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Summary. Merging multiple datasets collected from studies with identical or similar scientific objectives is often undertaken
in practice to increase statistical power. This article concerns the development of an effective statistical method that enables to
merge multiple longitudinal datasets subject to various heterogeneous characteristics, such as different follow-up schedules and
study-specific missing covariates (e.g., covariates observed in some studies but missing in other studies). The presence of study-
specific missing covariates presents great statistical methodology challenge in data merging and analysis. We propose a joint
estimating function approach to addressing this challenge, in which a novel nonparametric estimating function constructed
via splines-based sieve approximation is utilized to bridge estimating equations from studies with missing covariates to
those with fully observed covariates. Under mild regularity conditions, we show that the proposed estimator is consistent
and asymptotically normal. We evaluate finite-sample performances of the proposed method through simulation studies. In
comparison to the conventional multiple imputation approach, our method exhibits smaller estimation bias. We provide an
illustrative data analysis using longitudinal cohorts collected in Mexico City to assess the effect of lead exposures on children’s
somatic growth.
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1. Introduction
Analyzing combined datasets collected from multiple simi-
lar studies has been popular in practice in order to achieve
greater power in statistical analysis. When parameters across
multiple study populations are common and thus can be esti-
mated using more observations from the merged datasets,
performances in both statistical estimation and inference can
be improved. In addition, combined data potentially provide
richer information to answer some questions that otherwise
may not be answered using data from each individual study.

Potentially increased power gained from data merging is
subject to additional complexities, one of which is missing
covariates considered in this article. Our work is motivated
by a cohort study involving multiple longitudinal cohorts
gathered in Mexico City (Afeiche et al., 2011). Our analy-
sis concerns two birth cohorts established by the same study
team from two hospitals in Mexico City, termed as cohort
B and cohort C throughout the article. Two types of lead
exposure recorded in the study include mother’s blood lead
concentration (PBL) and child’s cord blood lead concentra-
tion (CBL), where the former is fully recorded in both cohorts
but the latter is only fully measured in cohort C. One of
the primary objectives was to assess the association between
CBL and child’s somatic growth adjusting for other covariates
available. A key challenge in the analysis of merged data from
both cohorts pertains to the fact that CBL measurements in
cohort B are nearly completely missing and regression coef-

ficients (e.g., the effect of CBL) are different between two
cohorts.

Besides the study-specific missing covariates mentioned
above, inter-study heterogeneity is another issue often com-
plicating or even impairing the modeling strategy for multiple
longitudinal data. For instance, data collected from hospitals
located in urban areas might be more volatile than those col-
lected from hospitals located in rural areas because hospitals
in cities tend to have more diversified patient populations.
Similarly, multi-center clinical trials, even administrated by a
common protocol, may still vary in actual operations for data
collection, due, for example, to study coordinator’s personal
effort on retaining patient’s follow-up visits. Joint modeling
of mean and covariance (e.g., Leng et al., 2010) has been
discussed to account for covariance heterogeneity. However,
diagnostic tools for covariance models have been little con-
sidered in the literature and a mis-specified covariance model
can lead to incorrect statistical inference and misleading data
analysis. All of these, as a result, may offset the benefit of
estimation efficiency from merged data.

Wang et al. (2012) proposed a joint estimating approach
to assessing the validity of data merging and to analyz-
ing the merged longitudinal dataset. It is shown that their
approach is flexible to handle covariance heterogeneity (e.g.,
different within-subject correlations across cohorts) and pro-
vides proper control of type I error in hypothesis testing.
However, their method is limited only to the case of fully
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observed data and is not applicable to the aforementioned
study where measurements of CBL in cohort B are sub-
stantially missing. Multiple imputation (Little and Rubin,
2002) technique is a popular approach to handling missing
data. Kim (2011) proposed parametric fractional imputation,
which uses fractional weights to approximate the observed
likelihood. While the imputation approach may be a simple
and direct solution to the problem, such a strategy may fail
to work properly when the parameter of interest in missing
data is different from the one in observed data. Robins et al.
(1994), among others, developed various versions of inverse
probability weighted (IPW) estimators and augmented IPW
(AIPW) estimators to analyze incomplete longitudinal data.
So far, IPW, AIPW, and multiple imputation approaches have
been mainly developed for a single study. Applying them to
the analysis of combined data requires nontrivial statistical
work, especially when the merged dataset involves study-
specific missing covariates. Chen and Ibrahim (2006), Shi
et al. (2009), among others, proposed different approaches for
missing covariates in parametric regression, but these meth-
ods are all constructed under selection model (Little, 1993)
and thus are not able to be applied directly in our situation.

We propose a new estimating function approach to ana-
lyzing merged data from multiple studies with study-specific
missing covariates. The novelty of our method lies in the
idea of joining study-specific estimating functions, instead
of directly joining multiple datasets. In this way, we allow
great flexibility to accommodate different covariance struc-
tures across studies. Given that it is not feasible to evaluate
estimating functions of studies with missing covariates, inte-
grating these estimating functions with respect to missing
covariates is inevitable. The resulting estimating functions are
then evaluated nonparametrically without assuming specific
distributions on covariates. We show that if the study-specific
mean models are correctly specified in all individual studies,
then under Assumptions 1 and 2 in Section 2 our proposed
joint estimating functions are asymptotically unbiased, lead-
ing to valid estimation and inference.

Section 2 presents notation and models, followed by esti-
mating procedures in Section 3. In Section 4, we derive the
relevant asymptotic properties, and in Section 5 we discuss
implementations. After presenting simulation results in Sec-
tion 6, we illustrate our method by analyzing the motivating
data in Section 7. Section 8 contains some discussions, and
all technical details and extra simulations are included in the
Web Appendix.

2. Model

We consider datasets collected from K ≥ 2 longitudinal stud-
ies with nk number of subjects in study k, k = 1, . . . , K,
and the total number of subjects is n = ∑K

k=1
nk. Let Di ∈

{1, . . . , K} be the study indicator of subject i, and Yij be the
outcome measured for subject i at visit time j, j = 1, . . . , mDi

,
and mDi

denotes the number of visits in study Di for subject
i = 1, . . . , n. For the ease of exposition, we assume that sub-
jects in the same study have the same number of repeated
measurements in the rest of the article. Let Xij denote a
p-dimensional vector of covariates fully observed in all K

studies and let Zij denote a q-dimensional vector of covari-

ates completely observed only in study k ∈ So ⊂ {1, . . . , K}
and missing in study k ∈ Sm ⊂ {1, . . . , K}, where Sm ∪ So =
{1, . . . , K}. Correspondingly, we let no = ∑

l∈So
nl denote the

number of subjects in studies belonging to So. In our motivat-
ing example mentioned in the previous section, Zij represents
child’s cord blood lead exposure, which is missing in cohort
B, and Xij represents mother’s blood lead exposure and other
covariates which are fully observed for both cohorts. Suppose
that the mean of Yij, given all covariates Xij and Zij in study
k, satisfies the following model:

μk,ij = E(Yij | Xij, Zij, Di = k)

= h(XT
ijβ0,k + ZT

ijλ0,k), k = 1, . . . , K, (1)

where h(·) is a known link function and θ0,k = (βT
0,k, λ

T
0,k)

T

is the true regression parameter defined in a compact set
B ⊆ Rp+q. Here, we assume that the true parameters are fully
or partially shared across studies. The conditional variance
of Yij in study k takes the form: var(Yij | Xij, Zij, Di = k) =
φkv(μk,ij), where v(·) is a known variance function and φk is
the dispersion parameter.

The missing pattern in this article is similar to one sce-
nario studied by Little (1992) for merging studies with
missing covariates, but our case is more complex and more
challenging. Here, we consider different regression models
for longitudinal studies with missing covariates. Let Y i =
(Yi1, . . . , YimDi

)T , Xi = (Xi1, . . . ,XimDi
)T , and similarly Zi, i =

1, . . . , n. To borrow information from studies with fully
observed data, we rely on the following missing data mecha-
nism (Rubin, 1976; Little and Zhang, 2011):

Assumption 1. Di ⊥ Zi | Xi, for all i.

Assumption 1 implies that given fully observed Xi, the study
indicator Di is conditionally independent of missing covariates
Zi. This differs from the usual MAR assumption, Di ⊥ Zi |
(Xi, Y i). More detailed explanation about this discrepancy
can be found in the Web Appendix. Assumption 1 enables us
to develop feasible parameter estimation using the following
integral as a bridge for studies with missing Zi:

f (Y i | Xi, Di = k ∈ Sm)

=
∫

f (Y i, Zi | Xi, Di = k ∈ Sm)dZi

=
∫

fθ0,k
(Y i | Zi, Xi, Di = k ∈ Sm)f (Zi | Xi, Di ∈ So)dZi.

Assumption 1 and the usual MAR assumption do not
typically hold simultaneously unless Di ⊥ (Y i, Zi) | Xi or
(Di, Y i) ⊥ Zi | Xi. But with the mean model specification of
Y i | (Xi, Zi, Di) considered in (1), where the regression coef-
ficients are allowed to be different across different studies,
both Di ⊥ (Y i, Zi) | Xi and (Di, Y i) ⊥ Zi | Xi are incompatible.
Thus, Assumption 1, Di ⊥ Zi | Xi, is required in this article.

3. Estimation

We propose a quadratic inference function (QIF) approach
(Qu et al., 2000; Wang et al., 2012) to estimating all
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study-specific regression parameters θ0 = (θT
0,1, . . . , θ

T
0,K)T ,

where subject-level data from multiple studies are accessible.
A nonparametric sieve estimation is applied to estimate
the unknown function resulted from integration of inference
functions with respect to missing covariates. In the following,
we focus on an important scenario of Zi being fully missing
in study k ∈ Sm. The proposed method is also applicable
when Zi is partially missing (i.e., Zi being observed on
some subjects) in study k ∈ Sm as long as the missing data
mechanism Assumption 1 holds.

3.1. Conditional Moments

Firstly note that in model (1), it is not feasible to esti-
mate θ0,k for k ∈ Sm only using data of study k due to the
missingness of Zi. So we consider an induced model by inte-
grating the full conditional model (1) with respect to missing
covariates Zi. Precisely, let ηk(Xij, θk) denote the conditional
expectation of hk(Xij, Zij, θk) ≡ h(XT

ijβk + ZT
ijλk) with respect

to Zij|Xij in study k ∈ Sm. Suppose that the resulting mean
model ηk(Xij, θk) is a smooth function such that there exists a
unique θ0,k satisfying ηk(Xij, θ0,k) = E(Yij | Xij, Di = k). In this
case, Assumptions 1 and model (1) imply that

ηk(Xij, θ0,k) = E{hk(Xij, Zij, θ0,k) | Xij, Di = k ∈ Sm}
= E{hk(Xij, Zij, θ0,k) | Xij, Di ∈ So}.

This means that the mean model function ηk(·, θ0,k) can be

estimated by using data from studies in So. Similarly, the

conditional variance νk(Xij, θ0,k) of Yij conditioning on Xij in

study k ∈ Sm can be rewritten as follows:

νk(Xij, θ0,k) = Var(Yij | Xij, Di = k ∈ Sm)

= φkE[v{hk(Xij, Zij, θ0,k)} | Xij, Di = k ∈ Sm]

+ E{hk(Xij, Zij, θ0,k)
2|Xij, Di∈So}−{ηk(Xij, θ0,k)}2.

When Yij follows a normal distribution, νk(Xij, θ0,k) is φk +
Var(Zij | Xij, Di ∈ So)λ

2
0,k. When Yij is binary, νk(Xij, θ0,k) is

ηk(Xij, θ0,k){1 − ηk(Xij, θ0,k)}. In these two popular cases in
practice, νk(Xij, θ0,k), k ∈ Sm, can be estimated using data
from studies in So.

Since both ηk(·, ·) and θ0,k are unknown in ηk(Xij, θ0,k), we
cannot uniquely identify ηk(·, ·) and θ0,k unless extra restric-
tions are imposed. Ichimura (1993) refers to E(Yij | Xij, Di =
k) = ηk(Xij, θ0,k) as a single-index model. Thus, we postu-
late Assumption 2 similar to the identification condition in
single-index model (Ichimura, 1993; Carroll et al., 1998):

Assumption 2. (a) θl = 1 for some l, 1 ≤ l ≤ K(p + q);
and (b) ηk(Xij, θk) is differentiable and not constant on the
support of θk for k ∈ Sm.

Assumption 2 (a) restricts θk to be identified uniquely.
Assumption 2 (b) eliminates the case where ηk(Xij, θk) does
not have enough variability to estimate θ0,k. For example, sup-
pose E(Yi,j | Xi, Zi, Di = k) = βk,0 + βk,1Xi + λk,1Zi, for studies
k = 1, 2, where Zi is completely missing in study two. If
E(Zi | Xi) = 0, then η2(Xi, θ2) = β2,0 + β2,1Xi is a constant

on the support of λ2,1. Thus, λ2,1 cannot be identified. But
Assumption 2 precludes this scenario.

3.2. Estimation with Missing Covariates

For the ease of exposition, sometimes we suppress covari-
ates in the short-handed notation, for example, we denote
ηk,ij(θk) ≡ ηk(Xij, θk), hk,ij(θk) ≡ hk(Xij, Zij, θk), and νk,ij(θk) ≡
νk(Xij, θk) and so forth. The corresponding vectors for subject
i are denoted by ηk,i(θk), hk,i(θk), and νk,i(θk), respectively.
Following Newey (1994), we can show that our proposed
estimators of the regression coefficients are consistent and
asymptotically normal, as long as the plug-in estimator of
ηk,ij(θk) satisfies a convergence rate faster than n−1/4. This
rate is achievable when ηk,ij(θk) is sufficiently smooth in x,
which can be accomplished by the sieve least square method
(Newey, 1997). A sieve estimator of ηk,ij(θk), k ∈ Sm, takes the
form:

η̂k,ij(θk) ≡ η̂k(xij, θk) =
tnk∑
l=1

ak,l(θk)bl(xij) = b(xij)
T ak(θk),

where ak(θk) = {ak,1(θk), . . . , ak,tnk
(θk)}T is a vector of unknown

coefficients to be estimated, b(xij) = {b1(xij), . . . , btnk
(xij)}T

are basis functions, and the number of basis functions, tnk
,

increases along the increase of sample size n. Estimation of
ak(θk) is carried out by minimizing the following objective
function using all studies from So:

âk(θk) = arg min
ak(θk)

n∑
i=1

mDi∑
j=1

I[Di ∈ So]
{
hk(Xij, Zij, θk)

−b(Xij)
T ak(θk)

}2
, k ∈ Sm,

where I[A] is the indicator function for set A. For sub-
ject i in study Di = l, we define the following notation: an
ml × tnk

matrix W i = {b(Xi1), . . . , b(Ximl
)}T , a tnk

× ∑
l∈So

nlml

matrix UT = (WT
i )Di=l∈So

, and (
∑

l∈So
nlml)-dimensional vec-

tor H k(θk) = {hk,i(θk)
T }T

Di=l∈So
. Thus, we have âk(θk) =

(UT U)−1UT H k(θk), and moreover η̂k,i(θk) = W iâk(θk). Cor-
respondingly, the estimated ∂η̂k,i(θk)/∂θk is ∇θk

η̂k,i(θk) =
W i∇θk

âk(θk), where ∇af (a) denotes the gradient vector of
function f with respect to a.

Given estimated ηk,i(θk), we use the quadratic inference
function (QIF) to estimate the regression parameter θk, which
provides great flexibility to account for inter-study hetero-
geneities. Briefly, QIF begins with an expansion on the inverse
of a working correlation matrix for study k of the form:
R−1

k (αk) ≈ ∑sk

s=1
ρk,sMk,s, where ρk,1, . . . , ρk,sk are constants

possibly dependent on nuisance correlation parameter αk, and
Mk,1, . . . , Mk,sk are known basis matrices with elements 0 and
1 determined by the given working correlation matrix Rk(αk).
Refer to Wang et al. (2012) for more details.

Now denote the estimating function for subject i in study
k ∈ Sm by gk,i(θk, η̂k,i), which is expressed with an explicit
involvement of η̂k,i. The same treatment is given to other nota-
tion whenever applicable. The extended score vector ḡk(θk, η̂k)
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takes the form:

ḡk(θk, η̂k) = 1

nk

nk∑
i=1

gk,i(θk, η̂k,i)

def.= 1

nk

nk∑
i=1

{
gT

k,i,1(θk, η̂k,i), · · · , gT
k,i,sk

(θk, η̂k,i)
}T

,

where for s=1, . . . , sk, gk,i,s(θk, η̂k,i)=∇θk
η̂k,i(θk)

T V k,i,s(θk){Y i−
η̂k,i(θk)}, with V k,i,s(θk) = Ak,i

−1/2Mk,sAk,i
−1/2 and Ak,i =

diag{νk,i1(θk), . . . , νk,imk
(θk)}. Minimizing a quadratic function

Qk(θk, η̂k) = nkḡk(θk, η̂k)
T C−

k (θk, η̂k)ḡk(θk, η̂k), k ∈ Sm, we have

θ̂k = arg min
θk

Qk(θk, η̂k), (2)

where Ck(θk, η̂k) is given by Ck(θk, η̂k) =
1
nk

∑nk

i=1
gk,i(θk, η̂k,i)gk,i(θk, η̂k,i)

T . Note that as discussed

earlier, estimate for νk,ij(θk) is not needed in a linear model or
in a logistic model. Even if an estimate of νk,ij(θk) is needed
(e.g., in a log-linear model), the large sample properties in
Section 4 for θ̂k still hold, as long as it is a root-n consistent
estimator.

3.3. Joint Estimation with Complete and Incomplete
Datasets

An advantage of performing joint analysis of merged data is
to improve estimation efficiency on the regression coefficients
across studies (Wang et al., 2012). This property is expected
to prevail for our proposed method when some covariates
are not observed in some studies. Let Ml ⊂ {1, . . . , K}, l =
1, . . . , p + q, be the subset of studies within which the lth

covariate has a common effect size. The parameter space con-
strained by all Ml, l = 1, . . . , p + q, is denoted by � with
� = {(θT

1 , . . . , θT
K)T : θkl = θk′l for ∀ k �= k′ ∈ Ml, l = 1, . . . , p +

q} representing the subspace of parameters restricted under all
conditions of common regression coefficients. In study k ∈ So,
we define the extended score vector ḡk(θk, hk) as

ḡk(θk, hk) = 1

nk

nk∑
i=1

gk,i(θk, hk,i)

def.= 1

nk

nk∑
i=1

⎛
⎜⎜⎝

∇θk
hk,i(θk)

T V k,i,1(θk){Y i − hk,i(θk)}
...

∇θk
hk,i(θk)

T V k,i,sk (θk){Y i − hk,i(θk)}

⎞
⎟⎟⎠ ,

where hk,i(θk) is defined in (1) and ∇θk
hk,i(θk) = ∂hk,i(θk)/∂θ

T
k .

Now, we are ready to form a joint quadratic inference function
to simultaneously estimate all regression coefficients using all
K studies. This objective function is

Q(θ, η̂) = nḡ(θ, η̂)T C−(θ, η̂)ḡ(θ, η̂),

where ḡ(θ, η̂) = 1
n

∑n

i=1
gi(θ, η̂i)

def.= 1
n

∑n

i=1

(
I[Di = 1]gT

1,i, . . . ,

I[Di = K]gT
K,i

)T

, with gk,i = I[Di = k ∈ So]gk,i(θk, hk,i)+I[Di =

k ∈ Sm]gk,i(θk, η̂k,i) for k = 1, . . . , K, and C(θ, η̂) is a block-
diagonal matrix, C(θ, η̂) = 1

n

∑n

i=1
diag{g1,ig

�
1,i, . . . ,gK,ig

�
K,i}.

Parameter vector θ = (θT
1 , . . . , θT

K)T is then estimated by min-
imizing Q(θ, η̂) over �, that is

θ̂ = arg min
θ∈�

Q(θ, η̂). (3)

We show that this joint QIF estimator θ̂ acquires efficiency
gains compared to study-specific QIF estimator θ̂k in our set-
ting of missing covariates, with details presented in Section 4.

4. Asymptotic Properties and Efficiency Gain

For convenience, the study-specific expectation under the
distribution generating data of study k is denoted by
Ek(·) = E(· | Di = k), k = 1, . . . , K. Likewise Eo(·) = E(· | Di ∈
So) denotes the expectation for all studies with fully observed
data. Denote the Euclidean norm of a vector b by ‖b‖, the
induced norm of a matrix A by ‖A‖ = sup

‖b‖=1

‖Ab‖, the sup-

norm of a function f (x) by ‖f‖∞ = supx ‖f (x)‖, and the L2

norm of a random vector X by ‖X‖2. We further impose some
regularity conditions listed in the Web Appendix.

Theorem 1. Let no = ∑
l∈So

nl. Suppose that (i) the mean
model (1) is correctly specified, and that (ii) missing mecha-
nism assumption 1 holds. Under Assumption A in the Web
Appendix, if tnk

→ ∞ and tnk
= o(no), estimator θ̂k for k ∈ Sm

given in (2) is consistent, namely, θ̂k

p→ θ0,k as no → ∞.

The proof of Theorem 1 is relatively straightforward.
We first establish ‖η̂k − ηk‖∞ = op(1), which is the focus of
Lemma 1 in the Web Appendix, by applying similar argu-
ments to those given in Chen et al. (2005). Consequently,
we can show the uniform consistency for the score functions,
supθk∈B ‖ḡk(θk, η̂k) − ḡk(θk, ηk)‖ = op(1), and achieve the con-

sistency of θ̂k according to Glivenko–Cantelli Theorem and
Lemma 5.2 of Newey (1994). The following theorem concerns
asymptotic normality for θ̂k.

Theorem 2. Under Assumptions A and B in the Web
Appendix, if tnk

→ ∞ and tnk
= o(no) for k ∈ Sm, the estimated

score function ḡk(θ0,k, η̂k) can be represented by

n
1/2
k ḡk(θ0,k, η̂k) = n

−1/2
k

∑
Di=k

gk,i(θ0,k, ηk,i)

+ τ
1/2
k n−1/2

o

∑
Di∈So

qk,i(θ0,k, hk,i) + op(1),

where nk

no
→ τk as nk → ∞, no → ∞ and qk,i(θ0,k, hk,i) ={

qk,i,1(θ0,k, hk,i)
T , . . . , qk,i,sk

(θ0,k, hk,i)
T
}T

consists of ele-

ments qk,i,s(θ0,k, hk,i) = f(Xi|Di=k)

f(Xi|Di∈So)
∇ηk,i(θ0,k)

T V k,i,s{ηk,i(θ0,k) −
hk,i(θ0,k)} , s = 1, . . . , sk. Moreover, the asymptotic distribution
of θ̂k is given by

√
nk(θ̂k − θ0,k)

d→ N{0, (GT
k �−1

k Gk)
−1},
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where Gk = Ek{∇gk,i(θ0,k, ηk,i)}, and �k = �k,1 + τk�k,2 with

�k,1 = Ek{gk,i(θ0,k, ηk,i)gk,i(θ0,k, ηk,i)
T }, and

�k,2 = Eo{qk,i(θ0,k, hk,i)qk,i(θ0,k, hk,i)
T }.

From Theorem 2, the representation of n
1/2
k ḡk(θ0,k, η̂k,i)

constitutes two components: n
−1/2
k × ∑

Di=k
gk,i(θ0,k, ηk,i) and

τ
1/2
k n−1/2

o

∑
Di∈So

qk,i(θ0,k, hk,i). It is interesting to note that
the latter component is related to the weighted like-
lihood (e.g., Hu and Zidek, 2002; Wang and Zidek,
2005). Since covariate Zi is not collected in study k ∈ Sm,
τ
1/2
k n−1/2

o

∑
Di∈So

qk,i(θ0,k, hk,i) presents an inference function
using the observed data on Zi from other studies in So

weighted by the measure of relevance via a factor f (Xi |
Di = k)/f (Xi | Di ∈ So). Thus, naturally our method yields
the asymptotic variance of θ̂k that consists of two pieces, �k,1

and �k,2, where �k,1 gives the asymptotic variance of θ̂k when
ηk,i were known, while �k,2 characterizes the additional vari-
ance incurred by the nonparametric sieve estimation of ηk,i.
The extra contribution by �k,2 toward the total variance of �k

is weighted according to a rate τk; when no exceeds nk in the
sense of nk

no
→ 0, the contribution of �k,2 will vanish and be

ignored asymptotically. To evaluate (GT
k �−1

k Gk)
−1, we need

to replace Gk and �k by their consistent estimates, respec-
tively. This step involves estimating an unknown density ratio
between f (Xi | Di = k) and f (Xi | Di ∈ So). Note that we may

rewrite this ratio as f(Di=k|Xi)f(Di∈So)

f(Di∈So|Xi)f(Di=k)
, where f(Di=k|Xi)

f(Di∈So|Xi)
may

be estimated by a multinomial logistic model and f(Di∈So)

f(Di=k)
by

no

nk
. Given an estimated density ratio, the linearization vari-

ance estimation (Demnati and Rao, 2004, 2010) can also be
applied. But obviously those approaches need some additional
model assumptions which may not be easily checked in prac-
tice. An alternative way is to perform a bootstrap variance
estimation, which avoids making extra model assumptions in
the above density ratio estimation and hence is recommended
in Section 5.

Now, we turn to the joint QIF estimator θ̂ given in (3).
Using similar arguments, we obtain the following two repre-
sentations for the extended scores n1/2ḡ(θ0, η̂): for k ∈ So,

n−1/2
∑
Di=k

gk,i(θ0,k, hk,i)

=
(

τk

1 + τSm

)1/2

n
−1/2
k

∑
Di=k

gk,i(θ0,k, hk,i) + op(1),

and for k ∈ Sm, n−1/2
∑

Di=k
gk,i(θ0,k, η̂k,i) is given by

(
τk

1 + τSm

)1/2

{
n

−1/2
k

∑
Di=k

gk,i(θ0,k, ηk,i)

+ τ
1/2
k n−1/2

o

∑
Di∈So

qk,i(θ0,k, hk,i)

}
+ op(1),

where τSm
= ∑

k∈Sm
τk. Thus, the asymptotic variance of

n1/2ḡ(θ0, η̂), �, is a block-diagonal matrix, whose k-th block-
element is given as follows:

τk

1 + τSm

�kI[k ∈ So] + τk

1 + τSm

�k,1I[k ∈ Sm]

+ τ2
k

1 + τSm

�k,2I[k ∈ Sm]. (4)

Here �k = Ek{gk,i(θ0,k, hk,i)gk,i(θ0,k, hk,i)
T }, and the other two

covariances, �k,1 and �k,2, are given in Theorem 2. The block-
diagonal structure for � is due to the fact that gk,i(θ0,k, hk,i)
and ql,i(θ0,k, hk,i) for study k and study l, k �= l, are uncorre-
lated. When there exist shared parameters, namely dim(�) <

(p + q)K, the joint QIF estimation can improve efficiency for
all regression coefficients by applying similar arguments in
Wang et al. (2012). When the shared parameters contain part
of parameters in λ0,k for k ∈ Sm, the proposed joint estima-
tion approach can achieve higher efficiency than that from
(2) using individual datasets.

We summarize the above discussion in the following Theo-
rem.

Theorem 3. Under Assumptions A and B given in the
Web Appendix, the joint estimator θ̂ given in (3) is asymp-
totically normally distributed with mean 0 and asymptotic
variance (GT �−1G)−1, namely

√
n(θ̂ − θ0)

d→ N{0, (GT �−1G)−1}, as n → ∞

where � is a block-diagonal matrix whose kth block-element is
given in (4) and G = (GT

1 , . . . ,GT
K)T with the k-th matrix Gk

given by Gk =
{

Ek{∇θk
gk,i(θ0,k, hk,i)}, k ∈ So

Ek{∇θk
gk,i(θ0,k, ηk,i)}, k ∈ Sm

. When there

exist shared parameters across studies, θ̂ has a smaller asymp-
totic variance than any θ̂k, k = 1, . . . , K, obtained by (2) using
data from individual studies.

5. Implementation

This section focuses on two key elements in the implementa-
tion of our method: (i) bootstrap variance estimation and (ii)
selection of the number of basis functions in the nonparamet-
ric estimation of η(x, θk).

Following Chen et al. (2003) and Hall and Horowitz
(1996), we establish a procedure to estimate the asymp-
totic variance by using bootstrap resampling techniques. Let
{Y ∗

i , X
∗
i , Z

∗
i , D

∗
i }n

i=1 be a bootstrap sample, which is generated
by the scheme of stratified sampling with individual studies as
strata, so that the resulting bootstrap sample constitutes the
same proportions of subjects from K studies and preserves the
same within-subject correlation as that of the original sample.
According to Hall and Horowitz (1996), a bootstrap version
of extended score ḡ∗

k(θk, η̂k,i) needs to be centered, given by

ḡc
k(θk, η̂

∗
k) = ḡ∗

k(θk, η̂
∗
k) − ḡk(θ̂k, η̂k),

where θ̂k and η̂k are estimated from the original sample
and η̂

∗
k is estimated from the bootstrap sample. The rea-
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son for the need of centering is that the QIF estimator is
obtained as a minimizer of an objective function, and the
resulting estimated moments of the extended scores are not
necessarily equal to 0. It is imperative to subtract ḡk(θ̂k, η̂k)
from ḡ∗

k(θk, η̂
∗
k) to obtain asymptotically unbiased estimating

functions, which is critical to ensure consistent estimation.
Consequently, the bootstrap estimator θ̂

∗
k is defined as the

minimizer of Qk(θk, η̂
∗
k) given in (2), where ḡk(θk, η̂k) is

replaced by its bootstrap version ḡc
k(θk, η̂

∗
k). Repeating this

bootstrap procedure a certain number of times, we yield a
set of bootstrap estimates of θk, which are then used to cal-
culate the bootstrap variances. The same procedure can be
established for the joint estimation of θ.

Another critical issue for implementing the proposed
method is to determine the number of basis functions when
estimating ηk,i(θk). Since a nonparametric regression is used
to estimate the conditional mean model instead of estimating
regression coefficients selecting the number of basis functions
is more relevant to estimation of ηk,i(θk) than estimation of
θk. There are several criteria potentially useful to serve for
such a selection purpose, including Schwarz’s (1978) Bayesian
information criterion (BIC), Craven and Wahba’s (1979) gen-
eralized cross-validation (GCV), and Wang and Qu’s (2009)
QIF-based BIC (BIQIF). Because BIQIF tends to select
underfitting models, we follow He et al. (2002) and propose a
new BIC-type model selection criterion:

BIC(tnk
) = Q(θ̂

(tnk
)

k , η̂k) + log n

2n
(p + tnk

), k = 1, · · · , K,

where p is the number of regression parameters, tnk
is the

number of basis functions, and θ̂
(tnk

)

k is the estimate of θk when
tnk

basis functions are used. Within a sufficiently wide range
of candidate values, the best tnk

is the one with the smallest
BIC(tnk).

6. Simulation Studies

We run a simulation study to compare our proposed method
with two existing methods, GEE and QIF, using full data,
imputed data by either parametric multiple imputation
or nonparametric hot-deck multiple imputation (Little and
Rubin, 2002). The focus of this comparison is to illustrate that
the single and multiple imputation methods are not applicable
for the study-specific missing data, which certifies a need of
the proposed methodology for this special missing structure.
We draw 4000 datasets from the following model:

Yij =
{

β0 + β1Xij + β2Zij + εij, Di = 1

β0 + β3Xij + β4Zij + εij, Di = 2
, j = 1, . . . , m, i = 1, . . . , n,

where the true regression coefficients θ0 = (β0, β1, β2,

β3, β4)
T = (1, 1, −0.5, 2, 0.5)T , n = 200 subjects and m = 4

repeated measurements. Covariate Xij is generated from
Unif(0, 1), and covariate Zij is generated from a condi-
tional model given Xij of the form: Zij = sin(4πXij) + ζij,

where ζij

iid∼ N(0, 0.5). Here Zi is treated as a study-specific
missing covariate whose state of missingness, Di, is deter-
mined by a logistic model on Xi1, logit{P(Di = 2 | Xi)} =
0.5 + 0.4Xi1. As a result, 39% of subjects are sampled

from study 2 to have missing Zi. The above specification
implies that E(Yij | Xij, Di = 2) = β0 + β3Xij + β4sin(4πXij).
Error terms, εi = (εi1, . . . , εim)T , are independently generated
from Nm{0, φkRk(αk)}, k = 1, 2, where the covariance matrix
φkRk(αk) is specified in the following two cases:

Case I. correlation matrices R1(·) and R2(·) in two stud-
ies are both AR-1 correlation with (α1, α2) =
(0.4, 0.4), and variance parameters are (φ1, φ2) =
(1, 1);

Case II. correlation matrix R1(·) in study 1 is AR-1 with
α1 = 0.7 while correlation matrix R2(·) in study
2 is compound symmetry with α2 = 0.2; variance
parameters are different, (φ1, φ2) = (10, 1).

The imputed datasets for study 2 are created according
to the true conditional distribution of Zi given Xi to avoid
potential uncertainty in the estimation of this conditional dis-
tribution. Here, we use f (Zi | Xi) for imputation instead of
f (Zi | Xi, Y i) because two studies are governed by two differ-
ent regression models, and therefore f (Zi | Xi, Y i) in study 2
is not estimable using observed data in study 1 (refer to a
detailed explanation provided in a paragraph below). Like-
wise, in the implementation of hot-deck imputation, we select
a set of observed data that are similar to those who have miss-
ing Zi in the sense of smaller Euclidean distances in their Xi

values and randomly generate 10 imputed datasets.
The conditional mean function, E(Yij | Xij, Di = 2) = β0 +

β3Xij + β4sin(4πXij), is estimated using six B-spline basis
functions. Here, we compare our method with the imputa-
tion methods. Simulation results for cases I and II above are
reported in Tables 1 and 2 under two working correlation
structures. In the ideal case where the hypothetical full data
are used, both QIF and GEE have shown little biases and
reached desirable 95% nominal coverage for both correlation
scenarios. When covariate Zi is missing in study 2, both para-
metric and hot-deck multiple imputation methods produce
noticeable estimation biases in GEE and QIF, particularly
for those parameters exclusively belonging to study 2, where
severe undercoverage exists for β3 and β4 (substantially lower
than 95% nominal level).

The failure of both parametric multiple imputation and
hot-deck imputation may be attributed to the validity of the
imputation methods, which have been justified only under
the selection model in the literature. Note that in a selection
model regression parameters are present in the distribution
f (Y i | Xi, Zi), which however is not the case in our problem
where regression parameters are different across two studies.
Thus, the imputation is in general not applicable to multiple
studies governed by models with different parameters.

In effect, f (Zi | Y i, Xi, Di = 2) ∝ f (Zi | Xi, Di = 2)f (Y i |
Xi, Zi, Di = 2). By Assumption 1, f (Zi | Xi, Di = 2) = f (Zi |
Xi) can be estimated from study 1. However, f (Y i |
Xi, Zi, Di = 2) cannot be estimated from study 1 because
f (Y i | Xi, Zi, Di = 2) �= f (Y i | Xi, Zi, Di = 1) and θ0,1 �= θ0,2

in model (1). Therefore, f (Zi | Y i, Xi, Di = 2) is not estimable
and cannot be used to impute missing Zi in study 2.
Even if here the true conditional distribution f (Zi | Xi)
is used in the imputation, imputed values for missing Zi

may still violate unbiasedness of E{Y ij − h(XT
ijβ0,2 + ZT

ijλ0,2) |
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Table 1
Summary of regression parameter estimates for data generated in Case I under AR-1 working correlation (or under

compound symmetry working correlation, presented in the parenthesis). Full, Par-MI, and Hot-deck represent full data, data
imputed by parametric multiple imputation, and data imputed by hot-deck multiple imputation, respectively. E.S.E. is the

empirical standard error computed from 4000 simulated datasets. A.S.E. is the asymptotic standard error. For our method,
A.S.E. is the bootstrap standard error computed using 400 bootstrap samples. The coverage probability, C.P., is computed by

using the asymptotic standard error.

Method θ θ̂ Bias E.S.E A.S.E. MSE C.P.

β0 1.000 (1.001) 0.000 (0.001) 0.075 (0.078) 0.075 (0.077) 0.006 (0.006) 0.952 (0.946)
β1 1.001 (1.000) 0.001 (0.000) 0.124 (0.131) 0.126 (0.131) 0.015 (0.017) 0.948 (0.951)

Full
β2 −0.501 (−0.501) −0.001 (−0.001) 0.040 (0.043) 0.040 (0.042) 0.002 (0.002) 0.946 (0.944)

QIF
β3 2.006 (2.002) 0.006 (0.002) 0.158 (0.165) 0.160 (0.164) 0.025 (0.027) 0.956 (0.952)
β4 0.499 (0.498) −0.001 (−0.002) 0.060 (0.062) 0.058 (0.060) 0.004 (0.004) 0.941 (0.946)

β0 1.000 (1.001) 0.000 (0.001) 0.072 (0.076) 0.072 (0.075) 0.005 (0.006) 0.945 (0.947)
β1 1.002 (1.000) 0.002 (0.000) 0.122 (0.130) 0.122 (0.128) 0.015 (0.017) 0.948 (0.948)

Full
β2 −0.501 (−0.501) −0.001 (−0.001) 0.040 (0.042) 0.039 (0.041) 0.002 (0.002) 0.939 (0.940)

GEE
β3 2.003 (2.002) 0.003 (0.002) 0.151 (0.160) 0.152 (0.158) 0.023 (0.026) 0.949 (0.952)
β4 0.499 (0.498) −0.001 (−0.002) 0.057 (0.060) 0.055 (0.058) 0.003 (0.004) 0.951 (0.940)

β0 1.035 (1.036) 0.035 (0.036) 0.077 (0.079) 0.079 (0.081) 0.007 (0.008) 0.927 (0.931)
β1 0.961 (0.958) −0.039 (−0.042) 0.126 (0.133) 0.129 (0.134) 0.017 (0.019) 0.939 (0.929)

Par-MI
β2 −0.504 (−0.504) −0.004 (−0.004) 0.040 (0.043) 0.040 (0.042) 0.002 (0.002) 0.944 (0.942)

QIF
β3 1.865 (1.863) −0.135 (−0.137) 0.169 (0.172) 0.180 (0.183) 0.047 (0.048) 0.894 (0.894)
β4 0.241 (0.240) −0.259 (−0.260) 0.049 (0.050) 0.083 (0.084) 0.069 (0.070) 0.040 (0.047)

β0 1.042 (1.042) 0.042 (0.042) 0.074 (0.077) 0.076 (0.078) 0.007 (0.008) 0.917 (0.914)
β1 0.951 (0.949) −0.049 (−0.051) 0.123 (0.130) 0.125 (0.131) 0.018 (0.020) 0.923 (0.926)

Par-MI
β2 −0.505 (−0.505) −0.005 (−0.005) 0.040 (0.042) 0.039 (0.041) 0.002 (0.002) 0.939 (0.934)

GEE
β3 1.851 (1.853) −0.149 (−0.147) 0.162 (0.169) 0.169 (0.174) 0.049 (0.050) 0.879 (0.872)
β4 0.239 (0.239) −0.261 (−0.261) 0.047 (0.049) 0.078 (0.080) 0.070 (0.071) 0.017 (0.031)

β0 1.034 (1.035) 0.034 (0.035) 0.076 (0.079) 0.079 (0.081) 0.007 (0.007) 0.931 (0.935)
β1 0.961 (0.959) −0.039 (−0.041) 0.126 (0.132) 0.129 (0.134) 0.017 (0.019) 0.937 (0.933)

Hot-deck
β2 −0.504 (−0.504) −0.004 (−0.004) 0.040 (0.043) 0.040 (0.042) 0.002 (0.002) 0.944 (0.944)

QIF
β3 1.866 (1.864) −0.134 (−0.136) 0.170 (0.173) 0.181 (0.183) 0.047 (0.048) 0.893 (0.893)
β4 0.237 (0.236) −0.263 (−0.264) 0.049 (0.050) 0.083 (0.084) 0.072 (0.072) 0.039 (0.038)

β0 1.041 (1.042) 0.041 (0.042) 0.073 (0.076) 0.076 (0.078) 0.007 (0.008) 0.923 (0.917)
β1 0.952 (0.949) −0.048 (−0.051) 0.123 (0.130) 0.125 (0.131) 0.018 (0.019) 0.924 (0.927)

Hot-deck
β2 −0.504 (−0.505) −0.004 (−0.005) 0.040 (0.042) 0.039 (0.041) 0.002 (0.002) 0.937 (0.936)

GEE
β3 1.852 (1.855) −0.148 (−0.145) 0.162 (0.169) 0.170 (0.174) 0.048 (0.050) 0.879 (0.871)
β4 0.235 (0.235) −0.265 (−0.265) 0.047 (0.049) 0.078 (0.080) 0.073 (0.073) 0.015 (0.022)

β0 1.002 (1.002) 0.002 (0.002) 0.080 (0.083) 0.081 (0.084) 0.006 (0.007) 0.944 (0.942)
β1 1.000 (0.999) 0.000 (−0.001) 0.129 (0.136) 0.130 (0.136) 0.017 (0.018) 0.943 (0.943)

Our
β2 −0.501 (−0.501) −0.001 (−0.001) 0.040 (0.043) 0.040 (0.042) 0.002 (0.002) 0.949 (0.940)

Method
β3 1.992 (1.992) −0.008 (−0.008) 0.206 (0.210) 0.207 (0.211) 0.042 (0.044) 0.948 (0.960)
β4 0.483 (0.483) −0.017 (−0.017) 0.211 (0.210) 0.210 (0.214) 0.045 (0.044) 0.936 (0.943)

Xij, Zij, Di = 2} = 0. Therefore, both GEE and QIF with
the imputed data are impaired and yield significant esti-
mation biases. Molenberghs and Kenward (2007,Chapter 2)
examine the performance of GEE with multiple imputation
for missing responses, where by comparing IPW GEE with
imputation-based GEE under the selection model, they show
that imputation-based GEE produces significantly larger bias
as well as mean squared error (MSE) than IPW GEE in vari-
ous longitudinal data settings. Our findings are in agreement
with theirs.

In contrast to the imputation methods, our proposed
method demonstrates satisfactory performances in terms of
bias and coverage probability. For example, the coverage of β4

is close to the nominal 95% level in various settings. This is

because our method uses asymptotically unbiased estimating
functions derived by plugging in a consistent nonparametric
estimation of E(Y i | Xi, Di = 2). As shown in Table 1 for case
I and Table 2 for case II, the price paid to gain the benefit of
desirable coverage is the larger standard deviations compared
to the ideal QIF and GEE using the hypothetical full data.
This is not surprising because E(Y i | Xi, Di = 2) is estimated
nonparametrically in our method. This further confirms the
theoretical results in Theorems 2 and 3 regarding the asymp-
totic covariances, where, as explained already, the uncertainty
from the nonparametric estimation is to be accounted for.

We evaluate the performance of our proposed method with
various missing data percentages in the Web Appendix, and
the results are stable. We also examine how the proposed BIC
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Table 2
Summary of regression parameter estimates for data generated in Case II under AR-1 working correlation (or under

compound symmetry working correlation, presented in the parenthesis). Full, Par-MI, and Hot-deck represent full data, data
imputed by parametric multiple imputation, and data imputed by hot-deck multiple imputation, respectively. E.S.E. is the

empirical standard error computed from 4000 simulated datasets. A.S.E. is the asymptotic standard error. For our method,
A.S.E. is the bootstrap standard error computed using 400 bootstrap samples. The coverage probability, C.P., is computed by

using the asymptotic standard error.

Method θ θ̂ Bias E.S.E A.S.E. MSE C.P.

β0 1.002 (1.001) 0.002 (0.001) 0.132 (0.129) 0.124 (0.123) 0.017 (0.017) 0.917 (0.929)
β1 0.992 (0.988) −0.008 (−0.012) 0.287 (0.306) 0.282 (0.301) 0.082 (0.094) 0.938 (0.947)

Full
β2 −0.497 (−0.497) 0.003 (0.003) 0.093 (0.104) 0.096 (0.105) 0.009 (0.011) 0.952 (0.958)

QIF
β3 2.002 (2.004) 0.002 (0.004) 0.219 (0.212) 0.210 (0.205) 0.048 (0.045) 0.936 (0.940)
β4 0.503 (0.503) 0.003 (0.003) 0.063 (0.061) 0.064 (0.062) 0.004 (0.004) 0.947 (0.941)

β0 1.009 (1.011) 0.009 (0.011) 0.201 (0.211) 0.186 (0.197) 0.041 (0.045) 0.923 (0.935)
β1 0.984 (0.979) −0.016 (−0.021) 0.290 (0.330) 0.283 (0.319) 0.084 (0.109) 0.944 (0.934)

Full
β2 −0.498 (−0.498) 0.002 (0.002) 0.089 (0.105) 0.090 (0.104) 0.008 (0.011) 0.957 (0.952)

GEE
β3 1.995 (1.998) −0.005 (−0.002) 0.243 (0.241) 0.229 (0.228) 0.059 (0.058) 0.929 (0.928)
β4 0.502 (0.502) 0.002 (0.002) 0.069 (0.062) 0.069 (0.063) 0.005 (0.004) 0.943 (0.947)

β0 1.102 (1.105) 0.102 (0.105) 0.140 (0.137) 0.136 (0.135) 0.030 (0.030) 0.884 (0.881)
β1 0.921 (0.906) −0.079 (−0.094) 0.289 (0.308) 0.285 (0.305) 0.090 (0.103) 0.928 (0.935)

Par-MI
β2 −0.502 (−0.504) −0.002 (−0.004) 0.093 (0.104) 0.096 (0.105) 0.009 (0.011) 0.954 (0.954)

QIF
β3 1.783 (1.779) −0.217 (−0.221) 0.231 (0.222) 0.237 (0.232) 0.100 (0.098) 0.866 (0.866)
β4 0.235 (0.234) −0.265 (−0.266) 0.049 (0.048) 0.089 (0.086) 0.073 (0.073) 0.049 (0.034)

β0 1.052 (1.054) 0.052 (0.054) 0.203 (0.212) 0.188 (0.198) 0.044 (0.048) 0.916 (0.918)
β1 0.952 (0.943) −0.048 (−0.057) 0.290 (0.330) 0.283 (0.319) 0.086 (0.112) 0.941 (0.935)

Par-MI
β2 −0.501 (−0.501) −0.001 (−0.001) 0.089 (0.105) 0.090 (0.104) 0.008 (0.011) 0.957 (0.952)

GEE
β3 1.800 (1.810) −0.200 (−0.190) 0.251 (0.246) 0.251 (0.246) 0.103 (0.097) 0.882 (0.892)
β4 0.237 (0.236) −0.263 (−0.264) 0.055 (0.049) 0.096 (0.087) 0.072 (0.072) 0.093 (0.036)

β0 1.101 (1.104) 0.101 (0.104) 0.141 (0.137) 0.137 (0.136) 0.030 (0.030) 0.886 (0.882)
β1 0.922 (0.908) −0.078 (−0.092) 0.289 (0.308) 0.285 (0.305) 0.090 (0.103) 0.935 (0.941)

Hot-deck
β2 −0.502 (−0.504) −0.002 (−0.004) 0.093 (0.104) 0.096 (0.105) 0.009 (0.011) 0.952 (0.952)

QIF
β3 1.786 (1.782) −0.214 (−0.218) 0.232 (0.223) 0.238 (0.233) 0.099 (0.098) 0.856 (0.864)
β4 0.232 (0.231) −0.268 (−0.269) 0.050 (0.049) 0.089 (0.087) 0.074 (0.075) 0.056 (0.044)

β0 1.052 (1.054) 0.052 (0.054) 0.203 (0.212) 0.188 (0.198) 0.044 (0.048) 0.916 (0.920)
β1 0.952 (0.944) −0.048 (−0.056) 0.290 (0.330) 0.283 (0.319) 0.086 (0.112) 0.942 (0.936)

Hot-deck
β2 −0.500 (−0.500) 0.000 (0.000) 0.090 (0.105) 0.090 (0.104) 0.008 (0.011) 0.957 (0.953)

GEE
β3 1.801 (1.811) −0.199 (−0.189) 0.251 (0.247) 0.252 (0.247) 0.102 (0.096) 0.881 (0.891)
β4 0.233 (0.232) −0.267 (−0.268) 0.057 (0.052) 0.096 (0.087) 0.074 (0.074) 0.101 (0.045)

β0 1.007 (1.008) 0.007 (0.008) 0.179 (0.176) 0.163 (0.164) 0.032 (0.031) 0.931 (0.929)
β1 0.989 (0.982) −0.011 (−0.018) 0.298 (0.319) 0.288 (0.311) 0.089 (0.102) 0.937 (0.944)

Our
β2 −0.497 (−0.498) 0.003 (0.002) 0.093 (0.104) 0.095 (0.104) 0.009 (0.011) 0.953 (0.955)

method
β3 1.990 (1.988) −0.010 (−0.012) 0.326 (0.316) 0.309 (0.309) 0.106 (0.100) 0.941 (0.952)
β4 0.487 (0.485) −0.013 (−0.015) 0.259 (0.246) 0.255 (0.252) 0.067 (0.061) 0.956 (0.956)

criterion behaves in the selection of basis functions. Under the
same settings of the previous simulation study, we increase
the number of basis functions from 4 to 12 in the estimation
of E(Yij | Xij, Di = 2), and summarize the results in Figure 1.
This figure indicates that BIC criterion is minimized at six,
after which the MSE cannot be improved significantly with
more basis functions being used. This evidence implies that
our criterion tends to chose a parsimonious nonparametric
model with small MSE.

To illustrate the efficiency gain in the joint analysis, we fur-
ther run a simulation study to compare the standard errors
obtained from the joint analysis and those obtained from the
individual analysis. This is to confirm the theoretical result
given in Theorem 3. The data are generated in the same way

as in case I of the previous simulation. The joint analysis
utilizes the fact that two studies have a common intercept
parameter, while the individual analysis ignores this fact and
includes different intercepts in the respective models. The
standard errors are calculated by the bootstrap method dis-
cussed in Section 5. Summarized results over 100 replications
in Table 3 clearly show that the joint analysis has given
smaller standard errors for all regression coefficients. This
efficiency improvement appears very substantial for study 2
where missing covariates are present. The individual analy-
sis only uses 61% of the sample size to obtain parameter
estimation. In conclusion, it is clearly beneficial to borrow
data information from study 1 to improve inference for the
parameters in study 2.
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Figure 1. BIC and MSE profile curves for selecting the number of basis functions.

We have also conducted simulation experiments on binary
longitudinal outcomes, and similar findings were yielded.
Refer to the details in the Web Appendix.

7. Application

We apply our method to analyze the lead exposure data col-
lected from two longitudinal birth cohorts in Mexico City.
Between 1994 and 2005, the study recruited 89 mother–infant
pairs in cohort B and 492 mother–infant pairs in cohort C
at two maternity hospitals serving low-to-moderate income
populations (Afeiche et al., 2011). We are interested in study-

Table 3
Comparison of standard errors from joint estimation and

individual estimation in Case I under AR-1 and compound
symmetry (CS) working correlations. For our method,
standard error is the bootstrap standard error computed

using 200 bootstrap samples.

Standard error

AR-1 CS

Study β̂ Joint Individual Joint Individual

I β0 0.076 0.089 0.079 0.092
β1 0.125 0.136 0.131 0.142
β2 0.039 0.040 0.041 0.042

II β0 0.076 0.258 0.079 0.255
β3 0.174 0.448 0.178 0.442
β4 0.097 0.228 0.100 0.225

ing the effect of cord blood lead exposure on child’s weight
growth. Child’s weight was measured repeatedly at 0, 3, 6,
12, 18, 24, 30, 36, 48, and 60 months after birth in cohort B,
while at 0, 1, 4, 7, 12, 18, 24, 30, 36, 42, and 48 months in
cohort C. Two lead exposure measures, mother’s blood lead
(PBL), and child’s cord blood lead (CBL), are recorded at
baseline visit (time 0). PBL was measured for all mothers in
both cohorts while CBL was collected for all infants in cohort
C and approximately 46% of infants in cohort B due to child’s
or maternal refusal, inability to give blood or because a blood
lead measure was not scheduled.

The upper panel in Figure 2 displays trajectories of child’s
weights versus child’s ages across cohorts B and C, and its
lower panel includes the scatter-plots of child’s weights versus
child’s CBL in log scale across the two cohorts. Adjusting
for child’s gender and age, we estimate the effect of CBL on
weight growth via the following model:

E
(
Yk,ij | Xk,i, Zk,i, Gk,i, tk,ij

) = βk
1 + βk

2Xk,i + βk
3B1(Zk,i)

+ βk
4B2(Zk,i) + βk

5Gk,i

+ βk
6B1(tk,ij) + βk

7B2(tk,ij)

+ βk
8B3(tk,ij), k = 1, 2,

(5)

where cohorts C and B are denoted by k = 1 and k = 2, respec-
tively. For subject i at the jth visit, variable Yk,ij, tk,ij, Xk,i,
Zk,i, and Gk,i are log (weight), child’s ages (year), log (PBL),
log (CBL), and child’s gender (1 for male and 0 for female),
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Figure 2. Trajectories of children’s weights versus children’s ages across the two cohorts (upper panel), and scatterplots of
log-transformed children’s weights versus log-transformed children’s cord blood lead exposure across the two cohorts (lower
panel).

respectively. We apply log-transformation on weight, PBL,
and CBL to reduce skewness. Effects on time tk,ij and Zk,i are
captured by linear splines with three basis functions, B1(tk,ij),
B2(tk,ij), and B3(tk,ij), for covariate time tk,ij at knots 0.5 and 2,
and two basis functions, B1(Zk,i) and B2(Zk,i), for Zk,i at knot
2.3 in log scale. The piecewise linear trend of child’s weight
versus child’s age can be observed in Figure 2.

Given that 46% of CBL measurements are missing in cohort
B, we estimate the effect of covariate CBL by merging the
two cohorts. Through a routine model screening process using
interactions between covariates and cohort dummy variables,
we finally reach a model with common coefficients for Xk,i,
Gk,i, B1(tk,ij), and B2(tk,ij) across two cohorts.

Results in Table 4 indicate that gender and age both are
strongly associated with weight growth of children. For chil-
dren age 2 or younger in two cohorts, they have similar weight
growth on average. Children older than 2 years in cohort B
grow faster than their peers in cohort C. As to the effect of
lead exposure in child’s cord blood, the effect of log(CBL)
on weight growth in cohort C appears to be nearly signifi-
cant when log(CBL) is greater than 2.3, or equivalently CBL
concentration larger than 10μg/L.

8. Concluding Remarks

We have developed a novel estimating function approach to
assessing covariate effects through merging datasets from mul-
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Table 4
Estimates of regression parameters and p-values for

children’s lead exposure analysis. Intercept, log(PBL),
Gender, B1(age), and B2(age) have common coefficients

across the two cohorts.

Cohort C Cohort B

Covariates Estimates p-values Estimates p-values

Intercept 1.156 <0.05 1.156 <0.05
log(CBL) 0.006 0.730 0.006 0.730
B1(log(CBL)) 0.035 0.330 1.561 0.980
B2(log(CBL)) −0.111 0.052 −0.017 0.993
Gender 0.036 <0.05 0.036 <0.05
B1(age) 0.910 <0.05 0.910 <0.05
B2(age) 1.303 <0.05 1.303 <0.05
B3(age) 1.561 <0.05 1.726 <0.05

tiple longitudinal studies. The proposed method accounts for
various aspects of heterogeneity across studies so the resulting
estimation and inference are not only synthesized with inte-
grated data, but also adaptive to individual study features.

The innovation of our method lies in the strategies of han-
dling multiple datasets with study-specific missing covariates,
which often occur in data merging. When datasets of multiple
studies are collected respectively from different subpopula-
tions, it is problematic to use studies with fully observed data
either to impute study-specific missing covariates or to adjust
the chance of missingness by the method of inverse probabil-
ity weighting. The failure of inverse probability weighting or
doubly robust approaches lies in the fact that the regression
coefficients for the completely observed data are not the same
as in the missing data (happens in a different study in our
setting), so that no appropriate weights can be allocated in
this study-specific missing structure. Our approach features a
sieve nonparametric estimation of a marginalized mean model
which is resulted from integrating the set of missing covariates
out of the original mean model in (1). Under Assumption 1,
the marginalized mean model can be estimated properly by
using studies with fully observed covariates and hence the
resulting estimation for regression coefficients is consistent
and asymptotically normal.

In addition, the implementation of our method is
numerically straightforward. Both theoretical and numerical
evidences are provided to show the large-sample proper-
ties and finite-sample performances of the proposed method.
Although our method is developed using balanced longitudi-
nal data, it can be applied to unbalanced longitudinal data
with no additional burden. Please refer to Song et al. (2009)
for details. Since our method relies on the nonparametric esti-
mation of the marginalized estimating functions, it could be
challenged when the number of observed covariates is large.
Also when the number of studies is large, it would be com-
putationally demanding to use traditional hypothesis testing
method to determine commonly shared parameters across
studies in the joint analysis. Providing a flexible and efficient
way to detect common parameters in multiple studies in the
presence of missing covariates is worth future exploration.

9. Supplementary Materials

Web Appendices referenced in Sections 2 to 6 are available
with this paper at the Biometrics website on Wiley Online
Library. The computer program in the R language implement-
ing the proposed method and an illustration data example are
also available at this website.

Acknowledgements

The authors would like to thank the editor, the associate edi-
tor, and two reviewers for their very helpful comments. Song’s
research is supported by an NSF Grant (DMS #1208939).

References

Afeiche, M., Peterson, K. E., Snchez, B. N., Cantonwine, D.,
Lamadrid-Figueroa, H., Schnaas, L., et al. (2011). Prena-
tal lead exposure and weight of 0- to 5-year-old children in
mexico city. Environmental Health Perspective 119, 1436–
1441.

Carroll, R. J., Fan, J., Gijbels, I., and Wand, M. (1998). Generalized
partially linear single-index models. Journal of the American
Statistical Association 92, 477–489.

Chen, Q. and Ibrahim, J. G. (2006). Semiparametric models for
missing covariate and response data in regression models.
Biometrics 62, 177–184.

Chen, X., Hong, H., and Tamer, E. (2005). Measurement error
models with auxiliary data. Review of Economic Studies 72,
343–366.

Chen, X., Linton, O., and Keilegom, I. V. (2003). Estimation of
semiparametric models when the criterion function is not
smooth. Econometrica 71, 1591–1608.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline
functions. Numerische Mathematik 31, 377–403.

Demnati, A. and Rao, J. N. K. (2004). Linearization variance esti-
mators for survey data. Survey Methodology 30, 17–26.

Demnati, A. and Rao, J. N. K. (2010). Linearization variance esti-
mators for model parameters from complex survey data.
Survey Methodology 36, 193–202.

Hall, P. and Horowitz, J. L. (1996). Bootstrap critical values for
tests based on generalized method of moments estimators.
Econometrica 64, 891–916.

He, X., Zhu, Z.-Y., and Fung, W.-K. (2002). Estimation in a
semiparametric model for longitudinal data with unspecified
dependence structure. Biometrika 89, 579–590.

Hu, F. and Zidek, J. V. (2002). The weighted likelihood. The Cana-
dian Journal of Statistics 30, 347–371.

Ichimura, H. (1993). Semiparametric least squares (SLS) and
weighted SLS estimation of single-index models. Journal of
Econometrics 58, 71–120.

Kim, J. K. (2011). Parametric fractional imputation for missing
data analysis. Biometrika 98, 119–132.

Leng, C., Zhang, W., and Pan, J. (2010). Semiparametric mean
covariance regression analysis for longitudinal data. Journal
of the American Statistical Association 105, 181–193.

Little, R. J. and Zhang, N. (2011). Subsample ignorable likeli-
hood for regression analysis with missing data. Journal of
the Royal Statistical Society: Series C 60, 591–605.

Little, R. J. A. (1992). Regression With Missing X’s: A Review.
Journal of the American Statistical Association 87, 1227–
1237.

Little, R. J. A. (1993). Pattern-mixture models for multivariate
incomplete data. Journal of the American Statistical Asso-
ciation 88, 125–134.



12 Biometrics

Little, R. J. A. and Rubin, D. B. (2002). Wiley Series in Proba-
bility and Statistics. Statistical Analysis with Missing Data,
New York, NY: Wiley.

Molenberghs, G. and Kenward, M. G. (2007). Missing Data in
Clinical Studies. New York, NY: Wiley.

Newey, W. K. (1994). The asymptotic variance of semiparametric
estimators. Econometrica 62, 1349–1382.

Newey, W. K. (1997). Convergence rates and asymptotic normality
for series estimators. Journal of Econometrics 79, 147–168.

Qu, A., Lindsay, B. G., and Li, B. (2000). Improving generalised
estimating equations using quadratic inference functions.
Biometrika 87, 823–836.

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of
regression coefficients when some regressors are not always
observed. Journal of the American Statistical Association
89, 846–866.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63,
581–592.

Schwarz, G. (1978). Estimating the dimension of a model. The
Annals of Statistics 6, 461–464.

Shi, X., Zhu, H., and Ibrahim, J. G. (2009). Local influence for gen-
eralized linear models with missing covariates. Biometrics
65, 1164–1174.

Song, P. X.-K. X., Jiang, Z., Park, E., and Qu, A. (2009). Quadratic
inference functions in marginal models for longitudinal data.
Statistics in Medicine 28, 3683–3696.

Wang, F., Wang, L., and Song, P. X. K. (2012). Quadratic inference
function approach to merging longitudinal studies: Valida-
tion and joint estimation. Biometrika 99, 755–762.

Wang, L. and Qu, A. (2009). Consistent model selection and data-
driven smooth tests for longitudinal data in the estimating
equations approach. Journal of The Royal Statistical Soci-
ety: Series B. 71, 177–190.

Wang, X. and Zidek, J. V. (2005). Selecting likelihood weights by
cross-validation. The Annals of Statistics 33, 463–500.

Received April 2014. Revised April 2015. Accepted May
2015.


