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Summary

Continuous proportional data is common in biomedical research, e.g., the pre-post therapy percent
change in certain physiological and molecular variables such as glomerular filtration rate, certain gene
expression level, or telomere length. As shown in (Song and Tan, 2000) such data requires methods
beyond the common generalised linear models. However, the original marginal simplex model of (Song
and Tan, 2000) for such longitudinal continuous proportional data assumes a constant dispersion para-
meter. This assumption of dispersion homogeneity is imposed mainly for mathematical convenience
and may be violated in some situations. For example, the dispersion may vary in terms of drug treat-
ment cohorts or follow-up times. This paper extends their original model so that the heterogeneity of
the dispersion parameter can be assessed and accounted for in order to conduct a proper statistical
inference for the model parameters. A simulation study is given to demonstrate that statistical inference
can be seriously affected by mistakenly assuming a varying dispersion parameter to be constant in the
application of the available GEEs method. In addition, residual analysis is developed for checking
various assumptions made in the modelling process, e.g., assumptions on error distribution. The methods
are illustrated with the same eye surgery data in (Song and Tan, 2000) for ease of comparison.

Key words: Continuous proportions; Generalised linear models; GEEs; Longitudinal data;
Residual analysis; Simplex distribution; Varying dispersion.

1 Introduction

The concept of dispersion parameter is a familiar one in generalised linear models (GLMs). The
dispersion parameter of a normal distribution is simply its variance; and the dispersion parameter of
Poisson distributions is always equal to 1, which is the ratio of variance to mean and where the over-
dispersion occurs when such a ratio is larger than 1. Dispersion models (Jørgensen, 1997), as an
extension of the GLMs, include dispersion parameters describing the distributional shape, which is
beyond what the location or mean parameter alone can describe.

The simplex distribution of Barndorff-Nielsen and Jørgensen (1991) for the error term represents a
special dispersion model, and is useful for modelling continuous proportional data. Based on this
distribution, Song and Tan (2000) developed a marginal model for longitudinal continuous propor-
tional data, which was used to analyse an eye surgery data. Similar to Liang and Zeger’s marginal
models e.g. Diggle et al. (2002), Song and Tan (2000) assumed a constant dispersion in their model
and their focus is on modelling the trend component. A technical advantage by setting a constant
dispersion parameter is that, as shown in Liang and Zeger’s GEE1 (1986) approach, regression coeffi-
cients can be separately estimated from the dispersion parameter. This is because the GEE1 can
factorise a constant dispersion out the estimating equation.
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However, in practice the assumption of homogeneous dispersion may be questionable. For example,
the magnitude of dispersion may vary across drug treatment cohorts due to different rates of disease
progression or over different follow-up times due to different environmental exposures. It is clear that
the marginal pattern of a population depends not only on its averaged trend but also on its dispersion
characteristics, as described by the dispersion models. Therefore, incorporating varying dispersion in
the modelling process allows us to assess the heterogeneity of dispersion and to develop a simulta-
neous inference for the entire marginal models concerning both trend and dispersion components.
Such an access to the profile of the dispersion parameter is important, as shown in our simulation
studies in Section 4, mistakenly assuming a varying dispersion to be constant in the application of
GEE1 method could cause some serious problems in statistical inference. For example, the asymptotic
normality theory for the estimators may no longer be valid, and this theory is crucial to test for
statistical significance for the effects of some covariates of interest. In addition, a proper estimation
for the dispersion parameter is appealing, for example, in residual analysis, where a standardisation
for residuals is usually taken to stablise their variances. The computation of standardised residuals
always asks for an appropriate estimate of the dispersion parameter.

In this paper, we propose a new marginal model that consists of three components to be modeled:
the population-averaged effects, the dispersion pattern, and the correlation. In the context of longitudi-
nal data analysis, the first version of generalised estimating equation approach, known as of GEE1, is
proposed by Liang and Zeger (1986) and later extended by Prentice and Zhao (1991) to include a set
of estimating equations on correlation parameters, referred to GEE2 in the literature. As a matter of
fact, estimating a varying dispersion parameter can be easily incorporated with the GEE2 using the
mean-variance relationship of the classical GLMs or the exponential dispersion family distributions.
However, the mean-variance relationship is no longer valid for the simplex distribution, because it is
not an exponential dispersion family distribution. Therefore, in this paper, we suggest to add another
set of estimating equations to deal with the dispersion component through a certain moment property
different from the mean-variance relationship. The resulting estimating equations extend the currently
popular GEE2, although it is still called as GEE2 in the present paper.

Modelling dispersion parameter has been considered by many authors for different models in the
literature. Among others, Smyth (1989) discussed generalised linear models with varying dispersion for
cross-sectional data, and Artes and Jørgensen (2000) proposed a model for the index parameter of
dispersion models, attempting to attack this problem with an underlying application closely related to
von Mises distribution for longitudinal circular data. We found their method did not work well for the
simplex distribution. Paik (1992) proposed an estimation procedure that extends Liang and Zeger’s
GEEs by allowing observations from distributions with different dispersion parameters. However,
Paik’s procedure is not applicable for the simplex distribution, because there is no closed form expres-
sion for the variance of the distribution. By utilising a certain moment property of the simplex distribu-
tion, we come up with a different solution from those given by Artes and Jørgensen (2000) and Paik
(1992). In fact, because of different perspectives and models, our estimating equation for the dispersion
parameter of the simplex distribution is simpler and numerically more efficient than theirs.

The rest of the paper is organised as follows. Section 2 presents dispersion marginal models with
varying dispersion. An extended GEE2 is presented in Section 3, and Section 4 gives a simulation
study that demonstrates the importance of modelling the dispersion parameter to conduct a proper
statistical analysis in the presence of heterogeneous dispersion. Section 5 discusses model diagnostics
through residual analysis. The proposed methods are applied to re-analyse the eye surgery data in
Section 6. Finally we conclude with some remarks.

2 Marginal Models

To develop marginal simplex models for longitudinal continuous proportional data with varying disper-
sion, first let yij, j ¼ 1; . . . ; ni be the sequence of observed repeated measurements on the ith of m
subjects, and tij, j ¼ 1; . . . ; ni, be the sequence of corresponding times on which the measurements are
taken on each subject. Associated with each yij are the values, xijk, k ¼ 1; . . . ; p, of p covariates or expla-
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natory variables. We assume that yij are realisations of random variables Yij which follow simplex distri-
butions Yij � S�ðmij; s

2
ijÞ, where mij 2 ð0; 1Þ are the mean parameters and s2

ij > 0 are the dispersion para-
meters, and both may be specified as functions of covariates. The density function of the simplex distri-
bution is, suppressing indices, given by

pðy; m; s2Þ ¼ 2ps2fyð1� yÞg3
h i�1=2

exp � 1
2s2

dðy; mÞ
� �

; y 2 ð0; 1Þ ;

where d is the unit deviance,

dðy; mÞ ¼ ðy� mÞ2

yð1� yÞ m2ð1� mÞ2
;

and its unit variance function is vðmÞ ¼ m3ð1� mÞ3. See (Jørgensen, 1997) for more details.
Let

Yi ¼ ðYi1; . . . ; YiniÞ
>; xij ¼ ð1; xij1; . . . ; xijpÞ>:

We assume that Y1; . . . ;Ym are independent.
A marginal simplex model consists of three components given as follows. The first component is a

model to describe the population-averaged effects, where the mean parameter mij depends on the time-
varying covariates xij via a generalised linear model of the form

hðmijÞ ¼ x>ij b ð1Þ

where h is a known link function and b ¼ ðb0; . . . ; bpÞ
> is the regression coefficients to be estimated.

The link function is usually chosen to be the logit link function that maps the unitary interval to
ð�1;1Þ.

The second component is a model to describe the pattern of dispersion parameter s2
ij as a function

of covariates zij (maybe a subset of xij), given by

gðs2
ijÞ ¼ z>ij g ð2Þ

where g is a known link function and g ¼ ðg0; . . . ; grÞ
> with g0 corresponding to the intercept term.

To express the dispersion as of a multiplicative form, the logarithm link function is used to obtain a
log-linear model and hence

s2
ij ¼ exp ðz>ij gÞ ¼

Qr
k¼0
ðegkÞzijk ¼ eg0

Qr
k¼1
ðegkÞzijk :

The third component is for modelling correlation structure. The correlation between Yij and Yik is a
function of the location parameters and perhaps of additional parameters, a ¼ ða1; . . . ;aqÞ>, namely,

corr ðYij;YikÞ ¼ qðmij;mik;aÞ ð3Þ

where qð�Þ is a known function. Various types of correlation structures may be used for the q function.
Amongst others, three commonly used in the analysis of longitudinal data are the exchangeable, AR(1)
and m-dependence correlations. It is noted that the justification for a choice of a correlation structure is
in general a difficult task due to little information over time available. However the Liang and Zeger’s
GEE1 approach for consistent parameter estimation enjoys the robustness against misspecification of
correlation structure and hence has yielded popularity in longitudinal data analysis.

3 GEEs for Parameter Estimation

Denote the mean vector of subject i by mi ¼ ðmi1; . . . ; mini
Þ>. Let the score vector for subject i be

ui ¼ ðui1; . . . ; uiniÞ
>; with uij ¼ � 1

2 d0ðyij; mijÞ;
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and under the regularity conditions, EðuijÞ ¼ 0 and therefore EðuiÞ ¼ 0. From Song and Tan (2000),
the variance of uij is given by

var ðuijÞ ¼
s2

ij

2
Efd00ðYij; mijÞg ¼

3s4
ij

mijð1� mijÞ
þ

s2
ij

vðmijÞ
:

Following Song and Tan (2000), let wi ¼ diag fvðmijÞg ui be the working vector, and let RðaÞ be an
ni � ni working correlation matrix with a q� 1 vector of correlation parameters a. So working covar-
iance matrix for wi is

Vi ¼ diag 1=2 var ðwijÞ
� �

RðaÞdiag 1=2 var ðwijÞ
� �

:

Therefore Liang and Zeger’s GEE1 for the simplex margin corresponds to the estimating equation for
b given by

w1ðb; g;aÞ ¼
Pm
i¼1

D>i AiV�1
i wi ¼ 0; ð4Þ

where Ai ¼ diag fs�2
ij vðmijÞ var ðuijÞg and D>i ¼ @m>i =@b.

Following Prentice and Zhao (1991), the GEE2 is formed by adding an additional set of estimating
equations for the correlation parameters based on the standardised score residuals, defined by

rij ¼
uijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var ðuijÞ
p ¼ uij

sij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 Ed00ðyij; mijÞ

q :

It is easy to see that such score residuals satisfy moment properties of EðrijÞ ¼ 0, var ðrijÞ ¼ 1 and

Eðrijrij0 Þ ¼ corr ðuij; uij0 Þ ¼ corr ðwij;wij0 Þ:

The estimating equation for the correlation parameter a then takes the form

w3ðb; g;aÞ ¼
Pm
i¼1

@h>i
@a

� �
H�1

i ðri � hiÞ ¼ 0; ð5Þ

where ri ¼ ðri1ri2; ri1ri3; . . . ; rini�1riniÞ
>; Hi is a working covariance matrix and hi ¼ EðriÞ.

The extended GEE2 consists of the equations (4), (5), and an estimating equation for the dispersion
component given as follows,

w2ðb; g;aÞ ¼
Pm
i¼1

@s>i
@g

� �
S�1

i ðdi � siÞ ¼ 0 ; ð6Þ

where di ¼ ðdðyi1; mi1Þ; . . . ; dðyini ; mini
ÞÞ>, Si is a working covariance matrix, and si ¼ EðdiÞ

¼ ðs2
i1; . . . ; s2

ini
Þ>. Note that here we use the squared deviance residuals, rather than the squared Pearson

residuals given in Paik (1992), to form the third sets of estimating equations. The Crowder optimal
matrix for Si (Crowder, 1987) is in fact the cov ðdiÞ which is in general not easy to obtain. A simple
choice of Si is the identity matrix, leading to the method of moments estimator for g. Perhaps a better
choice for Si is a diagonal matrix with diagonal elements equal to the variances
var fdðYij; mijÞg ¼ 2ðs2

ijÞ
2. See the appendix for the proof of this formula in detail. This indicates a

gamma type of mean-variance relation, that is, the unit variance function is equal to the squared
mean. With this choice, the estimating equation will effectively produce the quasi-likelihood estimator
of g as does the gamma regression (Wedderburn, 1974).

Let q ¼ ðb; g;aÞ be the vector of parameters to be estimated via the extended GEE2 for which the
estimates are obtained by simultaneously solving the joint equations,

UðqÞ ¼ Uðb; g;aÞ ¼
w1ðb; g;aÞ
w2ðb; g;aÞ
w3ðb; g;aÞ

2
4

3
5 ¼ 0 : (7)
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It is clear that the estimating equation UðqÞ ¼ 0 is unbiased, namely EUðqÞ ¼ 0. Hence it follows
from the standard theory of estimating equations that under some mild regularity conditions, the esti-
mator q̂q ¼ ðb̂b; ĝg; âaÞ is consistent and m1=2ðq̂q� qÞ is asymptotically multivariate Gaussian with zero
mean and covariance matrix of the form lim

m
mJ�1ðqÞ, where JðqÞ is the Godambe information matrix

given by JðqÞ ¼ S>R�1S: Details of the sensitivity matrix S ¼ Ef@UðqÞ=@q>g and of the variability

matrix R ¼ EfUðqÞU>ðqÞg are given in the appendix.
Using the Newton-scoring algorithm, the solution q̂q for the joint equation (7) can be obtained

numerically by iteratively updating the q values as follows,

qðkþ1Þ ¼ qðkÞ � S�1U qðkÞ
� 	

:

4 Simulation Study

To demonstrate the importance of properly analysing the longitudinal data in the presence of hetero-
geneous dispersion, we conduct a simulation study where the proportional data yi � S�ðmi; s

2
i Þ;

i ¼ 1; . . . ; 150, were generated independently according to the following marginal models:

logit ðmiÞ ¼ b0 þ b1Ti þ b2Si ;

log ðs2
i Þ ¼ g0 þ g1Ti ;

where covariates T and S are variables of treatment groups indicated by (–1, 0, 1), and illness severity
score ranged in (0, 1, 2, 3, 4, 5, 6) that is randomly assumed to each subject by a binomial distribution
B (6, 0.5). For simplicity, we mainly investigated how the parameters bj’s representing the population-
averaged effects would be affected by the situation of the dispersion parameter. So, we considered
only the independence correlation structure, for which we were able to simulate data. We took three
equally sized treatment groups, each with 50 subjects. Using the notation above, we yield
xi ¼ ð1; Ti; Si � 3Þ> and zi ¼ ð1; TiÞ> in which the severity covariate was centralised by the mid-score 3.
Moreover, the true values were assigned as ðb0; b1; b2Þ ¼ ð0:5;�0:5; 0:5Þ, ðg0; g1Þ ¼ ð3; 2Þ. We ran the
regression over 200 replications, and the corresponding summaries are listed below.

Table 1 reports the summary statistics of the parameter estimates from the extended GEE2 approach
proposed in the paper with heterogeneous dispersion. These statistics include mean point estimate,
2.5th and 97.5th percentiles, empirical standard deviation and mean standard error for each of the five
parameters.

When the model with the homogeneous dispersion was used to fit the simulated data, the mean
estimate of log ðs2Þ was 19.2 with the empirical standard deviation equal to 80.6, considerably larger
than the average standard error 0.12 obtained from the sandwich asymptotic variance estimator.
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Table 1 Summary statistics of the estimates, based on 200 replications
generated from the heterogeneity model.

True Value Heterogeneous Dispersion Homogeneous Dispersion

Mean (2.5%, 97.5%) Stdev* Stderry Mean (2.5%, 97.5%) Stdev Stderr

b0 (–0.5) –0.4986 (–0.3671, –0.6618) 0.0810 0.0792 –0.4353 (–1.2075, 1.5808) 0.5709 0.1076
b1 (–0.5) –0.5046 (–0.6697, –0.3493) 0.0861 0.0896 –0.3120 (–1.9471, 1.9598) 0.8371 0.1316
b2 (–0.5) –0.5013 (–0.3973, –0.6159) 0.0575 0.0539 –0.3668 (–0.7345, 0.7901) 0.4045 0.0906
g0 (–3.0) –2.9782 (–2.7778, –3.2258) 0.1123 0.1155 –– –– –– ––
g1 (–2.0) –2.0088 (–1.7008, –2.2840) 0.1491 0.1414 –– –– –– ––

* Empirical standard deviation; y Mean standard error
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From Table 1, we learned: (i) The point estimates b̂bi; i ¼ 0; 1; 2 in the pupulation-averaged effects
model (1) from both approaches are relatively close to each other, although the model with the homo-
geneous dispersion produces a little larger deviation from the true values than the model with the
heterogeneous dispersion. (ii) The 95% empirical confidence intervals from the two models have sub-
stantially different coverage, zero being included in the intervals given by the homogeneity model as
opposed to zero being excluded in those given by the heterogeneity model, for all three b parameters.
This suggests that the homogeneity model loses its power of identifying some important covariates in
the presence of heterogeneous dispersion. (iii) The values of the empirical standard deviation and the
standard error are very similar in the heterogeneity model, but clearly different in the homogeneity
model. This indicates that the asymptotic normality theory for the estimators from the homogeneity
model may be no longer valid. To visualise this, we plotted the estimated densities over the 200
estimates for each parameter in Figure 1.
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Figure 1 Estimated densities of the model parameters over 200 replications using data
generated from the heterogeneity model.

# 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Figure 1 indicates that for each parameter, the estimates from the heterogeneity model are evenly
distributed along the parameter space and clearly form a bell-shaped density. In contrast, the estimates
from the homogeneity model occurs more frequently on tail areas and clearly form a heavy-tailed
density. The density for the estimator of g from the homogeneity model has an extremely long tail on
the right. In conclusion, the asymptotic normality for the estimators from the homogeneity model is
seriously in question.

Conversely, we conducted another simulation in that the true model had the homogeneous disper-
sion. In particular, data were generated similarly as in the first simulation, except that now the disper-
sion model is constant log ðs2

i Þ ¼ g0. The true values of b parameters are the same as above, and set
g0 ¼ 4, which leads to a large dispersion around 55. Table 2 gives the summary statistics over 200
replications.

Evidentially, Table 2 indicates that the estimates from the two models are very close, the null
hypothesis H0 : g1 ¼ 0 cannot be rejected at the significance level 0:05 under the heterogeneity model.
As expected, the estimated densities (not shown in the paper) of the parameters are very similar
between the two models, and they are all very alike to normal density curves.

In summary, when a constant dispersion assumption is in doubt, the heterogeneity model seems to
be necessary and advantageous to make proper statistical inference.

5 Residual Analysis

We propose to use two types of residuals to form diagnostics for the key model assumptions: (i)
marginal distributions, (ii) link functions, and (iii) the working correlation structure. The first one is
the standardised score residuals rij given in (5), and the other is the regular standardised Pearson

residuals, eij ¼ ðyij � mijÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ðYijÞ

p
, where var ðYijÞ has no closed form expression as it involves the

incomplete gamma function. See Jørgensen (1997) for the details.
The sample counterpart of rij or eij is obtained by replacing parameters by their corresponding

estimates, denoted by r̂rij or êeij, accordingly. Like most residual analyses, our residual analysis below is
useful to detect strong signals associated with certain model assumption violation.

The simplex distribution assumption can be checked by the plot of êeij against m̂mij, which aims to exam-
ine the mean-variance relation. If this assumption is true, then var ðeijÞ ¼ 1, independent of mean mij.
Therefore, points in the plot should randomly scatter around the horizontal line at zero (the expectation
of residuals), with approximately 95% points in the horizontal band between �2 and 2. Any apparent
departure from this would suggest either a violation of the assumption on distribution or probably a poor
model fit. A series of further investigations are needed to identify which factor is responsible for such
departure. This approach would become more reliable as s2 becomes large, because the mean-variance
relation becomes dominated by mð1� mÞ, a case similar to that of a binomial distribution.
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Table 2 Summary statistics of the estimates, based on 200 replications
generated from the homogeneity model.

True Value Heterogeneous Dispersion Homogeneous Dispersion

Mean (2.5%, 97.5%) Stdev* Stderry Mean (2.5%, 97.5%) Stdev Stderr

b0 (–0.5) –0.5017 (–0.2938, –0.7088) 0.1035 0.0971 –0.5014 (–0.2942, –0.7105) 0.1035 0.0972
b1 (–0.5) –0.5078 (–0.6943, –0.2885) 0.1161 0.1171 –0.5089 (–0.6992, –0.2940) 0.1166 0.1173
b2 (–0.5) –0.5109 (–0.3623, –0.6880) 0.0894 0.0842 –0.5101 (–0.3690, –0.6857) 0.0895 0.0843
g0 (–4.0) –3.9624 (–3.7216, –4.2071) 0.1151 0.1155 –3.9695 (–3.7263, –4.2149) 0.1143 0.1155
g1 (–0.0) –0.0099 (–0.2874, –0.2889) 0.1489 0.1414 –– –– –– ––

* Empirical standard deviation; y Mean standard error
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Following McCullagh and Nelder’s (1989), we use the plot of the adjusted dependent variable sij

against the linear predictor ĥhij to check the chosen link function. In our setting, define

sij ¼ hðmijÞ þ
3s4

ij

mijð1� mijÞ
þ

s2
ij

vðmijÞ

( )�1=2

uðyij; mijÞ; j ¼ 1; . . . ; ni; i ¼ 1; . . . ;m :

Clearly, EðsijÞ ¼ hðmijÞ since EðuijÞ ¼ 0, and var ðsijÞ ¼ Efsij � hðmijÞg
2 ¼ 1. If the link function is

appropriate, the plot of the estimates ŝsij against ĥhij ¼ x>ij b̂b should show a straight line with approxi-
mately 95% points falling into a band with the upper and lower limits of ĥhij � 2. As in generalised
linear models, this plot does not suggest the best link function for the model, but rather only gives an
informal check for any strong violation of the used link.

Although it is difficult to model the true correlation structure of longitudinal data, approximately
correct correlation structures allow regression coefficients to be estimated more efficiently. Thus, it is
important to assess the appropriateness of the working correlation used in GEEs via residual analysis.
Note that

corr ðrij; rij0 Þ ¼ corr ðwij;wij0 Þ;

implying that the true correlation of variable wij is equal to that of the standardised score residuals rij.
Some exploratory procedures presented in Section 3.4 of Diggle et al. (2002) can be adopted for wij’s
to examine the correlation of data.

6 An Example

In this section we re-analyse the ophthalmological data on the use of intraocular gas in retinal repair
surgeries (Meyers et al., 1992), with a special focus on the heterogeneous dispersion. A primary analysis
of the data assuming the homogeneous dispersion was done by Song and Tan (2000). Briefly, the study
was to investigate the decay course of the intraocular gas in retinal repair surgeries prospectively in 31
patients. The gas was injected into the eye before surgery and patients were followed three to eight
(average of 5) times over a three-month period. The response variable yij was the percent of gas left in
the eye recorded as proportion (a percent). The question was if the disappearance of the gas is related to
other covariates such as the concentration of the gas used. Song and Tan (2000) modelled the gas volume
directly using a marginal model. With our proposed method, we are able to test if the homogeneous
dispersion is true, and if not so the model allows us to identify which covariates lead to heterogeneity.

To begin, the population-averaged effects model in Song and Tan (2000) is

logit ðmijÞ ¼ b0 þ b1log ðtijÞ þ b2log 2ðtijÞ þ b3xij ð8Þ

where tij is the time covariate of days after the gas injection, and xij is the covariate of gas concentration
levels equal to –1, 0 and 1, corresponding to the concentration levels of 15%, 20% and 25%, respectively.
To this model, the components of the estimating function w1 specified by (4) are given as follows.

D>i ¼ X>i diag fmijð1� mijÞg ; D>i Ai ¼ X>i diag f3s2
ijvðmijÞ þ mijð1� mijÞg;

where Xi is of ni � 3 dimension and its jth row is ð1; log ðtijÞ; log 2ðtijÞ; xijÞ, and

var ðwijÞ ¼ s2
ijvðmijÞf3s2

ijm
2
ijð1� mijÞ

2 þ 1g:

Clearly the corresponding sensitivity matrix is S11 ¼ �
Pm
i¼1

D>i AiV�1
i AiDi.

Also as indicated in their paper, AR(1) dependence seemed to fit the data the best, so our analysis
only concerns this type of dependence, specified as of the first-order ECM model, corr ðwij;wij0 Þ
¼ exp ðajtij � tij0 jÞ, for a < 0. When Hi is chosen to be the identity matrix, the function w3 becomes

FðaÞ ¼
Pm
i¼1

c>i ri � hið Þ ¼ 0
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where ci ¼ ½jti1 � ti2j exp ð�ajti1 � ti2jÞ; . . . ; jtini�1 � tini j exp ð�ajtini�1 � tini jÞ�
> and the corresponding

sensitivity matrix S33 ¼ �
Pm
i¼1

c>i ci.

The model that addresses the heterogeneity in two covariates of time and gas concentration level
takes the following form

log s2
ij

� 	
¼ g0 þ g1log ðtijÞ þ g2xij: ð9Þ

We ran the Newton-scoring algorithm given in Section 3 and found estimates and standard errors that
are listed in Table 3.

548 P. X.-K. Song et al.: Modelling dispersion

Table 3 Estimates, standard errors and robust z-statistics from the heterogeneous
dispersion model for the eye surgery data.

Parameter b0 b1 b2 b3 g0 g1 g2 a

Estimate 2.7445 –0.0223 –0.3144 0.4114 6.1551 –0.4583 –0.4938 –1.8484
Stderr? 0.2107 –0.3367 –0.0855 0.2122 0.1988 –0.0803 –0.1427 –0.3881
z-statistic 13.0256 –0.0663 –3.6771 1.9393 30.9613 –5.7073 –3.4604 –4.7627

*Standard Error
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Figure 2 Fitted curves for the pattern of heterogeneous
dispersion over time across three treatment levels.

# 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Clearly, both covariates of time and treatment are significant factors attributed to the heterogeneous
dispersion in model (9). Figure 2 displays the fitted curves for the pattern of dispersion profile over
time across three different gas concentration levels.

Based on the model with the time-varying dispersion, our findings for other parameters are very
similar to those in Song and Tan (2000). Similar to Song and Tan (2000), we found that the quadratic
time term log2 ðtijÞ is significant, that the linear time log ðtijÞ is not significant, and that the gas con-
centration covariate is marginally insignificant, at the significance level 0.05. Also, The estimated lag-1

autocorrelation q̂q ¼ eâa ¼ 0:1575ð0:0611Þ and its z-statistic is 2.5769, suggesting that q is significantly
different from zero.

In contrast to the simulation study, here we did not see dramatic differences between the results
from the heterogeneity and homogeneity models. We gave the reason as follows. In the simulation
study we chose the intercept and slope parameters to be comparable, respectively 3 and 2, so that a
change on the covariate would greatly affect the size of dispersion. Therefore, the results from the
homogeneity and heterogeneity models were evidently different. However, in the data analysis the
intercept dominates the contribution to the dispersion over the two slope coefficients, implying that
the overall dispersion remains mostly very large, and therefore no big differences appeared in the
results from the two types of models.

Now we consider the residual analysis for the above model with time-varying dispersion. Panel A
of Figure 3 shows the scatter-plot of the estimated standardised Pearson residuals êeij’s against the
fitted mean values m̂mij, to check the distribution assumption. The dashed lines at 2 and �2 represent
the asymptotic 95% upper and lower limits, respectively. The residuals seem to behave reasonably
well as expected, only three of them lying outside of the region. The plot seems to be in agreement
with the simplex marginal distribution.

Panel B of Figure 3 provides a rough check of the logit link function used in the proposed model,
showing the scatter-plot of the estimated adjusted dependent variables ŝsij against the estimated logit
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Figure 3 Diagnostic plots in the eye surgery data analysis.
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linear predictor ĥhij. The two solid lines stand for the asymptotic 95% confident bands within which
almost 96% points are contained. This clearly supports the logit link function assumption.

Checking the working correlation seems to be nontrivial, since the data are measured at irregular
time points and the residuals available at a given time are sparse. So we feel that the proposed method
for checking the working correlation may not be reliable here. Alternatively, Diggle’s variogram plot
(Diggle, 1990) may be used here to reach an appropriate conclusion. However this is not the focus of
the paper, and hence the details are omitted.

7 Concluding remarks

In this paper we developed an approach to modelling the heterogeneous dispersion parameter, relaxing
the usual assumption of constant dispersion in Liang and Zeger’s marginal models. An extended ver-
sion of GEEs was proposed to estimate the parameters in the model for dispersion. Through the
analysis of the eye surgery data, we found that the dispersion can be a function over follow-up time
as well as treatment arm, and that the shape of marginal distributions is time-varying in addition to
the time-varying locations. This proposed method improves the modelling of longitudinal data and
provides a tool for better understanding the marginal profiles of the longitudinal continuous propor-
tional data.

The extended GEEs in this paper was developed under the assumption of no missing values in data.
Since missing values often occur in longitudinal studies in practice, it would be of great interest to
further extend the proposed GEEs to conduct data analysis with missing values. It is known that GEEs
produce consistent estimators for the model parameters when missing values are completely random
and ignored in the analysis. However, when data contain random missing values or informative miss-
ing values, the consistency for the GEEs estimators is generally no longer valid. Resolving this issue
has been an active research topic in the longitudinal data analysis. For example, Robins et al. (1995)
suggested the inverse probability weighted GEEs that produce consistent estimates if the drop-out
process is properly modelled. Another approach suggested by Paik (1997) is to impute the missing
values by the conditional expectation given the observed data. More references can be found in Diggle
et al. (2002), Verbeke and Molenberghs (2000), or Ziegler et al. (1998).
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Appendix

A Godambe information matrix

This section gives the components of Godambe information matrix needed for computing the esti-
mated standard errors for estimates and hence for constructing Wald test statistics.

The sensitivity matrix is a 3� 3 block matrix,

S ¼ E
@UðqÞ
@q>

� �
¼

S11 S12 S13

S21 S22 S23

S31 S32 S33

0
@

1
A;

where clearly S12 ¼ 0, S13 ¼ 0, and S23 ¼ 0. Also the block S21 ¼ 0 because Euij ¼ 0. So in general
the S matrix takes the form

S ¼
S11 0 0
0 S22 0

S31 S32 S33

0
@

1
A;

550 P. X.-K. Song et al.: Modelling dispersion

# 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



and its inverse matrix is

S�1 ¼
S�1

11 0 0
0 S�1

22 0
�S�1

33 S31S�1
11 �S�1

33 S32S�1
22 S�1

33

0
@

1
A;

provided that all diagonal blocks are invertible. When the distribution of rijrij0 is independent of the
mean and dispersion parameters, both S31 and S32 are 0. Therefore the matrix S becomes a block-
diagonal matrix with

S11 ¼ �
Xm

i¼1

D>i AiV�1
i AiDi;

S22 ¼ �
Xm

i¼1

@s>i
@g

� �
S�1

i

@si

@g>

� �

and

S33 ¼ �
Xm

i¼1

@h>i
@a

� �
H�1

i
@hi

@a>

� �
:

The variability matrix R is also a 3� 3 block matrix,

V ¼ EfUðqÞU>ðqÞg ¼
V11 V12 V13

V21 V22 V23

V31 V32 V33

0
@

1
A:

The nine blocks are detailed as follows.

V11 ¼ Efw1w
>
1 g ¼

Xm

i¼1

D>i AiV�1
i cov ðwiÞV�1

i AiDi;

V12 ¼ Efw1w
>
2 g ¼

Xm

i¼1

D>i AiV�1
i cov ðwi; diÞ S�1

i
@si

@g>

� �
;

V13 ¼ Efw1w
>
3 g ¼

Xm

i¼1

D>i AiV�1
i cov ðwi; riÞH�1

i
@hi

@a>

� �
;

V22 ¼ Efw2w
>
2 g ¼

Xm

i¼1

@s>i
@g

� �
S�1

i cov ðdiÞ S�1
i

@si

@g>

� �
;

V23 ¼ Efw2w
>
3 g ¼

Xm

i¼1

@s>i
@g

� �
S�1

i cov ðdi; riÞH�1
i

@hi

@a>

� �
;

V33 ¼ Efw3w
>
3 g ¼

Xm

i¼1

@h>i
@a

� �
H�1

i cov ðriÞH�1
i

@hi

@a>

� �
:

Because of symmetry, V21 ¼ V>12, V31 ¼ V>13, and V32 ¼ V>23.

It is noted that cov ðwiÞ ¼ diag fvðmijÞg cov ðuiÞ diag fvðmijÞg, and an estimate of cov ðuiÞ is obtained

by plugging the estimates m̂mij and replacing cov ðuiÞ by ûuiûu>i in the expression. The same approach is
applied to estimate the remaining blocks of V.
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B Proof of mean-variance relation

This section presents the proof for the formula var fdðYij; mijÞg ¼ 2ðs2
ijÞ

2, Yij � S�ðmij; s
2
ijÞ. From the

appendix of Song and Tan (2000), suppressing coordinates, EfdðY; mÞg ¼ s2, and hence it is sufficient
to show that Efd2ðY; mÞg ¼ 3 s2ð Þ2.

A simple algebra leads to

Efd2ðY ; mÞg ¼
Z1

0

d2ðy; mÞ pðy; m; s2Þ dy

¼
ffiffiffiffiffiffi
l

2p

r
ð1þ xÞ4

x4

Z1
0

fx3
2 þ ð1� 4xÞ x

1
2 þ 2xð3x� 2Þ x�

1
2

þ 2x2ð3� 2xÞ x�
3
2 þ x3ðx� 4Þ x�

5
2 þ x4x�

7
2g f ðx; x; lÞ dx;

where l ¼ 1=s2 and

f ðx; x; lÞ ¼ exp � l

2
ð1þ xÞ2

x2

ðx� xÞ2

x

( )
:

Using formulas (5.41)–(5.43) of (Jørgensen, 1997), we obtain

Z1
0

x
3
2f ðx; x; lÞ dx ¼ 2p

l

� �1
2 l2x3ð1þ xÞ4 þ 3lx4ð1þ xÞ2 þ 3x5

l2ð1þ xÞ5

and Z1
0

x�
7
2f ðx; x; lÞ dx ¼ 2p

l

� �1
2 l2ð1þ xÞ4 þ 3lxð1þ xÞ2 þ 3x2

l2x2ð1þ xÞ5
:

Plugging these results and those from Song and Tan (2000), we get E d2ðY ; mÞ
� �

¼ 3 s2ð Þ2.
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