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ABSTRACT

In this paper we present a general framework to study sequences
of search activities performed by a user. Our framework provides
(i) a vocabulary to discuss types of features, models, and tasks, (ii)
straightforward feature re-use across problems, (iii) realistic base-
lines for many sequence analysis tasks we study, and (iv) a simple
mechanism to develop baselines for sequence analysis tasks beyond
those studied in this paper. Using this framework we study a set of
fourteen sequence analysis tasks with a range of features and mod-
els. While we show that most tasks benefit from features based
on recent history, we also identify two categories of “sequence-
resistant” tasks for which simple classes of local features perform
as well as richer features and models.

Categories and Subject Descriptors. H.3.m [Information Stor-
age and Retrieval]: Miscellaneous

General Terms. Algorithms, Experimentation, Measurements

Keywords. Session analysis, Sequential analysis, Query logs

1. INTRODUCTION

Consider a user who visits a search engine and queries for “mus-
tang” then queries for “ford mustang” then queries for “nova.” To
a human, it is immediately clear that the user is searching for cars,
and that the final query of the sequence is for the car produced
by automobile manufacturer Chevrolet. However, no major search
engine provides a single reference to the Chevy Nova in the first
fifty results. As search engines move beyond simple navigational
queries to helping users with longer-running tasks, an ability to un-
derstand the need behind a user’s query, using information about
the query sequence, is becoming critical.

Query processing for the “nova” query above could be improved
by modeling the previous one or two queries to understand that the
context of the session is automobiles. But it could also have been
improved by a wider variety of sequence analysis techniques. Per-
haps the user has been researching cars for the past month, so the
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query processing could be improved even if “nova” were the first
query of the session. Perhaps the user never clicks on ads when
performing automobile queries, so ads should be suppressed. Or
perhaps the user often clicks on query suggestions after entering
the name of a car, so “chevy nova” should be offered as a sug-
gestion. Or perhaps other users who search for multiple cars in
close proximity tend to click on results that offer model informa-
tion rather than price information. Or perhaps the user entered this
same query yesterday and is interested in picking up from where
she left off. As these examples show, there are valuable improve-
ments that require access only to the last one or two queries, and
other improvements that may require a deeper lens into the user’s
history, or even an aggregate view into the query-specific sequence
behavior of other users.

The body of work surrounding analysis of individual queries is
both broad and mature, spanning multiple fields. The associated
analysis of query sequences is at a much earlier point in its devel-
opment. There have been a number of papers presenting ad hoc
analysis of user sessions for understanding online behavior [12, 14,
13], improved search query processing [21], and understanding of
reformulation behavior [19]. However, as yet there has been little
formal work in developing sequential analysis frameworks for such
problems; we undertake the development of such a framework.

Our proposed framework (Section 3) captures sequences of user
behavior at multiple levels of granularity from sessions to cohesive
sub-tasks, blocks of related queries, individual queries, clicks, and
eye-tracking fixations. The framework supports (i) a vocabulary to
discuss types of features, models, and tasks, (ii) easy feature re-use
across problems, (iii) realistic baselines for the sequence analysis
problems we study, and (iv) a simple mechanism to develop base-
lines for sequence analysis tasks beyond those studied in this paper.

We selected 14 distinct search sequence analysis tasks spanning
labeling, prediction, and sequence categorization (Section 4), and
mapped each one into our framework. Some of these tasks have
fully-automated labels such as predicting whether the next click
will be on an ad, while others require editorially generated labels
such as segmenting a sequence into missions or goals undertaken
by the user. We present a set of 42 task-independent base features
plus an additional set of “global” features aggregated across mul-
tiple sessions by the current user or a broader population of users.
These generic features are applicable to a broad range of tasks; we
study them to prove the feasibility of feature re-use in such a frame-
work — any individual task could be further improved by careful
feature engineering. We compare approaches to our fourteen tasks
using a log of 1.2M queries and 17K editorial judgments from a ma-
jor search engine (Sections 5 and 6). Our results provide a charac-
terization of the appropriate feature types and modeling approaches
for a wide range of sequential analysis problems.



2. RELATED WORK

Search (engine) logs have been well explored to improve the web
search relevance and the overall user experience. There has been
a large body of work utilizing the search logs to enhance various
tasks of a search engine [18, 4, 22, 1, 19, 7]. Because of its ef-
fectiveness, search log analysis has attracted even more attention
recently, and is gradually becoming its own discipline, with its own
set of data, problems, and techniques. Many types of search log
data have been explored, including query logs [2], click logs [7],
user trails in tool bar logs [20], and eye-tracking logs [8]. Many
search tasks have been explored in the past: query categorization
[5], query similarity analysis [3], session segmentation [13], and
behavior prediction [9]. Also many learning models have been
applied to the search log analysis tasks (e.g., random walks [7],
Bayesian networks [17], conditional random fields [10], etc.).

There are two drawbacks in many of the current methods of
search log analysis. First, they tend to treat the search log as a
bag of events without exploiting the temporal relationship between
individual events; e.g, for the query classification task, the infor-
mation available in the user query history (or even the previous
few queries issued by the user) is seldom utilized. Second is their
inability to model heterogeneous search events and tasks. Many
tasks are defined on top of, or involving search events at different
levels: queries, clicks, sessions, goals, users, etc. Without a unified
framework/model for events at different levels, search log analy-
sis tasks are usually solved in an ad hoc way. When a new task is
proposed, a custom data model is developed, a specific set of fea-
tures is extracted, and a specific method is applied to solve the task.
Consequently, the models, features, and methods are less reusable.

There have been some attempts to rectify these drawbacks. For
example, the temporal relationship between query events is ex-
ploited in the work of Piwowarski et al. [17], who aimed to seg-
ment a sequence of queries into goal-related subsequences. Other
relevant concepts include sessions [11], missions [13], and goals
[13]. Boldi et al. investigated the temporal order of queries, and
proposed a model of query-flow graph [6]. The long-range depen-
dence of queries in query logs is studied in [19]. These explo-
rations, however, focus mostly on queries and it is unclear if they
can be generalized to other equally interesting search events such
as clicks and pupil fixations.

Some very recent work tries to generalize the data models of
different tasks in order to model search log objects at multiple lev-
els. Downey et al. proposed an expressive language to model the
searching and browsing behavior of users [9], and constructed pre-
dictive models for behavior based on such a language. Piwowarski
et al. proposed a Bayesian network-based generative model for
user search activities [17]. These models, however, make strong
assumptions on the search behavior of users; it is hard to adapt
the assumptions to a different data scheme. Our work, on the other
hand, makes no assumptions about the search behavior of users. We
will see that our framework can be applied to many data schemes
with a set of simple projection operations.

To the best of our knowledge, there is no single framework for
sequence analysis of search logs with the ability to model events at
arbitrary levels, guide the development of features, and solve and
characterize a gamut of search log analysis tasks in a unified way.

3. THE FRAMEWORK

In existing literature, search sequence tasks, or tasks are treated
on a case-by-case basis and solutions are proposed in an ad hoc
manner. Typically, for a given task, the standard recipe involves
proposing a specific data model, extracting a chosen set of fea-
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tures from the data, and developing a specific modeling technique
to solve the task. It is then difficult to reuse either the custom data
model or the custom features for a related task, and there is little
guidance on what features tend to be useful for which tasks. In this
section we present a concrete and formal framework for tasks that
incorporates two key properties of the search sequence data.

(1) Data exists at multiple levels of granularity ranging from user
pupil fixations available to an eye-tracking hardware all the way
up to semantic partitioning of search sessions into cohesive units.
Information available at one level (e.g., clicks) may be valuable for
a task defined at another level (e.g., queries). Modeling may exploit
only one of these levels, or may use multiple levels simultaneously.

(2) Data is inherently temporal — a sequence of fixations, clicks,
or queries evolves over time, and a model may exploit the temporal
relationships between elements of the sequence. In literature, the
temporal dependency is explored through notions such as “query
pairs,” “query sessions,” or “click history,” which have proven use-
ful. We generalize and formalize them into our framework.

3.1 The nested sequence model

A search event (or simply, an event) denotes a user action with a
search sequence dataset at any level of granularity: a query submit-
ted to the search engine, or a click on a result page, or a sequence
of queries issued to complete a user’s goal. A search sequence ob-
Jject (or simply, an object) is a sequence of one or more consecutive
search events. An object has many basic features associated with
it, e.g., the timestamp of the first event in this object. Each object
also has an associated search context that refers to all the informa-
tion shown to the user during the events comprising the object, e.g.,
the context of a click event can be the entire list of search results
shown to the user when she clicked one of them.

We model the search sequence data as a nested sequence of ob-
jects (Figure 1). All objects at the same level and under the same
higher level object are temporally ordered and form a subsequence.
For an object W, let (W71,...) denote the subsequence of objects
nested immediately below T and let parent(W/) be its parent. Thus,

Figure 1: Nested sequence of search sequence objects.

W is completely specified by its basic features, context, and the
subsequence of objects below it. Often, we do not distinguish be-
tween the basic features and the context, and refer to them together
as non-sequential information; we adopt this terminology so that
we may distinguish such information from various types of sequen-
tial information computed from elsewhere in the search sequence.

In many cases it may be necessary to collapse an instance of a
model to a smaller instance in order to address a task. We refer to
an object projection as any function that maps objects to objects:
e.g., folding involves removing a layer of the tree entirely, flatten-
ing moves children into siblings of the parent, and skipping elides
elements from a sequence at a particular level.

3.2 A family of tasks

Based on the nested sequence model, it is easy to give a formal
definition of tasks that capture most search sequence analysis prob-



lems from the literature. Since most such tasks focus on just one
level of objects, we first introduce a family of tasks focused on just
one level of the model.

Let S = {Wi,Wa,...,} be aset of (possibly flattened) objects.
Let {X1, Xo,...,} be sets of features (observations) correspond-
ing to each of the objects — we will formalize the nature of these
features in the next section. Let y (resp., y;) be the target label of
S (resp., W;). We define the following four families of tasks, and
anticipate that new families may be added as necessary:

(1) Sequence classification. The task is to classify an entire se-
quence, for instance by determining if the sequence was successful
according to some measure, e.g., if a session of queries were navi-
gational or transactional. Formally, one must find y given X, . . ..

(2) Sequence labeling. The task is to label the individual ele-
ments of a sequence, for instance labeling individual queries within
a session as navigational, informational or transactional. One must
find y1,y2, ... given X1, Xo,....

(3) Sequence prediction. This task is an online variation of se-
quence labeling in which the algorithm must assign a label to the
current state using information from previous states, for instance
by predicting if the next search will result in a click on an adver-
tisement. Formally, one must find y,, given X1,..., X, 1.

(4) Sequence similarity. In this task the goal is to compute the
similarity between two sequences, for instance to cluster users based
on their search behavior. Formally, the task is to compute a simi-
larity between (Xq,1, ..., Xa,n,) and (Xp 1, ..., Xo,N, )-

Note that in the nested sequence model, an object contains a
(possibly empty) subsequence of lower level objects. Therefore,
a sequence labeling task is also related to a sequence classification
task, where labeling the objects at a higher level is related to the
classification of the corresponding subsequence at the lower level.
A fundamental difference between the labeling/classification tasks
and the prediction task is that the former refer to an offline learning
problem (i.e., the whole sequence, including the target object, is
observed), and the latter refers to an online learning problem (i.e.,
the target object W), is not fully observed).

In this work we only focus on the first three types of tasks, and
leave the fourth type as future work. It is easy to see that this fam-
ily of tasks generalizes many existing tasks in literature and also
permits novel instantiations. In the next section we will introduce
many instantiations of tasks.

3.3 Feature definition with the data model

Motivated by the allure of feature re-use across problems, and the
ability to produce reasonable low-cost baselines, we now present a
categorization of features that will help us understand the difficulty
of a current task, and provide us guidance for solving new tasks.
We break out features along three dimensions:

(1) If a feature is computed for X; using disjoint information
from that used to compute the same feature for X; for all j # i then
we say the feature is non-sequential; otherwise, it is sequential.

(2) If a feature for X; may be computed solely from labels y;
then the feature is easy; otherwise, it is rich.!

(3) If a feature uses only information from Xy, ..., X,, thenitis
local. 1f it requires information from other sequences of the same
user, it is personalized. And if it requires information from other
users, it is universal.

We now briefly discuss the implications of these dimensions. A
non-sequential feature views a sequence task as a stand alone task,
and does not incorporate global consistency information. Problems
that can be solved effectively using non-sequential features need

"This distinction does not exist for the sequence similarity family
of tasks.
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not employ sequential models; these are ones for which knowledge
of the current state trumps knowledge about the past and future.

Easy features are computed from the labels of other states; they
capture a generalization of burstiness in the label sequence. Imag-
ine a world in which users very rarely click on the pagination con-
trol to generate the next page of results, but once a user does so, she
is almost certain to continue paginating through results for many
more pages. In such a world, the easy feature capturing whether
the current click was a pagination would likely be the most power-
ful feature to predict whether the next click will be a pagination. If
the label sequence is well-modeled by a two-state Markov process,
then easy features will be highly effective. Likewise, if the next la-
bel can be well-predicted by the current label, again, easy features
will be highly effective; e.g., predicting behaviors in which users
cycle between two types of events, or predicting behaviors where
the next state is a complex function of the three prior states.

Local features employ only information from the object of study,
such as the sequence being labeled, but a feature of the current
object may be computed using information from other objects in
the current sequence, i.e., local features may be sequential. In a
search engine context, local features may be computed by a small
cache that remembers the current sequence for all active users; the
requirements for such a cache are manageable. However, once it
becomes useful to know what the same user did when faced with
a similar situation in the past, personalized features must be em-
ployed, and the cache must have access to all historical informa-
tion for the user; a small in-memory cache will no longer suffice.
Similarly, if it is valuable to incorporate information about how
other users react in similar situations then universal features must
be employed, and only carefully precomputed aggregates may re-
alistically be loaded in real time. Our experiments show a trade-off
between the modeling accuracy of personalized features against the
greater coverage of universal features.

4. INSTANTIATING THE FRAMEWORK

We now investigate if our framework is indeed effective for search
sequence tasks. To this end we study several instantiations of the
framework, motivated by real-world tasks. We will show that the
proposed framework can provide a reasonable solution for all such
instantiations, and can characterize search sequence tasks by the
effectiveness of different types of features. This will not only tell
us how to improve the effectiveness of an existing solution, but also
give us the guidance on how to approach a new task.

4.1 Data

We consider two different datasets based on a search engine’s
query logs; these will be our nested data sequences. In both datasets,
clicks form the lowest level of the nested sequence. The first dataset,
denoted RAW, consists of a sample of around 1.2M queries and
corresponding clicks from a day. The second dataset, called EDIT,
contains 17,355 queries with corresponding clicks, but with dif-
ferent types of editorial labels provided by human editors. The
schemas of the two datasets are shown in Figure 2. It is easy to
show that both of them are instantiated from the general nested
data model with a few object projections defined in Section 3.1.

In the RAW dataset, each search sequence represents a user’s
queries and clicks for one day. The highest level of objects is term
blocks, where a term block is a subsequence of queries with the
same leading word. In the EDIT dataset, each search sequence is a
session of events, or a user’s events over a shorter period of time.
In addition to term blocks, queries, and clicks, this dataset also has
two higher levels, namely, missions, and goals, which are editor-
labeled. There are also other editorial labels such as the types of
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Figure 2: (a) RAW and (b) EDIT schemas.

transitions between two queries (i.e., new, zoom in, pan, zoom out,
match, undef) and the query type (i.e., navigational, informational).

We partition each dataset into a training set (80%) and a test set
(20%). Since no human labels are needed for sequence prediction
tasks, we use the RAW dataset for these. We use the EDIT dataset
to evaluate the sequence classification and sequence labeling tasks,
which need human labeled judgments. To test the effectiveness
of the personalized and universal features, we also collect a larger
background dataset which includes all queries and clicks from all
search users from the month preceding the start of the RAW dataset.

4.2 Task instantiations

We introduce 14 search sequence tasks, containing eight online
prediction tasks and six offline labeling/classification tasks.

Sequential prediction tasks.

Click-level tasks include the following. ALGO: Will the next
click be on one of the ten algorithmic search results? NEXTPAGE:
Will the next click be on a “pagination” link to load another page
of results? NEWQUERY: Is the next click on the current page, or
will the user first enter a new query?

Query-level tasks include the following. TERMBLOCK: Is the
next query in the same termblock (i.e., has the same first word as
the previous query, which is an indicator of the situation that the
current information need is not satisfied)? This is computed imme-
diately before the next query arrives, whereas the next four tasks
are computed immediately after the query arrives. FIRSTALGO: Is
the first click for this query on one of the ten algorithmic search re-
sults? HASALGO: Will this query have at least one click on search
results? HAS3ALGO: Will this query have at least three clicks on
the ten algorithmic search results? ALSOTRY: Is the first click for
this query on an “also try” query suggestion?

Sequence labeling tasks.

Query-level tasks include the following. MISSION: Segment a
query sequence into missions.” GOAL: Segment a query sequence
into goals. RESTART: Segment a query sequence into regions of
new missions and restarted missions. TRANSTYPE: Label the query
with the type of transition from the previous query; this is a multi-
class labeling task, which includes labels as the start of a session,
lexical editing, zooming in, zooming out, concept matching, new
page, panning, and undefined transition.

Sequence classification tasks.

A query-level task is NAv: Classify all queries in a sequence
as navigational or informational. A special case of this task is
the classification of an individual query. A mission-level task is
IFRESTART: Given a mission (sequence of query), whether it is a
restarting mission in the current session.

The choice of the level of objects and the target labels are sum-
marized in Table 4.2. These 14 tasks reasonably cover both tasks
that have already been studied (i.e., MISSION, GOAL, NAV), and
tasks that have not been studied. Although the tasks are diverse,
our framework will let us treat them in a unified manner.

%For detailed discussion of missions and goals, see, e.g., [13].
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Task Level Label
ALGO click Yn = 0[Xn — s1]
NEXTPAGE click yn = 8[X,, — pagination]
NEWQUERY click Yn = O[query(X,) # query(X,_1)]
TERMBLOCK query yn = [head(X,,) = head(X,,—1)]
FIRSTALGO query 8[Whn,1 — st]
HASALGO query Yn = O[[sr(Xn)| > 0]
HAS3ALGO query yn = O[|st(Xn)| > 3]
ALSOTRY query yYn = 6[Wp,1 — alsotry]
MISSION query  y; = {new mission, same mission}
GOAL query y; = {new goal, same goal}
RESTART query y; = {new mission, same
mission, old mission}
TRANSTYPE query y; = {new, lexical, zoom in, pan,
zoom out, match, new page, undef}
Nav query y = d[navigational]
IFRESTART | mission y = J[old mission]

Table 1: Task instantions.

Note that the targets (i.e., y, y;’s) of our tasks are discrete non-
numeric labels. This makes maximum entropy [16] and conditional
random fields [15] natural choices for the prediction and classifica-
tion tasks and for the sequence labeling task, respectively.

S. EXPERIMENTS: LOCAL FEATURES

Non-sequential features. We compute the following features for
the current query: length, number of words, number of search and
ad results, frequency, does the query contain a stopword, does the
query come from a rewriting action of the search engine, sum of
frequencies of queries that are a superset of this query (treated as
a bag of words), and country of the user issuing the query. The
following are features for the current click: length of the url, pag-
ination number, position (for clicks within the algorithmic search
results — includes both position on the current page and position
taking into account pagination), and section of the page in which
url was present (search, north ads, east ads, header, footer, etc).

Easy-sequential features. For prediction tasks, in addition to non-
sequential features, these include labels of the previous (one or two)
queries or previous (one or two) clicks.

Rich-sequential features. In addition to the above easy-sequential
features, these include the following. For a query object: num-
ber of clicks, maximum, minimum, and average positions of the
clicks, maximum time between two consecutive clicks, number of
“out-of-order” clicks on the ten algorithmic search results (clicks
for which an earlier click occurred at a lower-ranked algorithmic
search result), and time between the query and the first click. For a
query-query pair, the features are: edit distance between the queries
(both absolute and normalized by the length of the longest query),
time elapsed between the queries, are the queries from the same
term block, and is one query a superset or subset of the other in the
bag of words representation. For a click-click pair, the features are:
time between clicks, difference between positions, and difference
in pagination. For a term block object, the features are: number of
queries, clicks, and their ratio in the term block, number of out-of-
order clicks, and average click position including pagination.

For prediction tasks, additional features for a query object are
number and fraction of clicks with a given target label. For a
term block object, we add number and fraction of prior clicks and
queries with a given target label.

Based on these features, we study the performance of our frame-
work on the tasks in Section 4.2. As a naive baseline, we employ
algorithm “guess,” in which we uniformly guess the majority label
in the training instances.



Table 2 shows results for the online tasks evaluated using preci-
sion (pre.), recall (rec.), and accuracy (acc.) of one class of output.
These tasks are learned using the MaxEnt model.

Table 3 shows results for the offline tasks. Here, we use pre-
cision/recall for binary classification, and accuracy for multi-class
classification tasks. Offline tasks are learned using MaxEnt for non-
sequential features and CRF for easy and rich sequential features.

Task metric | guess non-seq. easy-seq. rich-seq.
acc. 0.722 0.742 0.757 0.762
ALGO pre. 0 0.556 0.598 0.608
rec. 0 0.356 0.384 0.411
acc. 0.938 0.939 0.942 0.943
NEXTPAGE pre. 0 0.542 0.569 0.591
rec. 0 0.071 0.247 0.259
acc. 0.550 0.784 0.792 0.793
NEWQUERY pre. 0 0.772 0.790 0.816
rec. 0 0.738 0.734 0.698
acc. 0.898 0.900 0.907 0.909
TERMBLOCK pre. 0 0.528 0.595 0.600
rec. 0 0.158 0.271 0.314
acc. 0.569 0.634 0.663 0.663
FIRSTALGO pre. 0 0.631 0.659 0.662
rec. 0 0.862 0.844 0.835
acc. 0.593 0.629 0.644 0.724
HASALGO pre. 0 0.637 0.653 0.718
rec. 0 0.869 0.853 0.880
acc. 0.923 0.923 0.923 0.920
HAS3ALGO pre. 0 0 0 0.437
rec. 0 0 0 0.197
acc. 0.939 0.939 0.958 0.958
ALSOTRY pre. 0 0 0.143 0.407
rec. 0 0 0.0001 0.001

Table 2: Local sequential features on online prediction tasks.

From Table 2, we get good performance for all tasks using lo-
cal sequential features. While the accuracy numbers in some cases
are only a modest improvement over a uniform guess (due to the
skewed nature of the class), the precision and recall improvements
are non-trivial. For most tasks, while using the rich-sequential fea-
tures results in the best performance, it is important to note that
in almost all cases, the performance constantly improves with the
sophistication of the features.

Task metric | guess non-seq. easy-seq. rich-seq.
acc. 0.608 0.651 0.692 0.858
MISSION pre. 0 0.571 0.675 0.806
rec. 0 0.481 0.431 0.846
acc. 0.668 0.658 0.669 0.852
GoAL pre. 0.668 0.680 0.688 0.870
rec. 1 0.894 0.895 0.906
RESTART acc. 0.616 0.655 0.783
TRANSTYPE acc. 0.406 0.508 0.670
acc. 0.607 0.820 0.843 0.850
NAv pre. 0 0.798 0.854 0.853
rec. 0 0.704 0.724 0.749
acc. 0.707 0.721 0.738 0.762
IFRESTART pre. 0 0.553 0.667 0.627
rec. 0 0.242 0.212 0.460

Table 3: Local sequential features on offline labeling tasks.

Table 3 shows more dramatic improvements for offline label-
ing tasks. For all six tasks, rich-sequential features outperform the
rest. For the segmentation tasks such as MISSION and GOAL, rich-
sequential features improve the accuracy over non-sequential fea-
tures as much as 31.8% and 29.4%. Classifying query transition
is an even more interesting example, where using rich sequential
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features improve over non-sequential features by as much as 65%.
RESTART is a more difficult task than MISSION, as an additional
label “restart session” is involved. In this case, rich-sequential
features improve over non-sequential features by 27%. Note that
guess, precision, and recall are not applicable to the multi-class la-
beling tasks RESTART and TRANSTYPE.

Note that MISSION and GOAL were studied in [13] with the same
dataset. Although our proposed framework does not rely on custom
features or models for these two tasks, its performance is still com-
petitive (0.858 and 0.852 vs 0.844 and 0.873 in [13]).

The range of tasks we consider are sufficient to show a widely
divergent set of behaviors. Within the online prediction tasks we
study, the following natural clusters emerge.

HAS3ALGO. The task of determining whether a user will click
on three or more algorithmic search results is difficult and highly
skewed, and the learner is not able to beat the majority guess in ac-
curacy. In fact, using non-sequential or easy sequential features, the
learned model always predicts negative. Only with rich sequential
features is the learner able to find non-trivial solutions, improving
precision and recall significantly, with no increase in accuracy.

NEWQUERY, FIRSTALGO. Non-sequential features provide essen-
tially all the value of richer feature classes for NEWQUERY (pre-
dicting a new query) and FIRSTALGO (predicting whether the first
click will be on an algorithmic result). For these tasks, informa-
tion about the current query dominates what our feature set reveals
about the context.

ALSOTRY, NEXTPAGE. Both ALSOTRY and NEXTPAGE show
a significant increase in accuracy using easy sequential features,
with little additional benefit using rich sequential features. This is
because in both the recent past is the best predictor of the immediate
future: users searching around for the right query are likely to click
on multiple query suggestion links, while users exploring beyond
the first page of search results are more likely to explore further.

ALGO, TERMBLOCK, HASALGO. Rich sequential features are
beneficial for these tasks. HASALGO shows a 22% decrease in
error rate moving from easy to rich sequential features. For NEW-
QUERY and FIRSTALGO we see a loss of recall when employing
rich sequential features. Typically high precision is more important
than high recall for these types of tasks, and the more significant
gain in precision at the expense of a loss in recall is acceptable; rich
sequential features show an improvement in accuracy in both cases.
For other tasks in which the recall is very low (e.g., NEXTPAGE,
TERMBLOCK, ALSOTRY), it is interesting to see that sequential
analysis obtains a huge recall gain (> 90%). The story for offline
tasks is more dramatic. Segmenting sequences into missions and
goals show large improvements when rich sequential features are
added via CRF modeling. Likewise for the multi-class problems
RESTART and TRANSTYPE. Most of the gain in predicting naviga-
tional queries occurs using non-sequential features alone. And the
IFRESTART task shows best precision using easy sequential fea-
tures, but a doubling in recall using rich ones.

Remarks. The classes of local features we have identified seem
to have good discriminating power in separating tasks at different
levels of difficulty.

Additionally, while we did not introduce per-task features, the
wide range of horizontal features we employ show significant im-
provements over random guessing, with no additional work re-
quired on a per-task basis. This supports our assertion that a frame-
work for search sequence tasks provides a valuable baseline against
which to compare more targeted algorithms.



6. EXPERIMENTS: GLOBAL FEATURES

We consider personalized and universal features computed by
aggregating simple information over multiple sessions. We study
two subclasses of these feature types. The first is the probability of
a certain type of click (“pagination,” “also try,” algorithmic search,
etc.) conditioned on the particular query. The second is the prob-
ability of a certain type of click conditioned on both the query and
the immediately preceding click.

We aggregate these two feature types over all search sequences
in the data to provide universal features, and also aggregate them
on a per-user basis to provide personalized features. For exam-
ple, define a local feature F'(q,c) = d[label(c) = “pagination”].
Then the corresponding global feature is the average Fagg(q, c)
[F(q',c")]. It {S} is a set of sequences from the cur-

E
(¢'=q,c')€{5}
rent user, then the resulting feature is personalized. If {S} is a set
of all search sequences, then the feature is universal.

To test the effectiveness of global sequential features, we con-
sider five online prediction tasks: ALGO, NEXTPAGE, HASALGO,
FIRSTALGO, and ALSOTRY. We perform the experiments by adding
in the global features to the rich local sequential features. The com-
parison between global features and the performance using local
features is shown in Table 4. Results are shown for universal fea-
tures (“univ”), personalized features (“pers”), and the combination.

Task metric | local  pers. univ. pers.+
univ.

ALGO acc. 0.762 0.854 0.854 0.854
prec. | 0.608 0.704 0.692 0.691

rec. 0411 0.689 0.700 0.711

NEXTPAGE acc. 0943 0954 0954 0954
prec. | 0.591 0599 0.597 0.609

rec. 0.259 0315 0319 0312

HASALGO acc. 0.724 0.733  0.758  0.760
prec. | 0.718 0.726 0.759  0.762

rec. 0.880 0.884 0.808 0.864

FIRSTALGO acc. 0.663 0.665 0.698 0.700
prec. | 0.662 0.668 0.712 0.715

rec. 0.835 0.821 0.782 0.794

ALSOTRY acc. 0.958 0958 0.958 0.958
prec. | 0407 0.409 0.406 0.444

rec. 0.001 0.001 0.002 0.002

Table 4: Global features on online prediction tasks.

As we can see from Table 4, all five tasks gain from the inclusion
of global features in terms of accuracy and precision. We do notice
a loss of recall for HASALGO (1.9%) and FIRSTALGO (5.8%), but
the improvement in precision is much larger (6% and 8%).

Once again, we see that an improvement in precision and ac-
curacy for all tasks, and a loss of recall in two high-recall and
low-precision tasks. It is worth mentioning that the global fea-
tures significantly boost recall for the low-recall tasks: ALGO by
75%, NEXTPAGE by 20%, and ALSOTRY by 100%. For the first
two tasks, the improvement from global features is more significant
than the improvement from rich-sequential features.

For both ALGO and ALSOTRY, the combination of personal-
ized and universal features performs better than either one alone,
suggesting that one should employ per-user data when present, but
should otherwise fall back to cross-user data.

7. CONCLUSIONS

We propose a general framework to capture sequences of user
behavior at multiple levels of granularity. We demonstrate the mer-
its of our framework by considering 14 diverse sequence analysis

1996

tasks and conducting extensive experiments on these tasks. Our
framework will let us treat these diversified tasks in a unified man-
ner. Our results provide a characterization of the appropriate fea-
ture types and modeling approaches for a wide range of sequential
analysis problems. Most of our tasks benefit from features based
on recent history. However, some tasks are “sequence-resistant™:
ALSOTRY, NEXTPAGE, NEWQUERY, FIRSTALGO, etc. It will be
important to understand these.
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