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abstract

This article proposes stochastic conditional duration (SCD) models with ‘‘leverage
effect’’ for financial transaction data, which extends both the autoregressive
conditional duration (ACD) model (Engle and Russell, 1998, Econometrica, 66,
1127–1162) and the existing SCD model (Bauwens and Veredas, 2004,
Journal of Econometrics, 119, 381–412). The proposed models belong to a class
of linear nongaussian state-space models, where the observation equation for
the duration process takes an additive form of a latent process and a noise term.
The latent process is driven by an autoregressive component to characterize the
transition property and a term associated with the observed duration. The inclu-
sion of such a term allows the model to capture the asymmetric behavior or
‘‘leverage effect’’ of the expected duration. The Monte Carlo maximum-likelihood
(MCML) method is employed for consistent and efficient parameter estimation
with applications to the transaction data of IBM and other stocks. Our analysis
suggests that trade intensity is correlated with stock return volatility and model-
ing the duration process with ‘‘leverage effect’’ can enhance the forecasting
performance of intraday volatility.
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Modeling the trade duration of the financial market has recently drawn a great

deal of attention in the statistical and financial econometric literature. Due to the

rapid development of technologies for data collection and the growing capacity of

data storage, massive transaction records in the financial market are available.

Such voluminous data provide a wealth of information about the activities and

microstructures of the financial market, yet they also give rise to the challenge of

developing appropriate dynamic models. One major complicating factor with
transaction data is that they are typically irregularly spaced. Modeling of an

irregularly spaced ‘‘marked point process’’ involves the complex dynamic struc-

ture of random arrival times. It presents a great challenge to statisticians and

econometricians, as most standard econometric techniques are developed to

deal with fixed-interval random processes. In their seminal article, Engle and

Russell (1998) propose an autoregressive conditional duration (ACD) model,

which is essentially an ARMA process with nongaussian innovations and in the

line of the well-known autoregressive conditionally heteroskedastic (ARCH)
[Engle (1982)] and generalized ARCH (GARCH) [Bollerslev (1986)] models for

asset returns. The major advantage of the ACD model is the availability of

maximum-likelihood (ML) inference, which furnishes a great deal of ease and

efficiency in parameter estimation both conceptually and computationally.

Various extensions have been proposed in the literature either generalizing

the distribution of the disturbance term or incorporating other state variables in

the duration process. For instance, Grammig and Maurer (2000) extend the

Weibull distribution in the ACD model by Engle and Russell (1998) to the Burr
distribution in order to have a more flexible shape for the conditional hazard

function. Veredas, Rodriguez-Poo, and Espasa (2001) further extend the model to

a semiparametric framework for the joint analysis of trade duration dynamics and

intraday seasonality. Bauwens and Giot (2003) model the conditional duration

process based on the state of the asset price process in an asymmetric ACDmodel.

Meddahi, Renault, and Werker (1998) extend the ACD model to the continuous-

time modeling of stochastic volatility using irregularly spaced data. Other studies

have extended the modeling of duration with a GARCHmodel for the conditional
volatility of asset returns [see Ghysels and Jasiak (1998), Engle (2000), and

Grammig and Wellner (2002)]. Finally, Bauwens and Giot (2000) propose a log

ACD model so that the positivity constraint on the state variables can be relaxed.

For a survey of the literature and a comparison of various models, see Bauwens

et al. (2000).

In recent literature, the ACD model is also extended to the latent-factor

models, such as the stochastic volatility duration (SVD) model of Ghysels,

Gouriéroux, and Jasiak (2004) and the stochastic conditional duration (SCD)
model of Bauwens and Veredas (2004). In the SVD model of Ghysels, Gouriéroux,

and Jasiak (2004), the volatility of the trade duration is assumed to be stochastic

and the duration is driven by a mixture of distributions, namely the combination

of gamma and exponential distributions. The authors believe that it is not suffi-

cient to model the duration process by only incorporating randomness into the

conditional mean. Compared to the ACD models of Engle and Russell (1998), the
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SCD models proposed by Bauwens and Veredas (2004) are based on the assump-

tion that the evolution of the conditional duration is driven by a latent variable. By

incorporating a latent variable in the conditional duration process, the SCDmodel

in Bauwens and Veredas (2004) offers a flexible structure for the dynamics of the

duration process. Extension of the SCD model over the ACD model is similar to

that of the SV model over the GARCHmodel in the asset return literature. Similar

to asset return in the SV model, trade duration under the SCD model is also
modeled as a mixture of distributions. As pointed out by Ghysels, Harvey, and

Renault (1996), there are various advantages of modeling asset return dynamics

in an SV model framework relative to the ARCH/GARCH model framework.

We shall discuss the advantages of modeling the duration process in an SCD

model framework. The main challenge with the SCD model is, however, its

statistical inference, as it involves unobserved latent variables in the likelihood

function.

In this article we propose a further extension to Bauwens and Veredas’s (2004)
SCDmodel in order to capture the asymmetric behavior or ‘‘leverage effect’’ in the

duration process. To reflect the asymmetric behavior, our model includes an

intertemporal term associated with the observed duration in the latent process.

The inclusion of such a term gives further flexibility to capture the local move-

ments and random spikes of the trade duration. For statistical inference of our

models, we adopt the Monte Carlo maximum-likelihood (MCML) approach pro-

posed by Durbin and Koopman (1997), which produces not only consistent but

also efficient parameter estimators. The MCML procedure is a powerful inference
tool to deal with parameter estimation of nonnormal parametric families. With a

selected importance distribution (e.g., normal distribution) under which certain

standard estimation procedures apply, the original intricate estimation problem

involving non-normal distributions can be reformulated. In the present article, as

part of the MCML procedure, the normal distribution is used as the importance

distribution under which it is possible to perform the standard Kalman filter

procedure as the key to estimation.

The article is structured as follows. Section 1 presents SCD models with
‘‘leverage effect’’ and then discusses some analytical properties of the proposed

models. Section 2 introduces the MCML estimation procedure, and its application

is illustrated in Section 3 using the transaction data of IBM and other stocks.

Section 4 concerns the diagnostics of model specification, with special attention

to the implications of ‘‘leverage effect’’ in the SCD models. We conclude in

Section 5. Proofs of all propositions are collected in the appendix.

1 MODELS

1.1 Formulation

In modeling the arrival times of a ‘‘marked point process,’’ a common approach in

the literature is to model the conditional intensity process. For example, Cox’s

doubly stochastic model assumes that there is a latent independent process that
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governs the arrival rate, and such a process is itself a self-exciting process. Engle

and Russell (1998) introduce a new family of self-exciting processes for the

irregularly spaced transaction data where the duration process at the current

time is assumed to follow a multiplicative model conditional on the past. To be

specific, let di¼ ti� ti�1, i¼ 1, 2, . . . , be the length of the interval between two trade

times, termed the trade duration, and let ci be the conditional expectation of the

ith duration given all the past durations,

Eðdijdi�1, . . ., d1Þ ¼ ciðdi�1, . . ., d1; uÞ � ci,

where ci may be dependent on a parameter vector u.

The ACD(m, q) model specified in Engle and Russell (1998) takes the following

form:

di ¼ ciei, ð1Þ

ci ¼ vþ
Xm
j¼0

ajdi�j þ
Xq
j¼0

bjci�j,

where ei is an i.i.d. innovation with a given parametric density p(e; f). That is, the
conditional duration ci is assumed to follow an autoregressive process with a

GARCH structure. Under such a parametric specification, the ML estimation can

be applied for inference.

It is noted that when log transformation is taken on both sides of the ACD

model in Equation (1), it results in an additive form of the logarithmic conditional
duration and the error term. This relaxes the positivity restriction on the variable ci

and motivates some other developments using log duration other than the dura-

tion itself [see, e.g., Bauwens and Giot (2000)].

In the present article we consider the stochastic process for the log duration

and propose SCD models which, in a general setting, are in the following state-

space form,

the observation equation: logðdiÞ ¼ gðci, eiÞ
the latent equation: ci ¼ hðci�1, . . .,ci�p, ei�1, . . ., ei�r,hi, . . .,hi�qÞ,

where g(�) and h(�) are known continuous functions, and error distributions for ei
and hi may be nongaussian. For example, when g is chosen such that the observa-

tion equation reduces to Equation (1) and the latent equation takes an ARMA
structure with absence of hi, this reduces to the Engle and Russell (1998) ACD

model. Also, g and h can be chosen so that the model reduces to the Bauwens and

Veredas (2004) SCD model with the following specification:

logðdiÞ ¼ mþ ci þ ei,

ci ¼ bci�1 þ hi, jbj< 1:

It is clear that the SCD models proposed by Bauwens and Veredas (2004) are

extensions of the ACD models of Engle and Russell (1998). As pointed out above,

by incorporating a latent variable in the conditional duration process, the SCD

models in Bauwens and Veredas (2004) offer a flexible structure for the dynamics
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of the duration process. We also noted that extension of the SCD model over the

ACD model is similar to that of the SV model over the GARCHmodel in the asset

return literature. To further appreciate the SCD models and, more importantly, to

motivate the model specification proposed in this article, here we summarize the

analysis of the SV model versus the GARCH model in Ghysels, Harvey, and

Renault (1996). As noted in Ghysels, Harvey, and Renault (1996), there are various

advantages of modeling asset return dynamics in an SV model framework in
comparison to the ARCH/GARCH model framework. The GARCH model, pro-

posed by Bollerslev (1986) by extending the ARCH model of Engle (1982) and

applied extensively to financial time series, assumes the conditional volatility to be

a deterministic function of observed variables. The appeal of the GARCHmodel is

its straightforward application of the ML estimation. The SV model extends the

GARCHmodel by allowing the conditional volatility to be stochastic with its own

disturbance term. The SV model has been shown to have a better fit to the

autocorrelation functions (ACFs) of squared asset returns [see Jacquier, Polson,
and Rossi (1994)].

In terms of capturing the stylized facts of financial asset returns, namely the

asset return distribution with negative skewness and excess kurtosis or fat tails,

the SV model has certain advantages over the GARCH model. The SV model

displays excess kurtosis even if the conditional volatility is not autoregressive.

This is because the asset return under the SV model framework is modeled as a

mixture of distributions. It is, however, not the case with a GARCHmodel, where

the degree of kurtosis depends directly on the roots of the variance equation. Thus,
very often a nongaussian GARCHmodel has to be employed to capture the excess

kurtosis typically found in a financial time series. In addition, in the SV model,

when the disturbance terms in the asset return process and the conditional

volatility process are allowed to be correlated to each other, the model can pick

up the kind of asymmetric behavior that is often found in stock prices. In parti-

cular, when the correlation between the return and conditional volatility is nega-

tive, the model induces the so-called leverage effect [see Black (1976)]. In other

words, higher volatility tends to be associated with a negative return in equity or
an increase of a firm’s leverage (debt/equity ratio). The basic GARCH model,

however, does not allow for the kind of asymmetric behavior as captured easily by

the SVmodel. The extension to correlate asset return and conditional volatility in a

GARCH model framework is less straightforward. For instance, the EGARCH

model proposed by Nelson (1991) handles the asymmetry by specifying the log

volatility as a function of past squared and absolute return observations.

Similar to asset return in the SV model, trade duration under the SCD model

framework is also modeled as a mixture of distributions. In particular, the SCD
models combine a lognormal distribution with another one of positive support.

For instance, Bauwens and Veredas (2004) specify SCD models with log-Weibull

(LW) and log-gamma (LG) errors for the conditional duration process. The main

challenge with the SCD model is its statistical inference, as the likelihood function

becomes difficult to evaluate because of the need to integrate the unobserved

latent variables. The quasi-maximum-likelihood (QML) estimation method is
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implemented in Bauwens and Veredas (2004) for parameter estimation with

application of the Kalman filter after transforming the model into a linear state-

space representation.

The motivation for further extension of the Bauwens and Veredas (2004) SCD

models is the asymmetric structure or the ‘‘leverage effect’’ incorporated in the

SV model. Note that in the representation of Bauwens and Veredas’s (2004) latent

equation, the errors (ei) associated with the observed process are not present. Such
a state-space model can capture the dynamic features of the duration process as to

be driven by the Markov component. However, it may oversimplify the behavior

of local movements, as this process tends to oversmooth the expected duration.

Since the observed duration series may have local asymmetric changes, it seems

desirable to include ei in the latent equation, which models the variation beyond

what the variable hi can describe.

The term ‘‘leverage effect,’’ as we have noted, has specific meaning in finance.

Here we borrow this term simply because of the similarity in model structure, not
because of the financial interpretations. In fact, in this article we actually find a

positive intertemporal correlation between observed duration and expected con-

ditional duration, which is equivalent to a negative relationship between trade

intensity and observed duration.

The extended model is specified as follows with an intertemporal term in the

latent process to capture the ‘‘leverage effect,’’

logðdiÞ ¼ mþ ci þ ei,

ci ¼ bci�1 þ gei�1 þ hi, jbj< 1, ð2Þ
where ei and hi are i.i.d. innovations and ei and hi are mutually independent. Note

that because of the presence of ei, the latent process is effectively intertemporally

correlated with the duration process.
To parameterize the distributions of noise terms, we assume that hi follows

gaussian Nð0, s2
hÞ. For the distribution of ei, we consider three cases, namely log-

Weibull(n, 1) (hereafter LW(n, 1)), log-gamma(n, 1) (hereafter LG(n, 1)), and log

standard exponential (LE) which is LW(1, 1) or LG(1, 1). We now summarize

some basic properties of these three distributions in Table 1, which are useful in

our later development of model estimation.

Table 1 Summary of three density functions.

Distribution Scale parameter Density function Mean Variance

LW(n, 1) n > 0 fðeÞ ¼ n expðne� eneÞ �C

n

p2

6n2

LG(n, 1) n > 0 fðeÞ ¼ 1

GðnÞ expðne� eeÞ j(n) j0(n)

LE 1 fðeÞ ¼ expðe� eeÞ �C p2

6

The table reports the mean and variance of relevant density functions for ei, where j(n) is the logarithmic

derivative of the gamma function, or the so-called digamma function, namely jðnÞ ¼ dlnGðnÞ
dn , and the

constant C ¼ �jð1Þ ¼
R1
0 e�x ln xdx is the Euler constant, which is known to be approximately equal to

0.5772157.
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1.2 Statistical Properties

In this section we study statistical properties of the processes {yi}, where yi ¼
log di�m, and {di}, i ¼ 1, 2, . . . , both specified in Equation (2). In particular, some
moments of these processes are derived which will be used in the development

of the MCML estimation in Section 2. Proofs of these results are given in the

appendix.

Proposition 1 The process {yi ¼ log di�m} as defined in Equation (2) is weakly
stationary and geometrically ergodic if jbj < 1, so is the duration process {di}.

It is noted that for the model specified in Equation (2), the condition for

ergodicity is the same for stationarity. It is known that for an ergodic (or geome-

trically ergodic) Markov process, there exists a limiting distribution. In other

words, the distribution of the process converges to the limiting distribution.

Moreover, a single trajectory represents the whole probability law of the process.

Proposition 2 For the process {yi} as defined above, we have the following unconditional
and intertemporal moments:

E½y2i � ¼ ð1� b2Þ�1fð1þ g2 � b2Þme
2 þmh

2g
E½y3i � ¼ ð1� b3Þ�1fð1þ g3 � b3Þme

3 þmh
3g

E½y4i � ¼ 1þ g4

1� b4

� �
me

4 þ 12
g2

1� b2
1þ g2 b2

1� b4

� �
ðme

2Þ
2

þ 6 1þ g2

1� b2

� �
me

2

1

1� b2
mh

2 þ
mh

4

1� b4
þ 12

b2

1� b2

1

1� b4
ðmh

2 Þ
2

covðyi, yi�sÞ ¼ gbs�1 þ g2bs

1� b2

� �
me

2 þ
bs

1� b2
mh

2 , s � 1,

where me
j and mh

j are, respectively, jth moments of e and h, respectively, j ¼ 2, 3, 4.

Proposition 3 For the process {di} as defined in Equation (2), the rth moment is

Edri ¼ expðrmÞ
Y1
j¼0

mðrajÞexp
r2s2

2ð1� b2Þ

� �
:

In particular, the first and second moments are

Edi ¼ expðmÞ
Y1
j¼0

mðajÞexp
s2

2ð1� b2Þ

� �

Ed2i ¼ expð2mÞ
Y1
j¼0

mð2ajÞexp
2s2

1� b2

� �
,

where

mðaÞ ¼
G

a

n
þ 1

� �
, when ej is LWðn, 1Þ

Gðn þ a� 1Þ
GðnÞ , when ej is LGðn, 1Þ:

8><>:
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When the intertemporal term is g ¼ 0, the mean and variance of the duration

are the same as those given in Bauwens and Veredas (2004).

Proposition 4 For the process {yi} as defined in Equation (2), the following three
important properties can be derived immediately when jbj < 1.

(1) The first lag autocorrelation function is given by

r1 ¼
E½yiyi�1�
E½y2i �

¼

bg2

1� b2
s2
1 þ gs2

1 þ
b

1� b2
s2
2

g2

1� b2
s2
1 þ s2

1 þ
1

1� b2
s2
2

:

(2) Let rs(s � 1) be the sth ACF, then we have that rs/rs�1 ¼ b. It is obvious
that the process is highly persistent if b is close to one.

(3) The kurtosis of the process yi is larger than three. In other words, compared to
the normal distribution, the process yi has a leptokurtic distribution with fat
tails.

The role of the parameter g on the unconditioned moments can be easily seen in

Proposition 2. The presence of the ‘‘leverage effect,’’ that is, g 6¼ 0, inflates the
variance and the fourthmoment. The sign of g determines whether or not the third

moment as a function of g increases or decreases. In addition, the kurtosis varies in

terms of both the sign and magnitude of g, which adds additional flexibility in

modeling financial data.

2 ESTIMATION

The difficulty of parameter estimation for nongaussian state-space models as

specified in Equation (2) arises from the fact that the conditional density of the
duration involves the latent or unobserved variable. Unlike the ACD model, in

which the likelihood function can be expressed in an explicit form, the likelihood

function for the SCD model is very complex due to the curse of high dimension-

ality. Mostly the high-dimensional integral in the likelihood function cannot be

expressed as the form of one-dimensional (or substantially lower) integrals. For

related issues, see Danielsson (1994), Duffie and Singleton (1993) and Durbin and

Koopman (1997). In the context of estimation, issues such as evaluating high-

dimensional integration encountered here are very similar to those for the SV
model. In fact, the SVmodel is proposed ahead of ARCH or GARCHmodels in the

statistics literature, but it did not become popular until powerful computers

became available to attack intensive computation [see Danielsson (1994)].

Various estimation methods have been proposed for state-space models. One

of the earliest methods is the Kalman filter algorithm, first studied by Kalman and

Bucy (1961). This method is developed for linear and gaussian state-space models

to compute the ML estimates of the state variables recursively, where both error

terms in the observation equation and the transition equation are normally dis-
tributed [Harvey (1989)]. When parameters other than the state variables are
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involved in a state-space model, a typical approach to parameter estimation is the

expectation maximization (EM) algorithm. In the E step, the Kalman filter techni-

que sequentially produces the estimates of the state variables via conditional

expectations, and the M step then maximizes the resulting likelihood function,

which can be explicitly evaluated with the given estimates of the state variables.

As shown in West and Harrison (1989), the resulting estimates from the EM

algorithm are the ML estimates. However, when at least one of the disturbances
is nongaussian, analogy to the EM algorithm using the Kalman filter in the E step

is, in general, not efficient, and even inconsistent for some cases [see Jørgensen

et al. (1999)]. Due largely to the fact that the Kalman filter is conceptually simple

and computationally tractable, researchers are still willing to adopt it into some

estimation procedures. For instance, the quasi-ML estimation used in Bauwens

and Veredas (2004) for their SCD model is based on an adopted Kalman filter

technique, initially considered in Harvey, Ruiz, and Shephard (1994).

In recent years, more estimation methods have been proposed in the literature
for dynamic models with latent variables. The first type of estimation method

requires knowledge of the distribution function to implement the ML estimate of

different variations. For example, Jacquier, Polson, and Rossi (1994) proposed the

Bayesian Markov chain Monte Carlo (MCMC) method, Danielsson and Richard

(1993) proposed the simulated maximum-likelihood (SML) method using the

accelerated gaussian importance sampler (AGIS), and Shephard and Pitt (1997)

and Durbin and Koopman (1997), as well as Sandmann and Koopman (1998),

proposed theMCMLmethod. The second type of estimationmethod requires only
moment conditions to form estimating equations. Examples of this type include

the simple method of moments by Taylor (1986), the generalized method of

moments (GMM) by Hansen (1982), the simulated method of moments (SMM)

by Duffie and Singleton (1993), the indirect inference developed by Gouriéroux,

Monfort, and Renault (1993) and Smith (1993), and the efficient method of

moments (EMM) by Gallant and Tauchen (1996).

2.1 MCML Estimation

In the present article we adopt the MCML estimation for the SCD model with

‘‘leverage effect.’’ The main idea behind the MCML estimation is to convert the

intractable likelihood function associated with nongaussian distribution into a

setting where related computations become feasible. In the context of the SCD
models, we first approximate the nongaussian distribution of ei by a gaussian

distribution, resulting in an approximate model for which the EM algorithm, with

the E step being the classical Kalman filter, is applicable. Then the Monte Carlo

method is employed to evaluate the difference of the likelihood functions between

the original model and the approximate model. Such an evaluation of the differ-

ence in the likelihood functions is necessary in the EM algorithm to correct the bias

in estimation, which effectively leads to consistent estimators. In order to achieve

efficiency, both antithetic variables and control variables in the Monte Carlo
simulation [Campbell, Lo, and MacKinlay (1997)] are also used.
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To present the estimation procedure for the SCD model, we first give a brief

summary of MCML estimation proposed by Durbin and Koopman (1997). Let us

first consider a more general setup than Equation (2) with yi ¼ log(di) � m defined

by the following data-generating process,

yijci ¼ Fðci, ei; uÞ and cijIi�1 ¼ Gðci�1, e1�1,hi; uÞ, ð3Þ

where ei follows a distribution with density p(ei), hi is normally distributed with

hi � N(0,�i), u is the set of parameters to be estimated, and F and G are two given

functions. Let y1, . . . , yn be the observations of trade durations, and

c ¼ ðc1, . . . ,cnÞ0, and y ¼ ðy1, . . . , ynÞ0:

In the following, p(�j�) is a generic notation denoting a conditional density func-

tion. Then the likelihood function for the parameter u is

LðuÞ ¼ pðyjuÞ ¼
Z

pðy,cjuÞdc ¼
Z

pðyjc, uÞpðcjuÞdc: ð4Þ

We now approximate p(ei) by a normal density of N(mi, Hi) with both mi and Hi

matching the first two moments of p(ei), respectively.
Under the proposed approximate N(mi, Hi) for ei in Equation (3), the resulting

likelihood function becomes

LgðuÞ ¼ gðyjuÞ ¼ gðy,cjuÞ
gðcjy, uÞ ¼

gðyjc, uÞpðcjuÞ
gðcjy, uÞ , ð5Þ

where g(�j�) is a generic notation for a conditional density function corresponding

to the approximate model with error terms ei being normally distributed.

It follows from Equation (5) that

pðcjuÞ ¼ LgðuÞ
gðcjy, uÞ
gðyjc, uÞ : ð6Þ

Plugging Equation (6) into Equation (4), we get

LðuÞ ¼ LgðuÞ
Z

pðyjc, uÞ
gðyjc, uÞ gðcju, yÞdc ¼ LgðuÞEg

pðyjc, uÞ
gðyjc, uÞ

� �
¼ LgðuÞEg½wðy,cjuÞ�,

ð7Þ

where wðy,cjuÞ ¼ pðy;cjuÞ
gðy;cjuÞ. Taking the logarithm on both sides of Equation (7)

leads to

logfLðuÞg ¼ logfLgðuÞg þ logfEg½wðy,cjuÞ�g: ð8Þ

Thus, finding the ML estimator of u from log{L(u)} can be done via the following

two steps: step 1 maximizes log{Lg(u)} with respect to u through the EM algorithm
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where the E step is computed by the Kalman filter, and step 2 evaluates the log

expectation of w(y, cju) for bias correction in step 1. Finally, the Monte Carlo

method with the antithetic variable and control variable is used to evaluate the log

expectation. An unbiased estimator of the log expectation is given by log �wwþ s2w
2N �ww2,

where �ww and s2w are the sample mean and variance of a Monte Carlo sample of

size N for variable w, respectively [see Durbin and Koopman (1997)].

Under certain mild regularity conditions, the MCML estimators are consistent
and asymptotically normally distributed, with the asymptotic variance-covariance

matrix being the inverse of the Fisher information matrix. That is, for the MCML

estimator, ûu, obtained by maximizing the log likelihood function in Equation (8),

we have ûu� u�a Nð0, I�1ðuÞÞ, where I(u) is the observed Fisher information matrix,

which can be computed based on the second derivative of Equation (8) with

respect to the parameter vector.

2.2 Estimation of the SCD Model

Now we consider estimation of the SCD model with ‘‘leverage effect’’ as specified
in Equation (2) with ei following LW or LG, respectively. Either case with the scale

parameter equal to one leads to LE. Both LW and LG distributions are commonly

used for modeling financial variables with positive supports. Here we describe the

gaussian approximation in the MCML estimation, that is, how to approximate a

nongaussian conditional density p(yijci) by a gaussian conditional density g(yijci).

The idea is to simply choose mi and Hi such that the first two derivatives of p(yijci)

and g(yijci) (or ln p(yijci) and ln g(yijci)) with respect to ci are equal.

Based on the model specification in Equation (2), hi ¼ yi � ci, thus p(yijci) ¼
f(hi). For the LW(n, 1) distribution, at a given i, we have

q log fðeiÞ
qei

¼ �n þ nenei and
q2 log fðeiÞ

qe2i
¼ �n2enei :

Using N(mi, Hi) to approximate LW(n, 1), we match their first two moments by

the following equations:

�n þ nenei þH�1
i ðji � miÞ ¼ 0 and � n2enei þH�1

i ¼ 0, ð9Þ

where ji is the variable that follows N(mi, Hi). The solutions to the equations, at a

given iteration, are functions of ĉc, which are obtained by the Kalman filter or

smoother.
Similarly the LG(n, 1) distribution leads to

q log fðeiÞ
qei

¼ �n þ eei and
q2 log fðeiÞ

qe2i
¼ �eei :

Thus the moments matching requires

�n þ eei þH�1
i ðji � miÞ ¼ 0 and � eei þH�1

i ¼ 0: ð10Þ

Solutions to the equations allow us to proceed with the MCML procedure in

which, at a given iteration, mi and Hi are evaluated with given ĉc.
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3 EMPIRICAL RESULTS

3.1 The Data

We now apply the SCD model with ‘‘leverage effect’’ as proposed in Equation (2)
to the transaction data of IBM and other stocks. The IBM transaction data is

downloaded from Professor Robert Engle’s website. The data contain various

trade records, such as transaction time, price, and volume. All trades occurred

fromNovember 1, 1990, to January 31, 1991. Instead of using the whole sample, we

only use the data from November 1, 1990, to December 21, 1990, to avoid any

holiday effects. There are a total of 35 trading days in these two months. As in

Engle and Russell (1998), we delete the trades that occurred before 9:50 A.M. and

after 4:00 P.M. to eliminate the irregularities during the open and close period of the
trading day. On the other hand, we initialize the duration process for each trading

day following the procedure in Engle and Russell (1998). That is, the first duration

for each day is calculated as the average duration from 9:50 A.M. to 10:00 A.M. After

all deletions, the total number of transactions is 24,765. The trade time is recorded

in seconds and the trade duration is defined as the time difference between two

consecutive trades. Of all the durations, the largest is 502 seconds and the smallest

is 1 second (trade time unit). Most of the durations are less than 100 seconds (more

than 94%), and the mean and median durations are 30 and 17 seconds, respec-
tively. As a robustness check of our empirical results, transaction data of other

stocks are also used in our application. We focus on those stocks that have been

used in existing empirical studies such as Bauwens and Veredas (2004) and

Bauwens et al. (2000). For brevity, we only report the results for Boeing and

Coca Cola. The transaction data for both stocks are extracted from the TAQ

database over the period of February to March 2002. Similar to the IBM data, the

trades that occurred before 9:50 A.M. or after 4:00 P.M. were deleted and the first

duration for each day was calculated as the average duration from 9:50 A.M. to
10:00 A.M. This results in 41,482 and 44,042 total transactions for Boeing and Coca

Cola, respectively. The mean, median, minimum, and maximum of trade dura-

tions for these two stocks are 20.86 and 19.67, 26.78 and 24.48, 1 and 1, and 494 and

703, respectively.

Table 2 reports the first 15 autocorrelations and partial autocorrelations of the

IBM duration series. From Table 2, we can see that the AC coefficients decay very

slowly, while the PAC coefficients at lag 1 is clearly larger than the other

coefficients. The first-order autocorrelation is 0.127, and the ratio of the con-
secutive autocorrelations is about 0.9. In other words, the data present a very

strong autoregressive (AR) and moving average (MA) or ARMA structure.

Similar dynamic properties are found for the trade durations of Boeing and

Coca Cola.

3.2 Seasonal Adjustment

To remove seasonality from the data, the technique with piecewise cubic spline

(available in S-Plus software with the function smooth.spline(�)) is employed.
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In recent articles by Engle and Russell (1998) and Veredas, Rodriguez-Poo, and

Espasa (2001), the spline or nonparametric functions capturing diurnal variations

are estimated simultaneously along with the duration process. In particular,

Veredas, Rodriguez-Poo, and Espasa (2001) propose an integrated method to

estimate the deterministic seasonality jointly with the stochastic duration process.

Their model is semiparametric: nonparametric for the seasonality and parametric

(of the log-ACD type) for the duration process. As shown in Veredas, Rodriguez-
Poo, and Espasa (2001), however, preadjusting the data has no important con-

sequences for the estimation of the autoregressive parameters since the seasonal

component does not carry a lot of information about intertemporal dynamics.

Since the estimation method employed in this article for the duration process

involves a great deal of simulation, we rely on the simple cubic spline technique to

preadjust the seasonality of the data. As in Engle and Russell (1998) and Bauwens

and Giot (2000), two different effects are considered. One is the day-of-week effect,

the other is the time-of-day effect. Typically the duration remains constantly high
between Monday and Wednesday, then decreases continuously afterward, and

finally becomes the shortest on Friday. This reflects the fact that trades appear

relatively inactive during the early part of the week and become a lot more active

at the end of the week. To eliminate this day-of-week effect, the average sample

duration is calculated for a weekday, denoted by Fw, w ¼ 1, 2, 3, 4, 5, see Figure 1a

for the IBM data. The duration after removing the day-of-week effect is given as

Table 2 Dynamic Properties of the IBM Trading Durations.

Raw data Seasonally adjusted data

Lag Autocorrelation

Partial

autocorrelation Autocorrelation

Partial

autocorrelation

1 0.12690 0.12690 0.12574 0.12574

2 0.10693 0.09232 0.10738 0.09304

3 0.09187 0.06954 0.09035 0.06806

4 0.09092 0.06499 0.09072 0.06515

5 0.08221 0.05231 0.08106 0.05144

6 0.08340 0.05174 0.08133 0.05003

7 0.08716 0.05333 0.08526 0.05211

8 0.09850 0.06210 0.09552 0.05988

9 0.08481 0.04317 0.08416 0.04371

10 0.07259 0.02929 0.06930 0.02682

11 0.08289 0.04106 0.07969 0.03906

12 0.07682 0.03266 0.07490 0.03229

13 0.06791 0.02280 0.06595 0.02227

14 0.05986 0.01517 0.05775 0.01461

15 0.06180 0.01845 0.05922 0.01742

The table reports the first 15 autocorrelations and partial autocorrelations of the IBM trading duration for

both the raw and seasonally adjusted data.
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di
Fw
, denoted by ~ddi. Extra seasonality presented in ~ddi would be attributed to the

well-known time-of-day effect. The duration first appears short in the morning,

rises up dramatically around noon, and drops toward the close of the market.

Again, we use the spline method to remove the time-of-day effect. First, 13 knots

are chosen over each trading day, with the first one being at 10:00 A.M., the last one

at 4:00 P.M., and the remaining knots 30 minutes apart. Second, the value (duration)
at each knot is calculated by averaging the durations around the knot. We use the

30-minute window (15 minutes for both the left side and right side of the knot).

The average duration in the interval for 35 days is regarded as the duration at the

knot. Finally, the daily seasonal factor is calculated, denoted by Ft (t is the time in

seconds from 10:00 A.M. to 4:00 P.M.). Then the adjusted duration data are calculated

as
~ddi
Ft
. The time-of-day pattern, as in Figure 1b for the IBM data, clearly shows that

the duration increases in the morning and reaches a maximum at around 1 P.M.,

then decreases toward the close of themarket in an average trading day. As shown
in Table 2 for the AC and PAC coefficients, the seasonally adjusted duration

process remains highly persistent, which, again, provides evidence of the ARMA-

type structure in the data-generating process. The seasonally adjusted duration

data of the stocks considered in our study are used in the model estimation.

3.3 Estimation Results

The SCD models specified in Equation (2) are fitted to the seasonally adjusted

duration series with three error distributions—LW(n, 1), LG(n, 1) and LE—for the

disturbance of the observation equation. The parameter vector to be estimated is
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Figure 1 Seasonal effects of the IBM trading durations.
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u¼ (b, s,m, n, g)0. First we consider estimation of themodels without the ‘‘leverage

effect’’ or in the absence of the intertemporal term, that is, g ¼ 0. The results are

reported in Table 3. It is noted that for all three stocks with different model

specifications, the persistence parameter b is close to but significantly smaller

than one, suggesting high persistence and stationarity of the duration process. All

Table 3 Estimation results of SCD models without ‘‘leverage effect.’’

b s m n

Panel A: IBM

LW(n, 1) (g ¼ 0) Parameter estimate 0.9707 0.1149 �0.7391 (�8.60) 0.9462

p-value H0 : uj ¼ 0 0.000 0.000 0.000 —

H0 : uj ¼ 1 0.000 — — 0.000

LG(n, 1) (g ¼ 0) Parameter estimate 0.9646 0.1303 �0.7166 (�5.80) 0.9569

p-value H0 : uj ¼ 0 0.000 0.000 0.000 —

H0 : uj ¼ 1 0.000 — — 0.000

LE (g ¼ 0) Parameter estimate 0.9584 0.1448 �0.6940 (�5.10) 1.0000

p-value H0 : uj ¼ 0 0.000 0.000 0.000 —

H0 : uj ¼ 1 0.000 — — —

Panel B: Boeing

LW(n, 1) (g ¼ 0) Parameter estimate 0.9420 0.1390 �0.6252 (�7.39) 0.9272

p-value H0 : uj ¼ 0 0.000 0.000 0.000 —

H0 : uj ¼ 1 0.000 — — 0.000

LG(n, 1) (g ¼ 0) Parameter estimate 0.9451 0.1501 �0.6202 (�7.61) 0.9305

p-value H0 : uj ¼ 0 0.000 0.000 0.000 —

H0 : uj ¼ 1 0.000 — — 0.000

LE (g ¼ 0) Parameter estimate 0.9280 0.1622 �0.6098 (�6.94) 1.0000

p-value H0 : uj ¼ 0 0.000 0.000 0.000 —

H0 : uj ¼ 1 0.000 — — —

Panel C: Coca Cola

LW(n, 1) (g ¼ 0) Parameter estimate 0.9564 0.0823 �0.5530 (�4.23) 0.9389

p-value H0 : uj ¼ 0 0.000 0.000 0.000 —

H0 : uj ¼ 1 0.000 — — 0.000

LG(n, 1) (g ¼ 0) Parameter estimate 0.9500 0.0911 �0.5312 (�4.71) 0.9411

p-value H0 : uj ¼ 0 0.000 0.000 0.000 —

H0 : uj ¼ 1 0.000 — — 0.000

LE (g ¼ 0) Parameter estimate 0.9523 0.0867 �0.5399 (�4.05) 1.0000

p-value H0 : uj ¼ 0 0.000 0.000 0.000 —

H0 : uj ¼ 1 0.002 — — —

The table reports estimation results of the SCD models without ‘‘leverage effect,’’ that is, g ¼ 0, as specified

in Equation (2). The value in the brackets beside the estimate of m is the z-value or the t-statistic defined as

the ratio of parameter estimate and standard deviation. No z-values are reported for other parameter

estimates (b, s, n) because they are estimated indirectly via certain transformations to ensure positivity. For

example, s is estimated via the transformation s¼ exp(c), where c is estimated. Instead, p-values of

relevant hypotheses are reported in the table where uj¼ 0 or 1 means the jth component of u is 0 or 1, j ¼
1, 2, 3, 4 with u ¼ (b, s, m, n).
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three models have similar estimates for parameters b, s, and m. However, for both

log-Weibull and log-gamma models, the scale parameter n is significantly differ-

ent from one, suggesting that the null hypothesis H0 : n ¼ 1 is rejected. In other

words, the log-exponential model is misspecified. The estimated variance of the

error term, hi, in the transition process is significantly different from zero for all

models. Therefore the log-ACD model is strongly rejected, and it is necessary to

model the conditional expectation of the duration as a latent process. Overall our
results are similar to those in Bauwens and Veredas (2004) based on trade dura-

tions of other stocks. Their results also indicate the misspecification of the log-

exponential model. In particular, they note that among different durations (trade,

price, and volume), the trade durations tend to be more persistent. The correla-

tions between the estimated latent variables and observed durations are smaller

for the trade durations than for the other kinds of durations, indicating a poorer

‘‘fit’’ of the model to trade duration process. A comprehensive empirical compar-

ison between log-ACD and SCD models is also performed in Bauwens and
Veredas (2004). They find that in terms of unconditional densities, the log-ACD

model cannot account for the hump in the density of the trade durations and the

SCD model clearly outperforms the log-ACD model.

In this article, our focus is whether the further extension of ‘‘leverage effect’’

can improve modeling of the duration process. The estimation results for the SCD

models with ‘‘leverage effect" as specified in Equation (2) are reported in Table 4.

Again, for all three stocks with different model specifications, the persistence

parameter b is very close to but significantly smaller than one, suggesting high
persistence and stationarity of the duration process. The estimated variance of the

error term, hi, in the transition process remains to be significantly different from

zero for all models. It further confirms the necessity of modeling the conditional

expectation of the duration as a latent process. While the estimates of parameter m

are numerically similar to those in the SCD models without ‘‘leverage effect’’ as

reported in Table 3, there is a clear increase of z-values or a decrease of standard

deviations for m. From our subsequent diagnostic analysis based on the filtered

series êei and ĥhi, we note that the presence of the g term helps to remove some large
spurious noise in the observation process, which results in better estimation of the

constant term m with smaller standard deviations.

This suggests that with the addition of the intertemporal term, the model

clearly provides a better structure for the disturbance term of the duration process

as specified in Equation (2). It provides evidence for the necessity of further

extending the standard SCD model specification. The scale parameter n is close to

but significantly different from one for both the SCD LW(n, 1) model and the SCD

LG(n, 1) model. This suggests again that the log-exponential model is misspeci-
fied. Most importantly, the intertemporal term g has an overall positive sign for all

stocks with different model specifications and is highly significant for the SCD

LW(n, 1) model. The SCD LEmodel has the least significance for the intertemporal

term. As we have mentioned, however, the model is clearly misspecified.

The significant positive sign suggests that there is a positive intertemporal

correlation between trade duration and the conditional expected duration. That is,
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the conditional expected duration is not only highly persistent, but also responds

to the informational shock in the duration process. More specifically, as a negative

shock occurs to the trade duration, there tends to be a decrease in the conditional

expected duration and equivalently an increase in trade intensity. In other words,

the trade intensity reacts in an asymmetric manner to information shock in the

Table 4 Estimation results of SCD models with ‘‘leverage effect.’’

b s m n g

Panel A: IBM

LW(n, 1) Parameter estimate 0.9716 0.1100 �0.7488 (�10.3) 0.9404 0.0125 (2.70)

p-value H0 : uj ¼ 0 0.000 0.000 0.000 — 0.005

H0 : uj ¼ 1 0.000 — — 0.000 —

LG(n, 1) Parameter estimate 0.9649 0.1293 �0.7166 (�28.8) 0.9551 0.0024 (0.50)

p-value H0 : uj ¼ 0 0.000 0.000 0.000 — 0.600

H0 : uj ¼ 1 0.000 — — 0.000 —

LE Parameter estimate 0.9581 0.1463 �0.7014 (�30.4) 1.0000 �0.0081 (�1.70)

p-value H0 : uj ¼ 0 0.000 0.000 0.000 — 0.090

H0 : uj ¼ 1 0.000 — — — —

Panel B: Boeing

LW(n, 1) Parameter estimate 0.9231 0.1302 �0.6361 (�19.5) 0.9220 0.0817 (4.30)

p-value H0 : uj ¼ 0 0.000 0.000 0.000 — 0.000

H0 : uj ¼ 1 0.000 — — 0.000 —

LG(n, 1) Parameter estimate 0.9282 0.1430 �0.6271 (�15.7) 0.9245 0.0639 (2.99)

p-value H0 : uj ¼ 0 0.000 0.000 0.000 — 0.002

H0 : uj ¼ 1 0.000 — — 0.000 —

LE Parameter estimate 0.9167 0.1505 �0.6203 (�21.2) 1.0000 0.0552 (2.13)

p-value H0 : uj ¼ 0 0.000 0.000 0.000 — 0.033

H0 : uj ¼ 1 0.000 — — — —

Panel C: Coca Cola

LW(n, 1) Parameter estimate 0.9483 0.0791 �0.5643 (�9.21) 0.9371 0.0451 (5.32)

p-value H0 : uj ¼ 0 0.000 0.000 0.000 — 0.000

H0 : uj ¼ 1 0.000 — — 0.000 —

LG(n, 1) Parameter estimate 0.9437 0.0855 �0.5520 (�10.2) 0.9416 0.0622 (7.13)

p-value H0 : uj ¼ 0 0.000 0.000 0.000 — 0.000

H0 : uj ¼ 1 0.000 — — 0.000 —

LE Parameter estimate 0.9467 0.0901 �0.5407 (�8.32) 1.0000 0.0101 ( 1.40)

p-value H0 : uj ¼ 0 0.000 0.000 0.000 — 0.161

H0 : uj ¼ 1 0.000 — — — —

The table reports estimation results of the SCD models with ‘‘leverage effect’’ as specified in Equation (2).

The values in the brackets beside the estimates of m and g are the z-value or the t-statistic defined as the

ratio of parameter estimate and standard deviation. No z-values are reported for other parameter estimates

(b, s, n) because they are estimated indirectly via certain transformations to ensure positivity. For example,

s is estimated via the transformation s ¼ exp(c), where c is estimated. Instead, p-values of relevant

hypotheses are reported in the table where uj ¼ 0 or 1 means the jth component of u is 0 or 1, j ¼ 1, 2, 3, 4

with u ¼ (b, s, m, n, g).

406 Journal of Financial Econometrics



duration process. This reflects a similar asymmetric behavior in the conditional

volatility of asset returns, where the conditional volatility is not only highly

persistent, but also reacts to information shock in the asset returns. In particular,

the conditional volatility typically rises as a result of large negative returns.

4 DIAGNOSTIC ANALYSIS

In this section, diagnostic analysis is performed for the fitted models. In all

subsequent analysis, we focus on IBM stock, as it has been the subject of many

other empirical studies. For IBM stock, since the SCD LE model is misspecified

and the SCD LG(n,1) model turned out to have an insignificant intertemporal
effect, both models are excluded in our following analysis. We focus on the SCD

LW(n,1) model, with and without ‘‘leverage effect,’’ and the SCD LG(n,1) model

without ‘‘leverage effect.’’ In terms of improving the goodness-of-fit, the differ-

ence between the SCD LW(n,1) model and the SCD LG(n,1) model, both without

‘‘leverage effect,’’ is useful to analyze the potential impact of distributional

assumption on the disturbance of the observation process, while the difference

between the SCD LW(n,1) models, with and without ‘‘leverage effect,’’ can reflect

the potential impact of including a term associated with the duration process in
the latent process.

4.1 Basic Diagnostics

In all three models, both error terms ei and hi in the observation equation and the

transition equation are assumed to be i.i.d. If the models are correctly specified,

the estimates of the error terms should confirm, to some extent, the independence

assumption. We obtain the estimates of hi in the transition equation, denoted by

ĥhi, by the Kalman smoothing filter, then the estimates of ei in the observation

equation, denoted by êei, by substituting ĉci into the observation equation.

It is well known that the estimated error terms or residuals are not uncorre-

lated, even in a simple regression model setting. Because of the presence of two
random resources (ei and hi) in the SCD models, the autocorrelation structure of

residuals (êei and ĥhi) are too complicated to obtain analytically. Consequently this

will stop us from using some classical tools such as the ACF plots (in which the

asymptotic confidence limits are unknown) to draw sensible conclusions. Instead

here we concentrate on the lag-1 autocorrelation, hoping to confirm whether the

model has addressed part of the dependent structure of the duration process. Two

different tools are applied for this purpose.

One is the linear regression technique: regressing êei on êei�1 and ĥhi on ĥhi�1,
respectively. Namely êei ¼ aþ bêei�1 þ ei and ĥhi ¼ aþ bĥhi�1 þ ei, where slope b
reflects the strength of the lag-1 autoregressive relation. So if the first-order

autocorrelation of êei or ĥhi is small, then the coefficient of êei�1 or ĥhi�1 should not

be significantly different from zero. Table 5 reports the results for both linear

regressions. The p-values indicate that the SCD LW model with ‘‘leverage effect’’

has the strongest evidence (p-value¼ .8667) that the first autocorrelation for ei is

zero.
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The second tool is the scatter plot of êei versus êei�1 and ĥhi versus ĥhi�1. Because
of the considerably large number of observations, the plots would be less indica-

tive if the entire series of êei or ĥhi are used. Instead, we only plot a random sample

of 100 observations from the residuals êei and ĥhi. The plot of sampled êei is shown in

Figure 2, while the plot of sampled ĥhi is shown in Figure 3.

It is noted that the hi’s are highly autocorrelated for all three models. Possible

explanations are as follows. First, the AR(1) structure assumed in the latent

process may not be sufficient to fully capture the dynamics of the duration

process. In other words, higher-order terms in the latent process may be needed
to improve the fitting of the model. While the ACF(1)’s of all three models are

difficult to distinguish, it is interesting to note that the SCD LW model with

‘‘leverage effect’’ has the lowest first-order autocorrelation. This suggests that

the inclusion of an intertemporal term in the latent process can help to address

the dependence structure of the duration process. Second, since all trade durations

are recorded in seconds, the systematic upward measurement error for a duration

of less than one second may introduce a deterministic component in the observa-

tions of duration. As the latent process has less variation than the observation
process, evidenced by dvar½hivar½hi� ¼ ŝs2 < 0:2 and dvar½eivar½ei�> 1, the systematic effect is

more pronounced for the residuals of latent variable process. Finally, the distribu-

tion of error term ei may not be optimal to address the duration process, and a

more flexible distribution of ei, for example, a generalized gamma distribution

[Lunde (1999)], may be employed. We attempt to address these issues in our

future research.

4.2 Assessment of Density Functions

As we also assume normality for the distribution of hi, the QQ plots are also

reported in Figure 4 for all three models. Visually the ĥhi’s for all three models
appear to have different tail shapes than the normal distribution, but the QQ plot

of ĥhi for the SCD LW model with ‘‘leverage effect’’ is the closest to the normal

distribution.

To assess the distributional assumption of duration, we compare the marginal

density of duration derived from the models to the empirical marginal density

Table 5 Results of the AR(1) êei and ĥhi regressions.

êei ĥhi

p-value for a p-value for b ACF(1) p-value for a p-value for b ACF(1)

SCD-‘‘LE’’ LW 0.0002 0.8667 0.0011 0.5364 0.0004 0.0223

SCD LW 0.0000 0.2567 0.0072 0.0069 0.0000 0.8112

SCD LG 0.0718 0.6292 0.0031 0.4345 0.0000 0.0361

The table reports the results of the AR(1) regressions of êei and ĥhi for the IBM stock, where SCD-‘‘LE’’ LW

denotes the SCD LW model with ‘‘leverage effect.’’
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directly obtained from the observed durations. Since the marginal distribution of

logarithmic duration is a mixture of two different distributions in the three

models, the marginal distribution of duration is not a closed-form expression.
To overcome this problem, we simulate a large sample of durations from each

fitted model, then obtain the density function. Since the models are of geometric

ergodicity, we employ a Markov chain simulation method to generate a large

sample (with sample size 30,000), and the first 10,000 simulated values are dis-

carded to eliminate initial value effect. Because of the discreteness of raw data, we

also round simulated durations to the unit of a second.

The histograms of the simulated durations and the observed durations with

frequencies in seconds are plotted in Figures 5 for all three models. It is noted that
all three models fit the right-hand tail of the distributions very well, but not so for

the low durations. Visually it is difficult to distinguish among three models.

Numerically we calculate the sum of squared errors between the two marginal

density functions for each model. The sums of squared errors are, respectively,

8.707638� 10�4 for the SCD LWmodel with ‘‘leverage effect,’’ 1.264881� 10�3 for

the SCD LWmodel without ‘‘leverage effect,’’ and 8.734705� 10�4 for the SCD LG
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Figure 2 Plot of êei versus êei�1. The panels plot the filtered êei against êei�1 under different model
specifications for the trading duration process of the IBM stock, where SCD-‘‘LE’’ LW denotes the
SCD LW model with ‘‘leverage effect.’’
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model without ‘‘leverage effect.’’ The overall difference among models is mar-

ginal, indicating the choice for each of them gives a similar conclusion. However,

the SCD LW model with ‘‘leverage effect’’ works slightly better.

4.3 In-Sample Forecasting Performance

As the last diagnostic check, we investigate the goodness-of-fit of all three models

based on the in-sample forecasting performance. In-sample forecasts are the fitted
values for the response variable in the sample space and can be used to measure

the dynamic properties of the model. The in-sample forecasting performances are

investigated for the last day of the IBM dataset, December 21, 1990, with a sample

size of 692. First, the Kalman smoother was used to obtain the estimates of

conditional mean of the latent variable ci at trade i given all observed log dura-

tions, then the logarithm of conditional mean of seasonally adjusted duration is

estimated by logðd̂diÞ ¼ m̂mþ ĉci for each model. Finally, multiplying the above

values by both the day-of-week and time-of-day seasonal factors leads to the
in-sample forecasts of durations.
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Figure 3 Plot of ĥhi versus ĥhi�1. The panels plot the filtered ĥhi against ĥhi�1 under different model
specifications for the trading duration process of the IBM stock, where SCD-‘‘LE’’ LW denotes the
SCD LW model with ‘‘leverage effect.’’
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To quantitatively evaluate the forecasting performance of the three models,

we run the following regression:

dj ¼ aþ bd̂dj þ uj, j ¼ 1, . . ., 692, ð11Þ
where dj and d̂dj are the observed durations and in-sample forecasts, respectively,
a and b are regression coefficients, and uj is white noise with variance s2

u. The least-

squares estimates with their estimated standard errors in the parentheses are

reported in Table 6. The differences of R2 among models are marginal. However,

the SCD LW model with ‘‘leverage effect’’ appears to be slightly better than the

other two.

The out-of-sample forecasting performance of the SCD models is also inves-

tigated in an earlier version of the article. We note that the out-of-sample forecast

based on the SCD LW(n, 1) model with ‘‘leverage effect’’ has more fluctuations
and its movement is much closer to the observed duration. Compared to those of

the SCD LW(n, 1) and SCD LG(n, 1) models without ‘‘leverage effect,’’ the out-of-

sample forecast of the SCD LW(n, 1) model with ‘‘leverage effect’’ reflects better

the local dynamic behavior of the duration process. However, according to

Bauwens et al. (2000), model comparison based on density forecasts suggests

that the latent factor models (such as SCD and SVD) are not really superior to
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(c) LG model without "leverage effect"

Figure 4 QQ plots of ĥhi. The panels are the QQ plots of filtered ĥhi under different model
specifications for the trading duration process of the IBM stock.
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the standard ACD models with given innovation distribution and specification of

the expected conditional duration process.1 As shown in Bauwens et al. (2000), and

illustrated in Figure 5, the drawback associated with single-factor latent model is

that it predicts poorly the left tail of the unconditional duration distribution, which
happens to be the area with a heavy mass of probability. To achieve better out-of-

sample forecasts of very small trade durations, Bauwens et al. (2000), identify

some models, such as the threshold ACD model by Zhang, Russell, and Tsay

(2001) and a simple log-ACD model in the Bauwens and Giot (2000) framework

with the generalized gamma innovation distribution as proposed in Lunde (1999).
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Figure 5 Histograms of model-simulated durations and observed durations. The panels plot the
histogram of the simulated durations under different model specifications together with that of
the observed trading durations of the IBM stock.

Table 6 In-sample forecasting performance of the models.

Model a b R2

SCD LW(n, 1) model with ‘‘leverage effect’’ �12.5678 (4.1) 2.8650 (0.25) 0.1547

SCD LW(n, 1) model without ‘‘leverage effect’’ �7.6796 (3.8) 2.5024 (0.22) 0.1491

SCD LG(n, 1) model without ‘‘leverage effect’’ �8.5385 (4.1) 2.6145 (0.25) 0.1369

The table reports the in-sample forecasting performance of three different model specifications for IBM

stock.
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4.4 Transaction Intensity and Intraday Volatility

As we have mentioned, the main objective of including an intertemporal term in

the latent process is to capture the asymmetric behavior or ‘‘leverage effect’’ of the
conditional expected duration. Our results suggest that the conditional expected

duration is not only highly persistent with an autoregressive structure, but also

reacts to the information shock in the duration process. In particular, with a

negative shock to the duration, the conditional expected duration will subse-

quently decrease and equivalently the trade activity will subsequently intensify.

This reflects a similar behavior in the conditional volatility of asset returns, where

the conditional volatility is not only highly persistent, but also reacts to informa-

tion shock in the asset returns. In particular, the conditional volatility typically
rises as a result of negative shock to the returns. It is generally believed that

trading activity and asset return volatility are both highly correlated with the

intensity of market information flow. For instance, trading typically becomes

more active as information flow intensifies. As a result, trade durations tend to

be shorter. On the other hand, the market adjusts the valuation of an asset

according to the arrival of new information. As a result, asset return volatility

tends to rise. Therefore it would be interesting to investigate whether these two

variables share common information content. More interestingly, whether a better
modeling of duration process can enhance the forecasting performance of intra-

day volatility. In the theoretical market microstructure literature, however, con-

flicting results have been derived on the relationship between transaction

intensity and price volatility. Namely, the Easley and O’Hara (1992) model pre-

dicts that the number of transactions would influence the price process through

information-based clustering of transactions, while the Admati and Pfleiderer

(1988) model predicts that the number of transactions would have no impact on

the price intensity. As pointed out by Engle and Russell (1998), with a continuous
record of market trading activities, these theoretical hypotheses can be empirically

tested.

Engle and Russell (1998) derive the relationship between the price intensity

and the instantaneous volatility of asset returns. In particular, the expected con-

ditional volatility over an infinitesimal time interval can be expressed as a function

of the price intensity. Let the instantaneous volatility at time t be defined as s2ðtÞ ¼
limDt!0E f 1

Dt ½
PðtþDtÞ�PðtÞ

PðtÞ �2g and suppose the stock price follows a binomial process.

The probability that stock price changes by c over a time interval Dt is
l(tjtN(t), . . . , t1)Dt þ o(Dt), and otherwise there is no change. Then, by taking the

limit, the conditional volatility in the instant after t can be written as

s2ðtjtNðtÞ, . . ., t1Þ ¼ ð c
PðtÞÞ

2
lðtjtNðtÞ, . . ., t1Þ, where l(tjtN(t), . . . , t1) is the price intensity.

Thus, with an estimate of the price intensity l̂lðtjtNðtÞ, . . ., t1Þ based on their esti-

mated model, a forecast of the instantaneous volatility can be obtained. Using the

price intensity as a volatility forecast, they find that the instantaneous volatility

has a significantly negative relationship with the transaction intensity. The mea-

sure of transaction intensity is constructed using the number of transactions over
each price duration, as in general the price duration is longer than the trade
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duration. The negative relation suggests that following periods of high trade

intensity, the expected price durations, and equivalently the instantaneous vola-

tility, is higher. The results are consistent with the Easley and O’Hara model.

The results in Engle and Russell (1998) also suggest that trade intensity, or

equivalently trade duration, has certain forecasting ability of expected asset return

volatility. In this article, we investigate whether allowing for ‘‘leverage effect’’ in

the duration process can further enhance the forecasting performance of intraday
volatility. Similar to the in-sample forecasting performance, we perform the ana-

lysis on the last day of the sample, December 21, 1990. At given trade i, i¼ 1, 2, . . . ,

692, we construct the one-step-ahead forecast of trade duration based on the

estimated models. Then a measure of subsequent realized volatility is regressed

against the forecast of trade duration. The purpose is to investigate how much

variation in realized volatility can be explained by the forecast of trade duration

based on specific duration models. The one-step-ahead forecast of the trade

duration is constructed as follows. Let the smoothing value of ci at trade i be ĉci

and the estimate of the error term hi be ĥhi, then the one-step-ahead forecast of the

expected trade duration is ĉciþ1 ¼ b̂bĉci þ ĝgĥhi, where b̂b and ĝg are the estimates in the

respective models. Taking the logarithm of the seasonally adjusted duration and

then multiplying to both the day-of-week and time-of-day seasonal factors yields

the out-of-sample duration forecasts. The realized volatility is calculated over the

fixed time interval following each trade i. We use 30 seconds as the time interval to

measure the intraday volatility (60- and 120-second intervals are also used and

the results are not significantly different). Following each trade i, we have
all transaction prices and quotes (bid-ask average) of the stock over the interval

[ti, ti þ 30), where ti is the trade time in seconds. We calculate the sum of squared

changes in log stock prices, and the realized volatility following trade i is given by

its square root.

A linear regression of the realized volatility against the duration forecast is

estimated and the estimation results with standard errors are reported in Table 7.

Not surprisingly, the R2’s are all very small, as the volatility measure constructed

here is a very noisy realized volatility estimator. In addition, as we are dealing
with the continuous record of market trading activities, various other factors are

contributing to the volatility of the market, especially the market microstructure-

related noise. Similar to Engle and Russell (1998), we find a significantly negative

Table 7 The relationship between duration forecasts and intraday volatility.

Model a b R2

SCD LW(n, 1) model with ‘‘leverage effect’’ 1.243 (0.133) �0.039 (0.010) 0.024

SCD LW(n, 1) model without ‘‘leverage effect’’ 1.241 (0.158) �0.042 (0.012) 0.016

SCD LG(n, 1) model without ‘‘leverage effect’’ 1.235 (0.157) �0.041 (0.012) 0.016

The table reports the regression results of intraday volatility against the duration forecasts under three

different model specifications of the IBM trading duration process.
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relation between trade duration and stock price volatility, or equivalently a posi-

tive relation between trade intensity and price volatility. In other words, following

periods of high trade intensity, the instantaneous asset return volatility tends to be

higher. The results provide further support for the Easley and O’Hara model. It

should be noted that different than Engle and Russell (1998), where the volatility

forecasts are derived from the estimates of price intensity, here the realized

volatility is directly measured using realized stock price changes. The realized
volatility is a model-free measure of the ex post asset return volatility. More

interestingly, the R2 for the SCD LW model with ‘‘leverage effect,’’ while small

in magnitude, is about 50% higher than those of other SCD models. This suggests

that the conditional expected trade duration and the instantaneous volatility not

only exhibit similar asymmetric behavior, but also these asymmetric movements

are to a certain extent correlated with each other. The same analysis is also

performed based on the estimation results of Boeing and Coca Cola, and we find

even stronger evidence of enhanced intraday volatility forecast. In other words, a
better modeling of duration process with ‘‘leverage effect’’ can capture certain

common dynamic features in the financial market and contribute to better fore-

casting of intra day asset price volatility.

5 CONCLUSION

This article proposes SCD models with ‘‘leverage effect’’ under the linear non-

gaussian state-space model framework. The models are extensions of the ACD

models by Engle and Russell (1998) and SCD models by Bauwens and Veredas

(2004). We study the statistical properties of the models and derive certain
moments that are used in the development of model estimation. The MCML

method is employed in this article for consistent and efficient parameter estima-

tion. Empirical applications to the transaction data of IBM and other stocks are

also performed. Our results suggest that allowing for the intertemporal correlation

between the duration process and the latent process can better reflect the local

dynamic behavior of the duration process. The expected trade durations are not

only highly persistent over timewith an autoregressive structure, but also reacts to

the information shock in the observed duration process. This reflects a similar
asymmetric behavior in the conditional volatility of asset returns, where the

conditional volatility is not only highly persistent, but also reacts to information

shock in the asset returns. Our further analysis suggests that the conditional

expected trade duration and stochastic volatility not only exhibit similar asym-

metric behavior, but also share common information content. In particular, the

asymmetric movements in the conditional expected trade duration and stochastic

volatility are to a certain extent correlated with each other. Consequently a better

modeling of duration process with ‘‘leverage effect’’ can capture certain common
dynamic features in the financial market and contribute to better forecasting of

intraday asset price volatility. Our diagnostic analysis also suggests that the AR(1)

structure assumed in the latent process may not be sufficient to fully capture the

dynamics of the duration process. Furthermore, the distribution of error term ei
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may not be optimal to address the trade duration dynamics, and a more flexible

distribution of ei, for example, a generalized gamma distribution [Lunde (1999)],

may be employed. We will attempt to address these issues in our future research.

APPENDIX

Proof of Proposition 1. The stationarity of the process can be easily checked.

Because yi ¼ log di � m and yi is the sum of two AR(1) processes (see the proof

of Proposition 2), therefore yi is stationary, so is log di.
Let X0

i ¼ ðyi, eiÞ1�2, V
0
i ¼ ðei,hiÞ1�2,

C ¼
�

b �bþ g

0 0

�
2�2

and V ¼
�

1 1

1 0

�
2�2

Equation (2) can be rewritten as

Xi ¼ CXi�1 þVVi:

To show thatXi is geometrically ergodic, firstwe show that theMarkov chainXi

is irreducible and aperiodic. Note that the generalized controllability matrix,

C1
x0
¼
�

1 1

1 0

�
,

is a full-rank matrix; the chain Xi is forward accessible based on Proposition 7.1.4

[Meyn and Tweedie (1993)]. Moreover, it is obvious that X* ¼ (0, 0) is a
global attracting state, so the chain is irreducible and aperiodic according to

Theorem 7.2.6 [Meyn and Tweedie (1993)].

Now we show that the chain Xi is geometrically ergodic. Let the test function

be U(x) ¼ k�xk þ 1, where � is a specially chosen matrix for some e > 0, and the

test set C ¼ {x2R2: U(x) � c for some c < 1}, where k � k denotes the Euclidean

norm for a vector or the spectral norm for a matrix.

Then we have

E½UðxiÞjxi�1 ¼ x� � ð1� eÞUðxÞ þ dIcðxÞ

for some d < 1 and for all x, where Ic(x) is an indicator function defined as usual.

From Theorem 15.0.1 [21], we have that Xi is geometrically ergodic, and so are yi
and log(di) ¼ yi þ m.

Because the one-to-one correspondence between di and yi, the {di} is stationary
and geometrically ergodic. �

Proof of Proposition 2. Based on Equation (2), ci ¼ bci�1 þ gei�1 þ hi, when b< 1

holds we have that

ci ¼
X1
j¼0

bjBjðgei�1 þ hiÞ

¼ g
X1
j¼0

bjei�j�1 þ
X1
j¼0

bjhi�j,
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where B is the backward operator, that is, Bjei ¼ ei�j, j ¼ 0, 1, 2, . . . , and

yi ¼ ei þ g
X1
j¼0

bjei�j�1 þ
X1
j¼0

bjhi�j

¼ Wi þ Zi,

where Wi ¼
P1

j¼0 ajei�j, Zi ¼
P1

j¼0 b
jhi�j, and

aj ¼
1, j ¼ 0

gbj�1, j ¼ 1, 2, 3, . . .:

�
Given that ei and hi are i.i.d. and mutually independent, we have that

varðyiÞ ¼ Eðy2i Þ
¼ EðW2

i Þ þ EðZ2
i Þ

¼
 X1

j¼0

a2j

!
me

2 þ
 X1

j¼0

b2j

!
mh

2

¼
 
1þ g2

1� b2

!
me

2 þ
mh

2

1� b2

¼ ð1þ g2 � b2Þme
2 þmh

2

1� b2
,

EðyiÞ3 ¼ EðWi þ ZiÞ3

¼ EW3
i þ 3EW2

i Zi þ 3EWiZ
2
i þ EZ3

i

¼
 X1

j¼0

a3j

!
me

3 þ
 X1

j¼0

b3j

!
mh

3

¼ 1þ g3

1� b3

� �
me

3 þ
mh

3

1� b3

¼ ð1þ g3 � b3Þm3
e þmh

3

1� b3
,

EðyiÞ4 ¼ EðWi þ ZiÞ4

¼ EW4
i þ 4EW3

i Zi þ 6EW2
i Z

2
i þ 4EWiZ

3
i þ EZ4

i

¼ E

 X1
j¼0

ajei�j

!4

þ 6EW2
i EZ

2
i þ E

 X1
j¼0

bjhi�j

!4

¼
 X1

j¼0

a4j

!
me

4 þ 12
X1
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þ
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covðyi, yi�sÞ ¼ Eðyiyi�sÞ
¼ EðWiWi�sÞ þ EðZiZi�sÞ

¼
X1
j¼0

ajajþsm
e
2 þ

X1
j¼0

bjbjþsmh
2

¼ gbs�1 þ g2bs

1� b2

� �
me

2 þ
bs

1� b2
mh

2 s � 1,

where me
j ¼ Ee

j
i and mh

j ¼ Eh
j
i, j ¼ 2, 3, 4. �

Proof of Proposition 3. From Proposition 2, we have that

yi ¼ ei þ g
X1
j¼0

bjei�j�1 þ
X1
j¼0

bjhi�j

¼ Wi þ Zi,

where Wi ¼
P1

j¼0 ajei�j, Zi ¼
P1

j¼0 b
jhi�j, and

aj ¼
(

1, j ¼ 0

gbj�1, j ¼ 1, 2, 3, . . .,

so

di ¼ expðmþWi þ ZiÞ

¼ expðmÞ
Y1
j¼0

expðajei�jÞ
Y1
j¼0

expðbjhi�jÞ:

The rth moment of di is

Edri ¼ expðrmÞ
Y1
j¼0

E expðrajei�j�1Þ
Y1
j¼0

E expðrbjhi�jÞ

¼ expðrmÞ
Y1
j¼0

mðrajÞ
Y1
j¼0

exp

 
1

2
r2b2js2

!

¼ expðrmÞ
Y1
j¼0

mðrajÞexp
 

r2s2

2ð1� b2Þ

!
:

When r ¼ 1, we have that the mean of di is

Edi ¼ expðmÞ
Y1
j¼0

mðajÞexp
s2

2ð1� b2Þ

� �
:

When r ¼ 2, we have that the second moment of di is

Ed2i ¼ expð2mÞ
Y1
j¼0

mð2ajÞexp
2s2

1� b2

� �
,
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where

mðaÞ ¼ EexpðaejÞ ¼
G

a

n
þ 1

� �
, when ej is LWðn, 1Þ

Gðn þ a� 1Þ
GðnÞ , when ej is LGðn, 1Þ:

8><>:
Proof of Proposition 4 Equations (1) and (2) are direct results from Proposition 2.

For the proof of Equation (3), first we prove the following lemma.

Lemma Let X and Y be independent with mean zero and both have a kurtosis no less than
three. Then kurtosis of Xþ Y is no less than three as well. Moreover, the kurtosis of XþY is
equal to three if and only if both the kurtosis of X and the kurtosis of Y are equal to three
(i.e., X, Y are normal distributed).

Proof Since

EX4 � 3ðEX2Þ2

EY4 � 3ðEY2Þ2

EðX þ YÞ4 ¼ EðX4 þ Y4 þ 6X2Y2Þ
VðX þ YÞ ¼ VðXÞ þ VðYÞ ¼ EðX2Þ þ EðY2Þ
ðVðX þ YÞÞ2 ¼ ðEðX2Þ þ EðY2ÞÞ2

¼ ðEX2Þ2 þ ðEY2Þ2 þ 2ðEX2ÞðEY2Þ,

we have,

EðX þ YÞ4

ðVðX þ YÞÞ2
¼ EðX4Þ þ EðY4Þ þ 6EðX2Y2Þ

ðEX2Þ2 þ ðEðY2Þ2 þ 2EX2�EY2Þ

� 3ððEX2Þ2 þ ðEðY2ÞÞ2 þ 6EX2�EY2

ðEX2Þ2 þ ðEY2Þ2 þ 2EX2�EY2

¼ 3

and EðXþYÞ4

ðVðXþYÞÞ2 ¼ 3 if and only if EX4 ¼ 3(EX2)2 and EY4 ¼ 3(EY2)2. �

Proof of Equation (4) Because yi¼Wiþ Zi, and the kurtosis ofWi andZi are greater

than three, the kurtosis of yi is greater than 3.
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