) = (1, 0){C(u1, β̂1)TW(u1, β̂1)C(u1, β̂1)}−1

× C(u1, β̂1)TW(u1, β̂1)Y1. (17)

Because ml(ul) for l ≥ 2 are actually unknown, we modify (17)
by replacing ml(ul) with their spline estimators m̂l(ul, β̂) given
in (14), which is equivalent to replacing Y1 in (17) by Ŷ1, where
Ŷ1 = (Ŷ1,1, . . . , Ŷn,1)T and Ŷi,1 = Yi −∑d

l=2 m̂l(ZT
i β̂ l , β̂)Xil .

The resulting SBLL estimator is denoted by m̂SBLL,1(u1, β̂).
Denote μ2 (K) = ∫

u2K (u) du and ‖K‖2
2 = ∫

K2 (u) du.

Theorem 3. Under Conditions (C1)–(C6) in the Appendix,
h1 
 n−1/5, and n1/(2r+2) 	 N 	 n1/4, as n → ∞, for any u1 ∈
[h1, 1 − h1], we have

sup
u1∈[h1,1−h1]

|m̃LL,1(u1, β̂) − m1(u1)|

= Op(
√

log (n) /(nh1)) = Op(n−2/5
√

log (n)),

and√
nh1

{
m̃LL,1

(
u1, β̂

)− m1 (u1) − b1 (u1) h2
1

} d→ N (0, v1 (u1)) ,

where

b1 (u1) = μ2 (K) m̈1 (u1) /2,

v1 (u1) = {
E
(
X2

1 |u1
)}−2

f −1
1 (u1) ‖K‖2

2 E
{
X2

1σ
2 (Z, X) |u1

}
.

Here m̈1 (·) is the second-order derivative of m1 and f1 (·) is the
density function of ZTβ0

1.

Theorem 4 presents the uniform oracle efficiency of the SBLL
estimator m̂SBLL,1(u1, β̂) such that the absolute difference be-
tween m̂SBLL,1(u1, β̂) and m̃LL,1(u1, β̂) is of order op(n−2/5)
uniformly. As a result, m̂SBLL,1(u1, β̂) has the same asymptotic
distribution as m̃LL,1(u1, β̂).

Theorem 4. Under Conditions (C1)–(C6) in the Appendix,
and max{n1/(2r+2), n2/(5r)} 	 N 	 n1/4, we have

sup
u1∈[0,1]

|m̂SBLL,1(u1, β̂) − m̃LL,1(u1, β̂)|

= Op(n−1/2 + N−r ) = op(n−2/5).

Corollary 1. Under Conditions (C1)–(C6) in the Appendix,
h1 
 n−1/5, and max{n1/(2r+2), n2/(5r)} 	 N 	 n1/4, for any

u1 ∈ [h1, 1 − h1] , as n → ∞, we have√
nh1{m̂SBLL,1(u1, β̂) − m1(u1) − b1(u1)h2

1}
d→ N (0, v1(u1)).

Remark 4. When ml (·) for 2 ≤ l ≤ d are rth order smooth
functions with r ≥ 3, under the assumption of N given in Corol-
lary 1, the same optimal order N 
 n1/(2r+1) as given in Remark
2 can be applied in the first step of spline estimation. Let r equal
to the spline order q as given in Zhou, Shen, and Wolfe (1998),
we have N 
 n1/(2q+1) for q ≥ 3. When q = 2 such that lin-
ear splines are used in the first step, then an undersmoothing
procedure is needed with N satisfying n1/5 	 N 	 n1/4. In the
second step of SBLL estimation, the bandwidth satisfies the
optimal order h1 
 n−1/5.

4.2 Inference for Loading Parameter β

With the availability of asymptotic normality in Theorem
1, we can easily derive a Wald chi-square testing procedure
to test whether a subset of β l = (β2l , . . . , βpl), l = 1, . . . , d,
equals to zero. Let K be an integer satisfying 2 ≤ K ≤ p, and
let (k1, . . . kK ) be a subset of indices in {2, . . . , p}. The null hy-
pothesis of interest is: H0 : βk1l = βk2l = · · · = βkKl = 0 for the
lth loading coefficients. From Theorem 1, a Wald test statis-
tic takes the form χ2

W = (β̂Kl − 0K )T{V̂(β̂Kl)}−1(β̂Kl − 0K ),
where β̂Kl = (β̂k1l , β̂k2l , . . . , β̂kK l)T is the PLSE of βKl =
(βk1l , βk2l , . . . , βkK l)T, and {V̂(β̂Kl)}−1 is the inverse of the es-
timated asymptotic variance–covariance matrix of β̂Kl . Under
H0, χ2

W follows asymptotically the central chi-square distribu-
tion with K degrees of freedom.

4.3 Inference for Nonparametric Function ml (·)
For a given 1 ≤ l ≤ d, both main and interaction effects of Xl

are related to the nonparametric function ml (·). To test whether
ml (·) has a specific parametric form, we set up the hypothe-
sis testing as: H0 : ml (·) = mθ ,l (·) versus Ha : ml (·) �= mθ ,l (·),
where mθ ,l (·) is a certain given parametric function with
the pθ -dimensional parameter vector θ . For example, setting
mθ,l (ul) ≡ θl0 (constant), we aim to test whether there exist any
interaction effects, while setting mθ ,l (ul) = θl1 + θl2ul (a linear
function), we attempt to test whether there exists a linear in-
teraction effect between Ul and Xl . Following Fan, Zhang, and
Zhang (2001) and Liang et al. (2010) , we construct generalized
likelihood ratio (GLR) statistics based on the SBLL estimator
m̂SBLL,l(ul, β̂) given in Section 4.1. First, we construct a GLR
statistic and establish its asymptotic distribution by using the
local linear estimator m̃LL,l(ul, β̂) assuming that all the other
nonparametric functions ml′(·) for l′ �= l were known. Because
of Theorem 4, the same asymptotic distribution will be satisfied
by the GLR statistic by plugging in the SBLL estimates.

Take the case of l = 1 as an example. Under H0, we estimate
mθ,1(u1) by minimizing

∑n
i=1{Yi,1 − mθ ,1(Ui1(β̂1), β̂)Xi1}2,

denoted as m̃θ̂ ,1(u1, β̂), where θ̂ is the least squares estima-
tor of the parameter vector θ under the null hypothesis, and the
resulting residual sum of squares under the null and alternative
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hypotheses are given as

RSSLL,1 (H0) =
n∑

i=1

{Yi,1 − m̃θ̂ ,1(Ui1(β̂1), β̂)Xi1}2,

RSSLL,1 (H1) =
n∑

i=1

{Yi,1 − m̃LL,1(Ui1(β̂1), β̂)Xi1}2,

where β̂ and m̃LL,1(u1, β̂) are the profile and local linear es-
timates of β and m1(u1), respectively. It follows that a GLR
statistic is defined by

TLL,1 = n{RSSLL,1 (H0) − RSSLL,1 (H1)}
2 RSSLL,1 (H1)

.

Let

�1 (u1) = E
(
X2

1 |U1 = u1
)
f1 (u1) ,

�∗
1 (u1) = E

{
X2

1σ
2 (Z, X) |U1 = u1

}
f1 (u1) .

Corollary 2. Assume that Conditions (C1)–(C7) in the Ap-
pendix hold, h1 
 n−1/5, and n1/(2r+2) 	 N 	 n1/4.

(i) Consider H0 : mθ ,1 (·) is linear such that mθ ,1 (u1) =
θ11 + θ12u1. Then, under H0, τKTLL,1 has an asymptotic χ2

distribution with dfn degrees of freedom, where

τK =
{
K (0) − 0.5

∫
K2 (u) du

}
/∫ {

K (u) − 0.5
∫

K ∗ K (u) du

}2

du,

dfn = τK

{
K (0) − 0.5

∫
K2 (u) du

}
/h,

and K ∗ K (u) denotes the convolution of K; (ii) Consider H0 :
mθ ,1 (·) is a constant such that mθ ,1 (u1) = θ10 . Then under H0,
τ̃KTLL,1 has an asymptotic χ2 distribution with d̃f n degrees of
freedom, where

τ̃K = τKE{σ 2 (Z, X)}
{∫ (

�∗
1 (u1) �−1

1 (u1)
)
du1

}
×
{∫ (

�∗
1 (u1) �−1

1 (u1)
)2

du1

}−1

,

d̃f n = τKcKh−1

{∫ (
�∗

1 (u1) �−1
1 (u1)

)
du1

}2

×
{∫ (

�∗
1 (u1) �−1

1 (u1)
)2

du1

}−1

,

where cK = K (0) − 0.5 ‖K‖2
2.

Results (i) and (ii) in Corollary 2 can be proved by following
the same reasoning given in the proofs of Theorems 5 and 9 in
Fan, Zhang, and Zhang (2001) as well as the proofs of Theorem 5
given by Liang et al. (2010). Now, we construct a sample version
of the GLR statistic by using the SBLL estimator m̂SBLL,1(u1, β̂).
Similarly, denote by m̂θ̂ ,1(u1, β̂) the least squares estimator that
minimizes

∑n
i=1{Ŷi,1 − mθ,1(Ui1(β̂1), β̂)Xi1}2. Then, a GLR

statistic is defined by

TSBLL,1 = n
{
RSSSBLL,1 (H0) − RSSSBLL,1 (H1)

}
2RSSSBLL,1 (H1)

, (18)

where

RSSSBLL,1 (H0) =
n∑

i=1

{
Ŷi,1 − m̂θ̂ ,1

(
Ui1(β̂1), β̂

)
Xi1

}2
,

RSSSBLL,1 (H1) =
n∑

i=1

{
Ŷi,1 − m̂SBLL,1

(
Ui1(β̂1), β̂

)
Xi1

}2
.

By the oracle property given in Theorem 4, under Conditions
(C1)–(C7) and the order requirements of h1 and N given in
Corollary 1, it is easy to show that the previous test statistic
TSBLL,1 in (18) has the same asymptotic distribution as that of
TLL established in Corollary 2. The implementation of such GLR
test is carried out by the bootstrap method as suggested by Fan
and Jiang (2007).

5. IMPLEMENTATION

5.1 Computational Algorithm

The estimator of the parameter vector β is obtained through
minimizing the objective function Ln(β) given in (8). We use
the “constrOptim.nl” package in R software with constraint that
the norm of (βl2, . . . , βld )T is less than 1. To use the “con-
strOptim.nl” package, we specify the gradient of the objective
function as

∂Ln(β)/∂β−1 ≈ −
n∑

i=1

{
Yi −

d∑
l=1

Jn∑
s=1

Bs,l

(
Uil(β l)

)
λ̂s,l(β)Xil

}
× [̂̇ml(Uil(β l),β)XilJT

l Ẑi

]d
l=1 ,

which is derived in the Appendix, where ̂̇ml(·) is a spline esti-
mator of ṁl(·) given in (6) and Ẑi is provided in Remark 1 in
Section 3. To start the search, we suggest using initial values
obtained by assuming linearity of each coefficient function fol-
lowing Carroll et al. (1997) and Xia et al. (2002) in single-index
models. The details of generating initial values can be found in
Section S.1 of the online supplemental materials.

5.2 Smoothing Parameter Selection

In the PLSE of β, the nonparametric functions ml (·) are
approximated by cubic spline (q = 4), where the number of in-
terior knots is set as N = [2n1/(2q+1)] + 1 = [2n1/9] + 1, which
satisfies the optimal order of N as discussed in Remark 4. Here,
[a] denotes the closest integer to a. After we obtain an estimate
of β, each ml (·) is estimated by the B-splines m̂l(·, β̂) with the
number of interior knots selected by minimizing following the
BIC criterion on the range [n1/9] ≤ N ≤ [2n1/9] + 1:

BIC (N ) = log

[
n−1

n∑
i=1

{Yi − m̂ (Z, X)}2

]
+ log n

n
d (N + q) ,

where m̂(Z, X) = ∑d
l=1 m̂l(ZTβ̂ l , β̂)Xl . Then, the optimal num-

ber of interior knots is given by N̂ =argminN∈IN
BIC(N ). In the

second step, the SBLL estimation for m1 (·) is performed with
the optimal bandwidth h1,opt, which minimizes the total asymp-
totic mean integrated squared errors (AMISE):

AMISE
(
m̂SBLL,1

)
=
∫ [ {

b1 (u1) h2
1

}2 + v1 (u1) / (nh1)
]
f1 (u1) du1.
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Section S.2 of the online supplementary materials presents the
detailed procedure of obtaining an estimate of the optimal band-
width h1,opt.

6. SIMULATION EXPERIMENTS

In this section, we conduct several simulation studies to eval-
uate the performance of the proposed methodology. We consider
the following VICM:

Yi = m (Zi , Xi ,β) + εi = m1
(
ZT

i β1

)
Xi1 + m2

(
ZT

i β2

)
Xi2

+ m3
(
ZT

i β3

)
Xi3 + εi, (19)

with Xi = (Xi1, Xi2, Xi3)T, where Xi1 is generated from
Bernoulli (0.5)−0.5, and (Xi2, Xi3)T is drawn from a bivari-
ate normal distribution with mean 0, variance 1, and covari-
ance 0.2. To generate Zi = (Zi1, Zi2, Zi3)T, we first sample
(Z∗

i1, Z
∗
i2, Z

∗
i3)T from a multivariate normal with mean 0, vari-

ance 1, and covariance 0.2, and then let Zik = 
(Z∗
ik) − 0.5,

k = 1, 2, 3, where 
(·) is the CDF of the standard normal. The
true loading parameters are set as β1 = 1√

14
(2, 1, 3)T, β2 =

1√
14

(3, 2, 1)T, and β3 = 1√
14

(2, 3, 1)T. Set ml(ul) = m∗
l (ul) −

E{m∗
l (ul)}, l = 1, 2, 3, where m∗

1(u1) = 10 exp(5u1)/{1 +
exp(5u1)}, m∗

2(u2) = 5 sin(πu2), and m∗
3(u3) = 3{sin(πu3) +

cos(2πu3 − 4π/3)}, and their shapes may be seen in Figure 2.

function m1 function m2

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-1
0

-5
0

5
10

index

m
1

-0.5 0.0 0.5

-1
0

-5
0

5

index

m
2

function m3

-0.5 0.0 0.5

-5
0

5

index

m
3

Figure 2. Plots of the two-step SBLL estimator m̂SBLL,l (·) (thick line), the upper and lower 95% pointwise confidence intervals (upper and
lower thick lines), the oracle estimator m̃LL,l (·) (thin line) and the true function ml (·) (dashed line) for l = 1, 2, 3 based on one sample with
n = 200.
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Table 1. The empirical coverage rates of the 95% confidence intervals for individual loading parameters β1 = (β11, β12, β13)T,
β2 = (β21, β22, β23)T, and β3 = (β31, β32, β33)T for sample size n = 200, 500, 1000

n β11 β12 β13 β21 β22 β23 β31 β32 β33

200 0.920 0.906 0.926 0.928 0.928 0.922 0.926 0.916 0.904
500 0.958 0.940 0.952 0.948 0.942 0.946 0.946 0.944 0.934

1000 0.946 0.944 0.952 0.950 0.954 0.950 0.948 0.944 0.944

Finally, Yi , 1 ≤ i ≤ n, are generated from the VICM (19), where
β = (βT

1 ,βT
2 ,βT

3 )T, and errors εi follow N (0, σ 2(Zi , Xi)) with
σ 2(Zi , Xi) = {100 − m(Zi , Xi ,β)}/{100 + m(Zi , Xi ,β)}.

The sample size takes n = 200, 500, 1000, respectively, and
500 simulation replications are run to draw summary statis-
tics. Table 1 shows the empirical coverage rates of the 95%
confidence intervals for individual loading parameters βlk ,
l, k = 1, 2, 3, where standard errors are calculated according
to the asymptotic formula given in (16). It is clear that all cover-
age rates approach to the 95% nominal level as the sample size
increases. This result is confirmatory to the asymptotic normals
of the loading parameter estimators established in Theorem 1.

Table 2 presents the biases of the PLSE for individual loading
parameters βlk , l, k = 1, 2, 3 over 500 replications. It is easy to
see that all biases are close to 0 in the cases considered. This
result confirms the consistency of the PLSE given in Theorem
1. It is interesting to note that estimation consistency is achieved
with a relatively small sample size of n = 200. Table 3 shows the
average asymptotic standard error (ASE) calculated according
to Theorem 1 and the empirical standard error (ESE) among 500
replications. Apparently, both ASE and ESE become smaller as
n increases, due to the fact of the PLSE being root-n consistent.
More importantly, it is evident that the ASE and the corre-
sponding ESE are very comparable in all cases, which presents
an assurance for the use of the asymptotic covariance matrix in
practice.

Now, we turn to the nonparametric part. To evaluate the per-
formance of the two-step SBLL estimator m̂SBLL,l (·) for a given
l, we consider the mean integrated squared error (MISE) as the
average of the following measure:

ISE(m̂SBLL,l) = n−1
n∑

i=1

{m̂SBLL,l(Uil(β̂ l), β̂) − ml(Uil)}2

over the 500 replications. The MISE for the oracle estimator
m̃LL,l (·) takes the same form. Table 4 shows the MISE for the
two-step SBLL estimator m̂SBLL,l (·) and the oracle estimator
m̃LL,l (·) for ml (·), l = 1, 2, 3. We can observe that the MISE
values get closer to those of the oracle estimators as n increases,
which demonstrates that the SBLL estimator is a reliable and
desirable estimator. Moreover, the MISEs of both m̂SBLL,l (·)
and m̃LL,l (·) decrease as n increases.

To visualize the estimated functions, in Figure 2, we display
the SBLL estimator m̂SBLL,l (·) (thick line), with the upper and
lower 95% pointwise confidence bands (two thick lines), and
the oracle estimator m̃LL,l (·) (thin line) and the true function
ml (·) (dashed line) for n = 200. It is evident that the proposed
SBLL estimators perform well.

Now we report the finite-sample performance of the Wald test
statistic χ2

W proposed in Section 4.2. We stick to the same model
(19), except for now setting the true parameters as β1 = β2 =

1√
6

(1, 1, 1, 1, 1, 1)T and β3 = 1√
3+3c2

(1, 1, 1, c, c, c)T, where c
ranges from 0 to 0.2 with an increment of 0.02 to evaluate
the power of the test. Under the null hypothesis H0 : β34 =
β35 = β36 = 0, the statistic χ2

W approximately follows the chi-
square distribution with three degrees of freedom (DF) as given
in Section 4.2 . The left panel of Figure 3 displays the power
function of the test χ2

W at significance level 0.05 versus the c val-
ues for n = 200 and 500 based on 500 simulation replications.
At c = 0, that is, the null hypothesis H0 is true, the empirical
sizes are 0.060 for n = 200 and 0.054 for n = 500, respectively,
which are close to the nominal Type I error 0.05. It is easy to
visualize that the empirical size rises up to 1 as the value of c
increases, and the rate of rising-up becomes faster in the case
with a larger sample size. These results demonstrate that the
proposed GLR test performs well and serves as a reasonable
approach to identify significant components in Z interacting
with Xl .

In addition, we examine the performance of the GLR test
statistic TSBLL,l given in (18) to identify the functional form
of interactions. To proceed, in model (19), we set m3(u3) =
m∗

3(u3) − E{m∗
3(u3)} with

m∗
3 (u3) = 6u3 + λ {sin (πu3) + cos (2πu3 − 4π/3)} ,

where λ ranges from 0 to 1 with an increment of 0.2, and
the other two m function specifications remain the same. The
null hypothesis is H0 : m3 (u3) = θ0 + θ1u3, where θ0 and θ1

are two unknown constants. The null distribution of the GLR
statistic (18) is obtained by the bootstrap procedure as suggested
by Fan and Jiang (2007). The right panel of Figure 3 shows
the power function of the test statistic TSBLL,3 at significance
level 0.05 versus the λ values for n = 200 and 500 over 500
simulation replications. Once again, the empirical size is close

Table 2. The bias (×10−2) of the estimators for β1 = (β11, β12, β13)T, β2 = (β21, β22, β23)T, and β3 = (β31, β32, β33)T for n = 200, 500, 1000

n β11 β12 β13 β21 β22 β23 β31 β32 β33

200 −0.4221 −0.1225 −0.1880 −0.0205 −0.1714 0.1360 −0.0881 −0.4686 0.3328
500 −0.1615 −0.0415 −0.0586 −0.0251 0.0559 0.1043 −0.0922 0.0371 −0.0328

1000 0.0126 −0.0953 −0.0059 −0.0342 0.0126 0.0405 −0.0291 0.0152 −0.0395
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Table 3. The average asymptotic standard error (ASE) (×10−2) and empirical standard error (ESE) (×10−2) of the estimators for
β1 = (β11, β12, β13)T, β2 = (β21, β22, β23)T, and β3 = (β31, β32, β33)T for n = 200, 500, 1000

n β11 β12 β13 β21 β22 β23 β31 β32 β33

200 ASE 4.4918 5.6051 3.0709 1.3448 2.0765 2.3631 2.5399 1.9011 2.4355
ESE 5.1865 6.6102 3.3413 1.4157 2.2314 2.7094 3.5299 2.0633 3.0228

500 ASE 2.7761 3.5360 1.8952 0.8011 1.2421 1.4157 1.5095 1.1144 1.4494
ESE 2.7910 3.6135 1.8993 0.8295 1.2408 1.4804 1.4906 1.1302 1.4703

1000 ASE 1.9397 2.5041 1.3259 0.5534 0.8544 0.9850 1.0439 0.7677 0.9877
ESE 1.9432 2.5582 1.3224 0.5412 0.8540 0.9810 1.0363 0.7788 1.0220

to the nominal level 0.05, and the power escalates to 1 as the λ

value deviates further from zero.
In summary, our proposed PLSE and SBLL estimators and

the Wald and GLR tests perform satisfactorily in the simulation
settings considered. It is worth pointing out that our proposed es-
timation procedure is computationally fast. The aforementioned
simulation experiments are run in R software on an ordinary
Macbook Pro with 2 GHz Intel Core, and the average opera-
tion time per dataset is 1.375, 2.429, and 4.068 s for sample
size n = 200, 500, 1000, respectively, including the total run-
ning time of generating a dataset and computing both the PLSE
of loading parameters β l , l = 1, 2, 3, and the SBLL estimation
of nonparametric functions ml (·), l = 1, 2, 3.

7. APPLICATION

This section presents the analysis of child growth data in-
troduced in Section 1. Through data validation, we end up 214
children for the data analysis. The response variable Y is log-
weight at current age, and Z =(Z1, . . . , Z8)T consists of eight
log-transformed measures of EDC agents from mother’s blood
samples during pregnancy. Covariates of interest include inter-
cept (X1 = 1), gender (X2 = 0 for boy, 1 for girl), age (X3, yrs),
and child’s weight at age 4 (X4). To answer the three questions
given in Section 1, we propose the following form:

Y =
4∑

l=1

ml

(
ZTβ l

)
Xl + ε, (20)

where ml (·) are unknown smooth functions and β l =
(βl1, . . . , βl8)T are unknown loading parameters for l =
1, . . . , 4. We normalize all variables in the analysis. Let β̃ l =
(β̃l1, . . . , β̃l8)T be the PLSE under the normalized values of Z,
and the resulting estimator of βlk in the original scale is given
by β̂lk = β̃lk×SD(Zk), where SD(Zk) is the sample standard
deviation of variable Zk , for k = 1, . . . , 8, l = 1, . . . , 4.

The initial values of the parameters are generated by the steps
described in Section 5.1. In our analysis, the number of inte-
rior knots and the bandwidth are chosen based on the criteria

Table 4. The MISE values for the two-step SBLL estimator m̂SBLL,l

and the oracle estimators m̃LL,l (·) for l = 1, 2, 3

n m̂SBLL,1 m̃LL,1 m̂SBLL,2 m̃LL,2 m̂SBLL,3 m̃LL,3

200 0.1627 0.1138 0.0980 0.0755 0.2031 0.1426
500 0.0698 0.0605 0.0426 0.0373 0.0471 0.0436

1000 0.0407 0.0367 0.0210 0.0185 0.0237 0.0232

discussed in Section 5.2. Fitting model (20) by the proposed
methodology, we obtain the estimates (EST) of β l , 1 ≤ l ≤ 4,
their lower bound (LB) and upper bound (UB) of 95% confi-
dence intervals (CI) with the standard errors calculated accord-
ing to (15), as well as the p-values for testing significance of
each EDC component. Table 5 lists the results.

Table 5. The estimates (EST), lower bound (LB), and upper bound
(UB) of 95% confidence intervals of βl , and the p-values for testing

significance of each component in βl in model 20

EST LB UB p-value

X1 = intercept
β1 Z1 0.415 0.197 0.632 < 0.001

Z2 0.008 −0.108 0.123 0.895
Z3 −0.081 −0.321 0.159 0.507
Z4 0.379 0.229 0.529 < 0.001
Z5 0.432 0.271 0.593 < 0.001
Z6 < 0.000 −0.140 0.140 0.998
Z7 −0.730 −0.837 −0.624 −0.001
Z8 0.0200 −0.196 0.236 0.856

X2 = gender
β2 Z1 0.132 0.096 0.168 < 0.001

Z2 −0.038 −0.046 −0.031 < 0.001
Z3 −0.540 −0.566 −0.515 < 0.001
Z4 0.157 0.129 0.186 < 0.001
Z5 0.179 0.141 0.217 < 0.001
Z6 −0.398 −0.412 −0.385 < 0.001
Z7 0.759 0.721 0.796 < 0.001
Z8 0.198 0.181 0.216 < 0.001

X3 = age (yrs)
β3 Z1 0.147 −0.057 0.351 0.159

Z2 0.154 0.082 0.227 < 0.001
Z3 0.225 0.023 0.427 0.029
Z4 −0.080 −0.240 0.079 0.325
Z5 −0.307 −0.459 −0.156 < 0.001
Z6 −0.615 −0.715 −0.515 < 0.001
Z7 0.480 0.328 0.633 < 0.001
Z8 −0.575 −0.764 −0.385 < 0.001

X4 =weight at age 4
β4 Z1 0.042 −0.206 0.290 0.740

Z2 −0.121 −0.236 −0.005 0.040
Z3 0.054 −0.479 0.587 0.842
Z4 0.0532 −0.157 0.264 0.621
Z5 −0.312 −0.661 0.037 0.080
Z6 −0.317 −0.540 −0.095 0.005
Z7 0.846 0.681 1.012 < 0.001
Z8 −0.444 −0.680 −0.209 < 0.001
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Figure 3. Plots of the Wald test statistic χ 2
W (left panel) and the GLR test statistic TSBLL,3 (right panel) at significance level 0.05 for n = 200

(dashed line) and n = 500 (solid line).

Statistical significance level α = 0.05 is used in the follow-
ing discussion. For X1 =intercept, four loading parameters of
Z1, Z4, Z5, and Z7 are significantly different from zero, sug-
gesting that these four EDCs have significant main effects. For
X2 = gender, all of the eight EDCs are responsible for the alter-
ation in the effect of gender. For X3 =age, its effect is modified
by a mixture of six EDCs, including Z2, Z3, Z5, Z6, Z7, and Z8.
For X4 = weight at age 4, a mixture of four EDCs, Z2, Z6, Z7,

and Z8, alters the association between weight at current age and
weight at age 4. In Table 5, the estimated loading coefficients
appear to be very different in different indices implying that
effects (or partial associations) of covariates Xl are modified by
different configurations of EDC agents. This finding provides
the answer to the question of which EDC agents are impor-
tant, which however cannot be provided by the SICM under the
assumption of a common vector β in all indices.

To achieve model simplicity, we further conduct the Wald
chi-square test described in Section 4.2 to identify significant
subsets of β l , l = 1, 2, 3, 4. For β1, we consider H0 : β12 =
β13 = β16 = β18 = 0, and obtain the p-value 0.977, implying
that the set of four components (Z2, Z3, Z6, Z8) has no main
effects. For β3, we consider H0 : β11 = β14 = 0, and obtain the
p-value 0.089, so EDC agents Z1 and Z4 are not contributing
to the modification on the effect of age. For β4, we consider
H0 : β11 = β13 = β14 = β15 = 0, and obtain the p-value 0.042;
then, we consider H0 : β11 = β13 = β14 = 0, and obtain the p-
value 0.957. This means that the set of (Z1, Z3, Z4) has no
significant impact on the altered effect of weight at age 4.

Summarizing the previous testing results, we reach a simpli-
fied model of the form:

Y =
4∑

l=1

ml

(
ZT

l β l

)
Xl + ε, (21)

where Z1 = (Z1, Z4, Z5, Z7)T, Z2 = (Z1, . . . , Z8)T, Z3 =
(Z2, Z3, Z5, Z6, Z7, Z8)T, and Z4 = (Z2, Z5, Z6, Z7, Z8)T.

Now we are ready to compare the full model (20) (FULL),
the reduced model (21) (REDUCED) , and the partially linear
single-index model (PLSIM)

Y = m1(ZTβ) + α2X2 + α3X3 + α4X4 + ε, (22)

the single-index coefficient model (SICM)

Y =
4∑

l=1

ml(ZTβ)Xl + ε, (23)

and the varying coefficient model (VCM)

Y =
4∑

l=1

ml(U
PCA)Xl + ε, (24)

where UPCA is the first principle component obtained by a prin-
ciple component analysis (PCA) on Z. As pointed out in Section
2, the PLSIM, SICM, and VCM are special cases of the VICM,
so that we can use the proposed PLSE to estimate the parameters
in model (21), the PLSIM (22), and the SICM (21) with minor
modifications. We perform the leave-one-out cross-validations
for models (20)–(24), as well as two linear models by assuming
constant and linear functions for ml(·), respectively, with the es-
timated prediction error given as CVE= n−1 ∑n

i=1(Yi − Ŷ
−(i)
i )2,

where Ŷ
(−i)
i is the predicted value for the ith response using the

remaining (n − 1) observations.
Table 6 lists the estimated cross-validation prediction errors

(CVE) and the relative prediction error (RCVE) to the small-
est obtained by the reduced model (21). The next to the reduced
model is the full VICM. It is interesting to observe that the SICM
has 23.03% higher prediction error than the PLSIM, which fur-
ther demonstrates that imposing common loading parameters
fails to capture the nonlinear interactions directed by the EDCs.
The fact that the VCM has a larger CV error than the SICM and
PLSIM shows that the PCA method of allocating the loading
weights for dimension reduction works poorly. Moreover, not-
ing that the linear model with linear interactions has a larger CV
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Table 6. Cross-validation errors (CVE) and the relative CVE (RCVE) to the smallest CVE for the full VICM (20) (FULL), reduced VICM ( 21)
(REDUCED), PLSIM (22), SICM ( 23), VCM (24), and two linear models with constant (CONSTANT) and linear (LINEAR) functions for

ml (·)

REDUCED FULL PLSIM SICM VCM CONSTANT LINEAR

CVE 0.0152 0.0168 0.0207 0.0242 0.0284 0.0230 0.0297
RCVE 100% 110.53% 136.18% 159.21% 186.84% 151.32% 195.39%

error than the linear model without interactions, we conclude
that in this data analysis, the classical linear interactions cannot
properly capture the interplay between Z and X. Comparing
the CV, error of the reduced VICM (REDUCED) with the error
of the existing models, PLSIM, SICM, and VCM, we see that
the proposed VICM improves the model prediction by 36.18%,
59.21%, and 86.84%, respectively.

To further examine if the outperformance of the VICM
in the prediction observed in Table 6 is beyond the sam-
pling errors, we take the following procedure based on dif-
ference of the CVE values. For illustration, let us focus on
the comparison between the full VICM and the SICM. Denote
the difference by CVEVICM−CVESICM = n−1 ∑n

i=1 Di , with
Di = (Yi − Ŷ

VICM,(−i)
i )2 − (Yi − Ŷ

SICM,(−i)
i )2, where CVEVICM

and CVESICM are the resulting CVE values, and Ŷ
VICM,(−i)
i and

Ŷ
SICM,(−i)
i are the predicted values for the ith response obtained

from the VICM and SICM, respectively. Since Di and Di ′ are
correlated, we take a deassociation transformation by letting
D̃ = (

D̃1, . . . , D̃n

)T = �−1/2D, where � is the covariance ma-
trix of D, which is estimated by the bootstrap resampling method
with 500 replications. Obviously, var

(
D̃
) = In×n. Our calcula-

tions give n−1 ∑n
i=1 D̃i = −0.102 with the standard error 0.033.

This leads to the p-value = 0.002 by the Z-test, and the p-value =
0.007 by the Wilcoxon rank test. Since both p-values are smaller
than 0.05, the cross-validation prediction errors between VICM
and SICM are significantly different.

To examine if there exists, and if so in which form, inter-
actions between the EDCs and X, we conduct the GLR test
proposed in Section 4.3. We obtain the p-values of the GLR
test statistics all less than 0.05 in the following hypothesis tests.
First, H0 : ml (·) is constant (or the absence of interaction) ver-
sus Ha : ml (·) is not constant. Second, H0 : ml (·) is linear (or
the existence of linear interactions) versus Ha : ml (·) is nonlin-
ear. These results suggest that there exist strong nonlinear main
effects of exposure to a mixture of EDCs, and more importantly
that exposure to mixture of these EDCs alters the effects of gen-
der, age, and weight at age 4. Such findings are clearly supported
by the graphic evidence in Figure 4.

Figure 4 displays the estimated curves obtained by the two-
step SBLL method (middle solid line), the one-step spline es-
timate given in (14) (middle dashed line), and their 95% point-
wise confidence intervals (lower and upper lines) of ml (·) , 1 ≤
l ≤ 4. In addition, the estimates m̂θ,l = θ̂l0 (horizontal dashed
lines) under the CONSTANT model and m̂θ,l = âl + b̂lUl

(
β̂ l

)
(straight thin lines) under the LINEAR model are included for
comparison.

The first plot for the intercept shows that the estimated func-
tion m̂1 (·) is a decreasing function of index ZTβ̂1, which indi-
cates that exposure to the combination of EDCs has a negative

effect on child’s weight growth. The plot for covariate gender
shows that the modification on the association of weight at cur-
rent age with gender altered by the mixture of the EDCs is
nonlinear. The plot for covariate age shows a decreasing trend,
suggesting the velocity of weight growth becomes weaker as
the exposure to the mixture of EDCs increases. The plot for
covariate weight at age 4 again demonstrates that the effect of
weight at age 4 is nonlinearly modified. These findings are of
scientific importance and corroborative with the GLR test re-
sults. The two parametric models (CONSTANT and LINEAR)
unfortunately missed the opportunity to capture those nonlin-
ear features. Moreover, we can observe that the one-step spline
method and the two-step SBLL method yield similar estimated
curves for the nonparametric functions. Our collaborators are
amazed by the novelty and power of these estimated nonlinear
modifications to child’s growth profiles and seeking for further
scientific data to confirm these findings.

8. DISCUSSION

In this article, we propose a new class of semiparametric mod-
els with varying index coefficients, which allows us to study
nonlinear interactive effects that are of scientific importance in
the understanding of the response–covariate relationship. We
demonstrate that regression coefficient of a covariate can be
altered or directed by a nonlinear function of multiple other co-
variates. The proposed modeling framework gives rise to a rich
class of regression models, including many popular semipara-
metric models as special cases. Using the least squares estima-
tion approach, we develop a profile estimation procedure that is
both conceptually simple and computationally efficient, and the
resulting estimators are consistent and asymptotically normal.

We are currently involved in multiple collaborative projects
studying effects of mother’s and/or child’s exposures to environ-
mental pollutants (e.g., pesticides, BPA, and phthalates as well
as heavy metals) on neurodevelopment of children in China
and the somatic growth of children in the USA. As pointed
by our science collaborators, being able to understand the dis-
crepant interactive roles played by a Z variable with different X
variables is a great scientific innovation, which has never been
possibly done in the currently available statistical toolboxes.
Based on our experience on the child growth data analysis, we
are strongly encouraged by the flexibility of our VICM model,
which provides a comprehensive way to understand interactions
between environmental exposures and physiological variables
in the study of human growth and diseases.

Our future work will be focused on the extension of the pro-
posed VICM model for longitudinal data as well as on discrete or
categorical response variables along the line of quasi-likelihood
estimation inference. Since the proposed model may involve
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Figure 4. Plots of the SBLL estimator (middle solid line), the one-step spline estimator (middle dashed line), and the 95% pointwise confidence
intervals (lower and upper lines) of ml (·), 1 ≤ l ≤ 4, as well as the estimates m̂θ ,l = θ̂l0 (horizontal dashed lines) and m̂θ,l = θ̂l1 + θ̂l2Ul(β̂ l)
(straight thin lines).

a large number of parameters (e.g., loading coefficients) given
that each coefficient function depends on different loading pa-
rameters, variable selection procedures via regularization will
be investigated as future work to achieve model sparsity. Also
a user-friendly R package for the implementation of the VICM
in this article will be made available to the public.

APPENDIX

A.1 Assumptions

For positive numbers an and bn, let an 
 bn denote that
limn→∞an/bn = c, where c is some nonzero constant. For any

vector ζ = (ζ1, . . . , ζs)T ∈ Rs , denote ‖ζ‖∞ = max1≤l≤s |ζl | . For
any symmetric matrix As×s , denote its Lr norm as ‖A‖r =
maxζ∈s,ζ �=0 ‖Aζ‖r‖ζ‖−1

r . For any matrix A =(Aij )s,ti=1,j=1, denote
‖A‖∞ = max1≤i≤s

∑t

j=1 |Aij |.
We denote the space of rth order smooth function as C(r)[0, 1] =

{ϕ|ϕ(r) ∈ C[0, 1]}. Let C0,1(Xw) be the space of Lipschitz continuous
function on Xw , that is,

C0,1 (Xw) =
{

ϕ : ‖ϕ‖0,1 = sup
w �=w′,w,w′∈Xw

|ϕ (w) − ϕ (w′)|
|w − w′| < ∞

}
,

in which ‖ϕ‖0,1 is the C0,1-norm of ϕ. To establish the consistency
and asymptotic normality for the proposed estimators, we need the
following regularity conditions:
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(C1) For every 1 ≤ l ≤ d , the density function fUl(β l) (·) of random

variable Ul

(
β l

) = ZTβ l is bounded away from 0 on Sw and
fUl(β l) (·) ∈ C0,1 (Sw) for β l in the neighborhood of β0

l , where

Sw = {
ZTβ l , Z ∈ S

}
and S is a compact support set of Z.

Without loss of generality, we assume Sw = [0, 1].
(C2) For every 1 ≤ l ≤ d , the nonparametric function ml ∈

C(r) [0, 1] for some integer r ≥ 2, and the spline order q sat-
isfies q ≥ r .

(C3) The conditional variance function σ 2 (z, x) is measurable and
bounded above from Cσ , for some constant 0 < Cσ < ∞.

(C4) There exist constants 0 < cQ ≤ CQ < ∞, such that cQ ≤
Q (z) = E

(
XXT |Z = z

) ≤ CQ for all z ∈S.
(C5) For 1 ≤ k ≤ p and 1 ≤ l ≤ d , g0

l,k ∈ C(1) [0, 1].
(C6) The kernel function K is a symmetric probability density,

supported on [−1, 1] and K ∈ C0,1 [−1, 1].
(C7) The functions u3K (u) and u3K ′ (u) are bounded and∫

u4K (u) du < ∞. E |ε|4 < ∞.

It is noteworthy that Condition (C1) is the same as Condition (d) in
Cui, Härdle, and Zhu (2011). Condition (C2) is given in Theorem 2.1 of
Zhou, Shen, and Wolfe (1998). Condition (C3) is the same as Condition
(C5) of Xue and Yang (2006). Condition (C4) is given in Condition
(C2) of Xia and Härdle (2006) and Condition (C5) of Xue and Liang
(2010). Condition (C5) gives the smoothness condition of functions
g0

l,k defined in (10). Condition (C6) is a common assumption on the
kernel function in the nonparametric smoothing literature. Condition
(C7) is the same as Conditions (A3) and (A4) in Fan, Zhang, and Zhang
(2001), which is used for obtaining the asymptotic distribution of the
GLR statistic.

A.2 Proofs of Theorems 1 and 2

Denote Y = (Y1, . . . , Yn)T and m ={m(Z1, X1, β
0),

. . . , m(Zn, Xn, β
0)}T. By (5), λ̂(β) can be decomposed into

λ̂(β) = λ̂m(β) + λ̂e(β), where

λ̂m(β) = {
D(β)TD(β)

}−1
D(β)Tm,

λ̂e(β) = {
D(β)TD(β)

}−1
D(β)T(Y − m). (A.1)

We first present three lemmas and one proposition which will be used
in the proofs of Theorems 1 and 2. The detailed proofs of the lemmas
are given in the online supplementary materials. Lemma A.2 is used
for Lemma A.3, which is needed in the proof of Theorem 1. Define

V(β) =E
(
Di(β)Di(β)T

)
, V̂(β) =n−1D(β)TD(β). (A.2)

Lemma A.1. Under Conditions (C1) and (C4), for any vector α =
{(αT

1 , . . . , αT
d )T}dJn×1 with αl = (αs,l : 1 ≤ s ≤ Jn)T, there are con-

stants 0 < cV < CV < ∞, such that ∀β ∈ � and for large enough n,

cV J −1
n αTα ≤ αTV(β)α ≤ CV J −1

n αTα, C−1
V Jnα

Tα ≤ αTV(β)−1α

≤ c−1
V Jnα

Tα. (A.3)

sup
1≤s,s′≤Jn,1≤l≤d

∣∣∣∣∣n−1
n∑

i=1

Di,sl(β l)Di,s′l(β l) − E
{
Di,sl(β l)Di,s′l(β l)

}∣∣∣∣∣
= Oa.s.

(√
J −1

n n−1 log n

)
, (A.4)

sup
1≤s,s′≤Jn,l �=l′

∣∣∣∣∣n−1
n∑

i=1

Di,sl(β l)Di,s′l′ (β l) − E
{
Di,sl(β l)Di,s′l′ (β l)

}∣∣∣∣∣
= Oa.s.

(
J −1

n

√
n−1 log n

)
. (A.5)

By Lemma A.1, one has with probability approaching 1, for large
enough n, ∀β ∈ �,

cV J −1
n αTα ≤ αTV̂(β)α ≤ CV J −1

n αTα, C−1
V Jnα

Tα ≤ αTV̂(β)−1α

≤ c−1
V Jnα

Tα (A.6)

for any vector α = {(αT
1 , . . . ,αT

d )T}dJn×1 with αl = (αs,l : 1 ≤ s ≤
Jn)T. By (A.3) and Demko (1986), it can be proved that ∀β ∈ �

and for large enough n, there is a constant 0 < C∗
V < ∞ such that

‖V(β)−1‖∞≤C∗
V Jn. Following this result, (A.4) and (A.5), it can be

proved that ∀β ∈ �, ∥∥V̂(β)−1
∥∥

∞ =Op (Jn) . (A.7)

Let E = Y − m = (ε1, . . . , εn)T.

Lemma A.2. Under Conditions (C1), (C3), and (C4), ∀β ∈ �,∥∥n−1D(β)TE
∥∥

2
= Op

(
n−1/2

)
.

Lemma A.3. Under Conditions (C1)–(C5), and nN−4 → ∞ and
nN−2r−2 → 0, as n → ∞,

∂Ln

(
β0) /∂β−1 = −

n∑
i=1

{
Yi −

d∑
l=1

ml

(
ZT

i β
0
l

)
Xil

}
× [

ṁl(Uil(β
0
l ), β0)XilJT

l Z̃i

]d
l=1

+ op

(
n1/2

)
.

The proposition presented next gives the convergence rate of the
estimators m̂l(ul, β

0) and ̂̇ml(ul, β
0) for the nonparametric function

ml (ul) and its first derivative ṁl (ul), for l = 1, . . . , d.

Proposition A.1. Under Conditions (C1)–(C4), and N → ∞
and nN−1 → ∞, as n → ∞ one has (i) |m̂l(ul, β

0) − ml(ul)| =
Op(n−1/2N 1/2 + N−r ) uniformly for any ul ∈ [0, 1]; and (ii) un-
der N → ∞ and nN−3 → ∞, as n → ∞, |̂̇ml(ul, β

0) − ṁl(ul)| =
Op(n−1/2N 3/2 + N−r+1) uniformly for any ul ∈ [0, 1].

Proof. Let λ̂e(β) = {̂
λ1,e(β)T, . . . , λ̂d,e(β)T

}T
, where λ̂l,e(β) ={̂

λs,l,e(β) : 1 ≤ s ≤ Jn

}T
and λ̂m(β) = {̂

λ1,m(β)T, . . . , λ̂d,m(β)T
}T

,

where λ̂l,m(β) = {̂
λs,l,m(β) : 1 ≤ s ≤ Jn

}T
. Thus

m̂l(ul, β) = m̂l,e(ul, β) + m̂l,m(ul, β), (A.8)

where

m̂l,e(ul, β) = Br (ul)
T λ̂l,e(β) and m̂l,m(ul, β) = Br (ul)

Tλ̂l,m(β).

(A.9)

According to the result on p. 149 of de Boor (2001), for ml satisfying
Condition (C2), there is a function m0

l (ul) = Br (ul)Tλl ∈ Gn, such that

sup
ul∈[0,1]

∣∣m0
l (ul) − ml(ul)

∣∣ = O
(
J −r

n

)
. (A.10)

Let Br (u) =
⎡⎣ Br (u1)T · · · 0

.

.

.
. . .

.

.

.
0 · · · Br (ud )T

⎤⎦
d×Jnd

, where u = (u1, . . . ud )T. Thus

m̂l,e(ul, β
0) = 1T

l Br (u)̂λe(β
0) and m̂l,m(ul, β

0) = 1T
l Br (u)̂λm(β0),

where 1l is the d × 1 vector with the lth element as “1” and other
elements as “0”. Let λ = {λT

1 , . . . , λd
T}T. By Berstein’s inequality

in Bosq (1998), it can be proved that ‖n−1D(β0)T1n‖∞ = Op(J −1
n ).

Thus, by (A.6), (A.7), and (A.10), for every ul ∈ [0, 1],∣∣m̂l,m(ul, β
0) − m0

l (ul)
∣∣

= ∣∣n−11T
l Br (u) V̂(β0)−1D(β0)T

{
m − D(β0)λ

}∣∣
≤

∣∣∣∣∣
Jn∑

s=1

Bs,r (ul)

∣∣∣∣∣ ∥∥V̂(β)−1
∥∥

∞
∥∥n−1D(β0)T1n

∥∥
∞ O

(
J −r

n

)
= Op (Jn) Op

(
J −1

n

)
O
(
J −r

n

) = Op

(
J −r

n

)
. (A.11)
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Moreover, for every ul ∈ [0, 1], by (A.1), ( A.6), and Condition (C3),
with probability approaching 1,

E
{
m̂l,e(ul, β

0) |X, Z
}2

= n−21T
l Br (u) V̂(β0)−1D(β0)TE

(
EET |X, Z

)
D(β0)V̂(β0)−1

× Br (u)T 1l

≤ n−1Cσ 1T
l Br (u) V̂(β0)−1Br (u)T 1l

≤ n−1Cσ

∥∥Br (u)T 1l

∥∥2

2

∥∥V̂(β0)−1
∥∥

2
= O (Jn/n) . (A.12)

Thus, by the weak law of large numbers, for every ul ∈ [0, 1],
m̂l,e(ul, β

0) = Op(J 1/2
n n−1/2). Therefore, by (A.10), (A.11),

and (A.12), |m̂l(ul, β
0) − ml(ul)| = Op(J 1/2

n n−1/2 + J −r
n ),

uniformly for every ul ∈ [0, 1]. Results in (i) of Proposi-
tion A.1 are proved. Similarly, ̂̇ml(ul, β

0) can be written aŝ̇ml,e(ul, β
0) + ̂̇ml,m(ul, β

0), where ̂̇ml,e(ul, β
0) = Br−1(ul)TD1λ̂l,e(β

0)
and ̂̇ml,m(ul,β

0) = Br−1(ul)TD1λ̂l,m(β0). It is easy to prove that
‖D1‖∞ = O(Jn), where D1 is defined in (7). Following the similar
reasoning as the proof for m̂l(ul,β

0), one can prove that̂̇ml(ul,β
0) − ṁl(ul) = Op

(
J 3/2

n n−1/2 + J −r+1
n

)
,

uniformly for every ul ∈ [0, 1]. Thus, results in (ii) of Proposition A.1
are proved. �

Proof of Theorem 1. Under the conditions of Theorem 1, we follow
similar arguments as presented in Ichimura (1993) to show that β̂−1 is
a root-n consistent estimator of β0

−1, and thus the proof is omitted. By
Lemma A.3, it is straightforward to prove that

∂Ln(β0)/∂β−1∂βT
−1 =

n∑
i=1

[[
ṁl(Uil(β

0
l ), β0)XilJT

l Z̃i

]d
l=1

]⊗2
+ op (n) .

By Taylor expansion, Lemma A.3, and the previous result,

β̂−1 − β0
−1 = − {

∂Ln(β0)/∂β−1∂βT
−1

}−1 {∂Ln(β0)/∂β−1}{1 + op(1)}

=
[
E
[{

ṁl(Uil(β
0
l ), β0)XilJT

l Z̃i

}d

l=1

]⊗2
]−1

× n−1
n∑

i=1

εi

[
ṁl(Uil(β

0
l ),β0)XilJT

l Z̃i

]d
l=1

+ op

(
n−1/2

)
.

Thus, Theorem 1 follows from the previous results and
Lindeberg–Feller central limit theorem. �

Proof of Theorem 2. Since ‖β̂ − β0‖2 = Op(n−1/2), Theorem 2 fol-
lows from this result and Proposition A.1. �
A.3 Proofs of Theorems 3 and 4

Following the same techniques employed in Fan and Zhang (2008), it
can be proved that the oracle estimator m̃LL,1(u1, β

0) has the asymptotic
distribution and convergence rate given in Theorem 3. The detailed
proof is thus omitted. Since ‖β̂ − β0‖2 = Op(n−1/2), Theorem 3 is
proved by Slutsky’s theorem. We will focus on the proof of Theorem
4.

According to (17) and (A.8),

m̂SBLL,1(u1,β
0) − m̃LL,1

(
u1, β

0)
= − (1, 0)

{
C
(
u1, β

0
1

)T
W
(
u1, β

0
1

)
C
(
u1,β

0
1

)}−1

× C
(
u1, β

0
1

)T
W
(
u1, β

0
1

)
×
[

d∑
l=2

{
m̂l(Uil

(
β0) ,β0) − ml (Uil)

}
Xil

]n

i=1

= − (1, 0)
{
n−1C

(
u1, β

0
1

)T
W
(
u1, β

0
1

)
C
(
u1, β

0
1

)}−1

×
{(

�v1

(
u1,β

0)
�v2

(
u1,β

0) )+
(

�b1

(
u1, β

0)
�b2

(
u1, β

0) )} ,

where

�v1(u1, β
0) = n−1

n∑
i=1

d∑
l=2

Xi1XilKh1

(
Ui1(β0

1) − u1

)
m̂l,ε(Uil, β

0),

�v2(u1, β
0) = n−1

n∑
i=1

d∑
l=2

{(
Ui1(β0

1) − u1

)
/h1

}
Xi1XilKh1

× (Ui1(β0
1) − u1)m̂l,ε(Uil, β

0),

�b1(u1, β
0) = n−1

n∑
i=1

d∑
l=2

Xi1XilKh1

(
Ui1(β0

1) − u1

)
× {

m̂l,m(Uil,β
0) − ml (Uil)

}
,

�b2(u1, β
0) = n−1

n∑
i=1

d∑
l=2

{(
Ui1(β0

1) − u1

)
/h1

}
Xi1Xil

× Kh1 (Ui1(β0
1) − u1)

{
m̂l,m(Uil, β

0) − ml (Uil)
}
.

In the following, we present two lemmas which will be used in the
proofs of Theorem 4. The detailed proofs are given in the online,
supplementary materials.

Lemma A.4. Under Conditions (C1), (C3), (C4) and (C6), and N →
∞ and nN−1 → ∞, as n → ∞, one has supu1∈[0,1] |�v1(u1, β

0)| +
supu1∈[0,1] |�v2(u1, β

0)| = Op(n−1/2).

Lemma A.5. Under Conditions (C1), (C4), and (C6), and
N → ∞, as n → ∞, one has supu1∈[0,1]

∣∣�b1

(
u1, β

0)∣∣+
supu1∈[0,1]

∣∣�b2

(
u1, β

0)∣∣ = Op

(
J −r

n

)
.

Proof of Theorem 4. It is straightforward to prove that

sup
u1∈[0,1]

‖{n−1C(u1, β
0
1)TW(u1, β

0
1)C(u1, β

0
1)}−1‖2 ≤ C

for some constants 0 < C < ∞. Thus, by Lemmas A.4 and A.5, one
has

sup
u1∈[0,1]

|m̂SBLL,1(u1, β
0) − m̃LL,1(u1, β

0)| = Op(n−1/2 + J −r
n ).

Since ‖β̂ − β0‖2 = Op(n−1/2), supu1∈[0,1] |m̂SBLL,1(u1, β̂)
− m̃LL,1(u1, β̂)| = Op(n−1/2 + J −r

n ). Therefore, under the as-
sumption that nN−5r/2 = o(1) and n−1N = o(1), Theorem 4 is
proved. �

SUPPLEMENTARY MATERIALS

The online supplementary materials contain the procedure of
generating initial values in Section 5.1, estimation of optimal
bandwidth h1,opt, and additional proofs.

[Received March 2013. Revised February 2014.]
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