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ABSTRACT 1. INTRODUCTION

Topic modeling has been a key problem for document analysis. Document representation has been a key problem for document
One of the canonical approaches for topic modeling is Probabilistic analysis and processing[8][10][11]. The Vector Space ModeMY'S
Latent Semantic Indexing, which maximizes the joint probability might be one of the most popular models for document represen-
of documents and terms in the corpus. The major disadvantage oftation. In VSM, each document is represented as@ of words

PLSI is that it estimates the probability distribution of each docu- Correspondingly, the inner product (or, cosine similarity) is used as
ment on the hidden topics independently and the number of param-the standard similarity measure for documents or documents and
eters in the model grows linearly with the size of the corpus, which queries. Unfortunately, it is well known that VSM has severe draw-
leads to serious problems with overfitting. Latent Dirichlet Allo- backs, mainly due to the ambiguity of wordsolysemy and the
cation (LDA) is proposed to overcome this problem by treating the Personal style and individual differences in word usayaénymy.
probability distribution of each document over topics as a hidden  To deal with these problems, IR researchers have proposed sev-
random variable. Both of these two methods discover the hidden eral dimensionality reduction techniques, most notably Latent Se-
topics in the Euclidean space. However, there is no convincing evi- mantic Indexing (LSI) [8]. LSI uses a Singular Value Decompo-
dence that the document space is EuclideaflabrTherefore, it is sition (SVD) of the term-document matriX to identify a linear
more natural and reasonable to assume that the document space gubspace (so-calleldtent semantic spagahat captures most of
amanifold, either linear or nonlinear. In this paper, we consider the the variance in the data set. The general claim is that similarities
problem of topic modeling on intrinsic document manifold. Specif- between documents or between documents and queries can be more
ically, we propose a novel algorithm called Laplacian Probabilistic reliably estimated in the reduced latent space representation than in
Latent Semantic Indexing (LapPLS]I) for topic modeling. LapPLS| the original representation. LSI received a lot of attentions during
models the document space as a submanifold embedded in the amthese years and many variants of LSI have been proposed [1][20].
bient space and directly performs the topic modeling on this doc-  Despite its remarkable success in different domains, LS| has a
ument manifold in question. We compare the proposed LapPLSI number of deficits, mainly due to its unsatisfactory statistical for-
approach with PLSI and LDA on three text data sets. Experimen- mulation [12]. To address this issue, Hofmann [11] proposed a
tal results show that LapPLSI provides better representation in the generative probabilistic model named Probabilistic Latent Seman-
sense of semantic structure. tic Indexing (PLSI). PLSI models each word in a document as a
sample from a mixture model, where the mixture components are
multinomial random variables that can be viewed as representa-
tions of “topics.” Each document is represented as a list of mixing
proportions for these mixture components and thereby reduced to
a probability distribution on a fixed set of topics. This distribu-
tion is the “reduced representation” associated with the document.
The major disadvantage of PLSI is that it estimates the probability
distribution of each document on the hidden topics independently
and the number of parameters in the model grows linearly with the
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size of the corpus. This leads to serious problems with overfitting
[16][5][19]. Latent Dirichlet Allocation (LDA) is then proposed to
overcome this problem by treating the probability distribution of
each document over topics agaparameter hidden random vari-
able rather than a large set of individual parameters, wher&the
is the number of hidden topics.

Both of the above two topic modeling approaches discover the
hidden topics in the Euclidean space. However, there is no convinc-
ing evidence that the documents are actually sampled from a Eu-
clidean space. Recent studies suggest that the documents are usu-
ally sampled from a nonlinear low-dimensional manifold which is
embedded in the high-dimensional ambient space [10][23]. Thus,
the local geometric structure is essential to reveal the hidden se-
mantics in the corpora.



In this paper, we propose a new algorithm calleaplacian The parameters can be estimated by maximizing the log-likelihood
Probabilistic Latent Semantic Indexing (LapPLS]I). LapPLSI con- N M
siders the topic modeling on the document manifold. It models the r— Z Z n(di, w;) log P(d;, w;)
document space as a submanifold embedded in the ambient space — v
and directly perform the topic modeling on this document mani- T
fold in question. By discovering the local neighborhood structure, NN
our algorithm can have more discriminating power than PLSI and x Z Z n(
LDA. Specifically, LapPLSI first builds an nearest neighbor graph =17=1
to model the local document manifold structure. It is natural to as- wheren(d;, w;) the number of occurrences of tery in docu-
sume that two sufficiently close documents have similar probability mentd;. The above optimization problem can be solved by using
distribution over different topics. The nearest neighbor graph struc- standard EM algorithm [9].
ture is then incorporated into the log-likelihood maximization asa  Notice that there ar&F K+ M K parameter$ P (w; |z ), P(zx|di)}
regularization term for LapPLSI. In this way, the topic model esti- which are independently estimated in PLSI model. It is easy to see
mated by LapPLSI maximizes the joint probability over the corpus  that the number of parameters in PLSI grows linearly with the num-

@)

K
di,w;)log > P(w;|zk) P(zk|d:)

k=1

and simultaneously respects the local manifold structure. ber of training documents\)). The linear growth in parameters
Itis worthwhile to highlight several aspects of our proposed al- suggests that the model is prone to overfitting [16][5].
gorithm here: To address this issue, Latent Dirichlet Allocation (LDA) [5] is

then proposed. LDA assumes that the probability distributions of
&ocuments over topics are generated from the same Dirichlet dis-
tribution with K parameters. Essentially, LDA modifies the second
step of PLSI generating scheme:

1. The conventional generative probabilistic modeling approach
e.g, PLSI and LDA, discover the hidden topics in the Eu-
clidean space. Our approach considers the problem of topic
modeling directly on the document manifold in question and

discovers the hidden topics. 1. select a document; with probability P(d;),

2. The graph Laplacian used in our algorithm is a discrete ap- 2. pick a latent topicy,
proximation to the Laplace-Beltrami operator defined on man-
ifold. By discovering the local neighborhood structure, our 2.1 generaté; ~ Dir(a),
algorithm can have more discriminating power than PLSI 2.2 pick a latent topie;, with probability P(z5,|6;),
and LDA.

. ) 3. generate a word; with probability P(w;|zx).
3. Our algorithm constructs a nearest neighbor graph to model

the intrinsic structure in the data, which is unsupervised. WhenDir(«) is the Dirichlet distribution with & -dimensional param-

there is network structure available.g hyperlink between etera.

Web pages, it can be naturally used to construct the graph. The K + M K parameters in & -topic LDA model do not grow
with the size of the corpus. Thus, LDA does not suffer from the

The rest of the paper is organized as follows: in Section 2, we ¢4 overfitting issue as PLSI.

give a brief review of topic modeling with PLSI and LDA. Section
3 introduces our algorithm and give a theoretical analysis of the

algorithm. Extensive experimental results on document modeling 3. LAPLACIAN PROBABILISTIC LATENT
and document clustering are presented in Section 4. Finally, we SEMANTIC INDEXING
provide some concluding remarks and suggestions for future work gy assuming that the probability distributions of documents over

in Section 5. topics are generated from the same Dirichlet distribution, LDA
avoids the overfitting problem of PLSI. However, both of these two
2. A BRIEF REVIEW OF PLSI AND LDA algorithms fail to discover the intrinsic geometrical and discrim-

inating structure of the document spare, which is essential to the
real applications. In this Section, we introduce our LapPLSI algo-
rithm which avoids this limitation by incorporating a geometrically

The core of Probabilistic Latent Semantic Indexing (PLSI) is
a latent variable model for co-occurrence data which associates

an unobserved topic variable € {z1,-- -, zx } with the occur- :
rence of a wordw; € {w,--- ,wx} in a particular document ~ Pased regularizer.
di € {c, - ,dn}. As a generative model for word/document 3 7 The | gtent Variable Model with Manifold
co-occurrences, PLSI is defined by the following scheme: Regularization
1. select a document; with probability P(d;), Recall that the documenise D are drawn according to the dis-
_ _ ) N tribution Pp. One might hope that knowledge of the distribution
2. pick a latent topie;, with probability P(z|d:), Pp can be exploited for better estimation of the conditional distri-

bution P(z|d). Nevertheless, if there is no identifiable relation be-
tweenPp and the conditional distributio®(z|d), the knowledge
of Pp is unlikely to be very useful.

Therefore, we will make a specific assumption about the con-
nection betweerPp and the conditional distributiof?(z|d). We
assume that if two documents, d> € D areclosein theintrin-
P(di,w;) = P(di)P(w;|d:), sicgeometry ofPp, then the conditional distribution3(z|d: ) and

K (1) P(z\dg)_ are _sirr_1i|ar_ to each othgr. In other words, the conditio_nal
P(w;|d;) = Z P(w;|21) Pzx|d;). probability distribution?(z|d) varies smoothly along the geodesics
' o in the intrinsic geometry oPp. This assumption is also referred to

3. generate a word; with probability P(w;|zx).

As a result one obtains an observation g, w;), while the la-
tent topic variable:, is discarded. Translating the data generation
process into a joint probability model results in the expression



asmanifold assumptiof8], which plays an essential rule in devel-
oping various kinds of algorithms including dimensionality reduc-
tion algorithms [3][10] and semi-supervised learning algorithms
[4][24].

Let fx(d) = P(zx|d) be the conditional Probability Distribution
Function (PDF), we usgfx||3; to measure the smoothness faf
along the geodesics in the intrinsic geometry/f. When we
consider the case that the suppait Pp, is a compact submanifold
M c RM anatural choice fof fx ||3; is

1fel2 = / IV Sl 2dPo (d) 3)
deM

whereV ,, is the gradient off;, along the manifoldM and the
integral is taken over the distributidfp.
In reality, the document manifold is usually unknown. Thus,

lfx]137 in Eqgn. (3) can not be computed. Recent studies on spec-

tral graph theory [7] and manifold learning theory [2] have demon-
strated that| fx||3, can be discretely approximated through a near-
est neighbor graph on a scatter of data points.

Consider a graph withV vertices where each vertex corresponds
to a document in the corpus. Define the edge weight méakfias
follows:

Wij = {

whereN, (d;) denotes the set gf nearest neighbors a@f;. Define

L = D — W, whereD is a diagonal matrix whose entries are col-
umn (or row, sincéV’ is symmetric) sums ofV', Di; = 3, Wi;.

L is called graph Laplacian [7], which is a discrete approximation
to the Laplace-Beltrami operatdk o, on the manifold [2]. Thus,
the discrete approximation ¢fx||3; can be computed as follows:

cos(ds, ),
0,

if di € Np(d;) ord; € Ny(d;)
otherwise.

4)

—_

R P(zld;))* Wi

N

w':l

N N
=3 P(zl|di)?Dis — Y P(zx|di) P(zx|d) Wi (5)
i=1 i,5=1
=fy Dfy, — fL Wi,
=fr Lfy
wherefy, = [fi(d1),- -, fu(dar)]" = [P(zx|da), - -, P(zi|dar)] "

R can be used to measure the smoothness of conditional proba-

bility distribution function P(z|d) along the geodesics in the in-
trinsic geometry of the document set. By minimiziRg., we get
a conditional PDF functiorf, which is sufficiently smooth on the
document manifold. A intuitive explanation of minimizirgy, is
that if two documentsl; andd; are closei(e. W;; is big), fi(d:)
andfx(d;) are similar to each other.

Now we can define our new latent variable model. The new

theregularizedlog-likelihood as follows:

K
L=L-MR=L-)) R

k=1
N M K
o< Y n(di,wy)log Y Pwylzk) P(zeldi) — (6)
i=1 j—1 k=1
A K N
2 2 2 (PCakd) = Pk W

where\ is the regularization parameter.

3.2 Model Fitting with Generalized EM

To see how we can estimate the parameters in our LapPLSI model,
we first consider the case that= 0. In this case, LapPLSI boils
down to the traditional PLSI model.

The standard procedure for maximum likelihood estimation in
latent variable models is the Expectation Maximization (EM) al-
gorithm [9]. EM alternates two steps: (i) an expectation (E) step
where posterior probabilities are computed for the latent variables,
based on the current estimates of the parameters, (ii) a maximiza-
tion (M) step, where parameters are updated based on maximizing
the so-called expected complete data log-likelihood which depends
on the posterior probabilities computed in the E-step.

Recallin PLSI, we hav&V K+M K parameter§ P(w;|zx), P(zx|ds:)}
and the latent variables are the hidden topicsFor simplicity, we
useV to denote all theV K + M K parameters.

E-step:

The posterior probabilities for the latent variables Bfex|d;, w; ),
which can be computed by simply applying Bayes’ formula on Eqn.

(2):

P(wjlzk)P(2k|d:)
S P(wj|z) P(zdi)

P(zkldi, wj) =

@)

M-step:
With simple derivations [12], one can obtain the relevant part of
the expected complete data log-likelihood for PLSI:
N M
Z Z (diywy) Z P(zk|di, w;)log [P(wj|zk) P(zk|di)]
i=1 j=1
Maximizing Q () with respect to the parametefsand with the
constraints thap ", P(zx|d;) = 1and Y} | P(w;|z) = 1,
one can obtain the M-step re-estimation equations [12]:

SN n(ds, wy) Pzk|di, wy)

Plusle) = SN o) Plarld ) O
P(arldi) = Z] 1 n(d“;u(Jd)_) (Zk‘duwy). ©)

With a initial random guess dfP(w;|zx), P(zx|d:)}, PLSI alter-
nately applies the E-step equation (7) and M-step equations (8, 9)
until a termination condition is met.

Our LapPLSI model adopts the same generative scheme as that
of PLSI. Thus, LapPLSI has exactly the same E-step as that of

model adopts the generative scheme of PLSI. It aims to maximize PLSI. For the M-step, it can be derived that the relevant part of

'In mathematics, a support of a functigrirom a setX to the real
numbersR is a subset” of X such thatf (z) is zero for allz € X
that are not int”.

the expected complete data log-likelihood for LapPLSI is
Q(V) =Q(¥) - AR

>
Il
-
-

,j=1



Since the regularization paitonly involves the parametef3(z |d;), ~ Algorithm 1 Generalized EM for LapPLSI

we can get the same M-step re-estimation equatiorfan; |2« ) Input: N documents with a vocabulary sidé
as in Egn. (8). However, we do not have a close form re-estimation The number of topicgs, The number of nearest neighbgrs
equation forP(Zk|d1) In this case, the traditional EM algorithm Regu|arizati0n parametan Newton step parametar
can not be applied. Termination condition valué

In the following, we discuss how to use the generalized EM al- output: P(zx|d:), P(wj|z), i=1,--- ,N; j=1,---, M
gorithm (GEM) [14] to maximize the regularized log-likelihood of k=1,--- K
LapPLSI in Egn. (6). The major difference between GEM and
traditional EM is in the M-step. Instead of finding thbally op- 1: Compute the the graph matdiX as in Egn. (4);
timal solutions for?¥ which maximize the expected complete data 2: |nitialize the probability distributions (parametefs);
log-likelihood Q(¥) in the M-step of EM algorithm, GEM only Wy = {P(z1|di)o, P(w;|zx)o}

needs to find a “better. Let ¥,, denote the parameter values of 3., . 0;
the previous iteration andf,,; denote the parameter values of the  4: while (true)
current iteration. The convergence of GEM algorithm only requires 5: E-step Compute the posterior probability as in Eqn. (7) ;
that Q(Vn11) > Q(¥n) [14]. M-step:

In each M-step, we have parameter valdgs and try to find ComputeP(w;|zx)n+1 as in Eqn. (8);
W i1 Which satisfyQ(Wr11) > Q(Vn). Apparently,Q(Vn11) > ComputeP(zx|di)n11 as in Eqn. (9);
Q(‘Iln)hholds(if\I)’nH :(\If)n . P(zi|d) 1)) — Pzi|di)nsr;

We haveQ (V) = Q(¥) — AR. Let us first find¥, , whic N i .
maximizesQ(¥) instead of the whol@ (). This can be done by _ Co.mputeP(,<z§)|dl)n+1 as<|1n) Ean. (11
simply applying Egn. (8) and (9). CIearIQ(\I/i,,lll) > Q(¥n) 10 while (Q(\I/?If)l) - Q(\P”“)(z)
does not necessarily hold. We then try to start frétff), and 11: Plarldi)nir — P(sz‘di)nﬂ'
decrease&R, which can be done through Newton-Raphson method 12: ComputeP(z|d;) ), as in Eqn. (11)
[17]. Notice thatR only involves parameter®(zx|d;), we only 13: if (Q(\IJS}FI) > Q(¥,)

need to updat® (zx|d;)n+1 partinW,, ;1. . ' .
Given afunctionf(z) and the initial valuer,, the Newton-Raphson ig elseP(ZHdz)nH — P(zk|di)pi1s
updating formula to decrease (or increaggy) is as follows: 16- Uiy — U
(o 17: i (Q(Wnt1) — Q(¥n) < 0)
Tipr =Tt — 7y f,,( ) (10) 18: break;
[ (x) : :
190 n<—n-+1;
where0 < v < 1 is the step parameter. Since we have 17:return W, 41
1 N
Ri=3 S (Planldi) = P(anldy))* Wiy = T 1w > 0,
Bt 4. APPLICATIONS AND EMPIRICAL
the Newton-Raphson method will decre&Bg in each updating RESULTS
; (1) ; i . . . . .
step. WithW, 1, and putRy into the Newton-Raphson updating In this section, we evaluate our LapPLSI algorithm in two appli-
formulain Egn. (10), we can get the close form solution\liéﬁl, cation domains: topic representation and document clustering.
and thent® . ... ) where In all the mixture models, the expected complete log-likelihood
n+1» » Fnt1 . .
of the data has local maxima at the points where all or some of
ZN Wi, P( .|d-)(t> the mixture components are equal to each other. We run the EM
(t+1) ) j=1 Wij 2k |05 ) p 11 . . . . . . .
P(zi|di)y ) = (1=7)P(zk|di) iy + ~ . algorithm multiple times with random starting points to improve
Ej:l Wi the local maximum of the EM estimates. To make the comparison
X (t41) (t41) (1.1) fair, we use the same starting points for PLSI and LapPLSI.
Clearly,>",_, P(zk|d:), 1’ = 1andP(z|d:), ;1 > 0holdin We empirically set the number of nearest neighbste 7, the
Eqn. (11) aslong a5/, P(z|di)'), = 1andP(z|d) ), > value of the Newton step parameteto 0.1, the value of the regu-
0. Notice that theP(w;|zx)rn+1 partin¥,,, will keep the same. larization parametek to 1000.

Every iteration of Eqn. (11) makes the topic distribution smoother .
on the nearest neighbor graph, essentially, smoother on the docu-4-1 Document Modellng
ment manifold. The step parametgercan be interpreted as a con- In order to visualize the hidden topics discovered by LapPLSI
trolling factor of smoothing the topic distribution among the neigh- approach, we conduct the following experiment on TREC AP cor-
bors. When it is set to 1, the new topic distribution of a document pus. We use a subset of the TREC AP corpus containing 2,246
is the average of the old distributions from its neighbors. This pa- newswire articles with 10,473 unique terms
rameter will affect the convergence speed but not the convergence To compare different approaches, we randomly pick four terms
result. (i.e., “film”, “school”,“space” and “computer”), and find four top-

We continue the iteration of Eqn. (11) un@(®'} V) < 9(¥{"))). ics that have these four terms as the most representative terms, re-

ntl : : ’ :
Then we test Whethe@(\ll(ntil) > Q(V,). If not, we reject the spectively. That is, for termw;, we find the topicz, such that
)

P(wj|zk) > P(wi|zk), Vw; # wj. In this way, we can compare
proposal_ Of\p"#l’ and return thal’, as the resu_lt of the M-ste_p,_ different approaches on the same topic and evaluate the terms gen-
and continue with the next E-step. We summarize the model fitting

approach of our LapPLSI by using generalized EM algorithm in 2Thjs TREC AP subset can be downloaded at
Algorithm (1). http://www.cs.princeton.edublei/lda-c/




Table 1: The 15 most representative terms generated by our
LapPLSI algorithm for four topics. The terms are selected ac-
cording to the probability P(w|z).

Table 3: The 15 most representative terms generated by the
LDA algorithm for four topics. The terms are selected accord-
ing to the probability P(w|z).

Topic 1 Topic 2 Topic 3 Topic 4 Topic 1 Topic 2 Topic 3 Topic 4
film school space computer film school space | computer
movie students | launch system movie students | shuttle says
films university | mission | technology theater | education nasa system
disney college shuttle systems actor schools launch program
universal student earth calif musical | university | mission long
mca education nasa program films college earth theyre
brooks schools test programs actress | student venus numbers
theaters district scientists | computers best teachers | spacecraft years
mary board pictures | equipment last board two time
dog public venus problem vietham | teacher mars year
movies class spacecraftf personal new high magellan work
yosemite teachers | engineers| stations theaters class rocket number
recycling black rocket numbers available| parents | telescope| people
screen professor| project design star teaching flight digital
entertainmenty teacher | launched data academy| officials | astronauty software

Table 2: The 15 most representative terms generated by the

PLSI algorithm for four topics. The terms are selected accord- Table 4: Statistics of TDT2 and Reuters corpora.

ing to the probability P(w|z). TDT2 | Reuters
Topic 1 Topic 2 Topic 3 Topic 4 No. docs. used | 9394 | 8067
film school space | computer No. clustersused 30 30
movie students venus time Max. cluster size| 1844 | 3713
company student earth two Min. cluster size| 52 18
disney university | mission west Med. cluster sizegg 131 45
last schools nasa show Avg. cluster size| 313 269
environmental| education| shuttle military
mca board | spacecraft| president
films teachers | magellan | virginia used to infer the cluster label of each document. In this experi-
universal college | telescope| virus ment, we investigate the use of topic modeling approach for text
years teacher two told clustering.
people high astronauts| system
town public launch | program 4.2.1 Data Corpora
year state miles | computers We conducted the performance evaluations using the TRl
movies class hubble years the Reutersdocument corpora. These two document corpora have
say parents make last been among the ideal test sets for document clustering purposes

because documents in the corpora have been manually clustered
based on their topics and each document has been assigned one or

erated by them that are used to represent this particular topic. Tablemore labels indicating which topic/topics it belongs to.
1, 2 and 3 show the terms generated by the LapPLSI, PLSI, and The TDT2 corpus consists of data collected during the first half
LDA algorithms, respectively, to represent the four topics. For all of 1998 and taken from 6 sources, including 2 newswires (APW,
these three algorithms, we need to pre-define the number of hiddenNYT), 2 radio programs (VOA, PRI) and 2 television programs
topics in the data set. We empirically set it to 100 as suggested in (CNN, ABC). It consists of 11201 on-topic documents which are
[5]. classified into 96 semantic categories. In this experiment, those
All the three topic modeling approaches have quite good per- documents appearing in two or more categories were removed, and
formance on these four topics. For the first three topics, although only the largest 30 categories were kept, thus leaving us with 9,394
different algorithms select slightly different terms, all these terms documents in total.
can describe the corresponding topic to some extent. For the forth The Reuters corpus contains 21578 documents which are grouped
topic (“computer”), LapPLSl is slightly better than PLSI and LDA.  into 135 clusters. Compared with TDT2 corpus, the Reuters corpus
As can be seen, LapPLSI selects more terms related to “computers’is more difficult for clustering. In TDT2, the content of each cluster
(e.g, technology, equipment) than PLSI and LDA. In the next sub- is narrowly defined, whereas in Reuters, documents in each cluster
section, we give a quantitative evaluation of these three algorithms have a broader variety of content. Moreover, the Reuters corpus
on document clustering. is much more unbalanced, with some large clusters more than 200
times larger than some small ones. In our test, we discarded doc-

4.2 Document C|ustering uments with multiple category labels, and only selected the largest

Clustering is one of the most crucial techniques to organize the 3\jist Topic Detection and Tracking corpus at

documents in an unsupervised manner. The hidden topics extractedttp://www.nist.gov/speech/tests/tdt/tdt98/index.htm
by the topic modeling approaches can be regarded as clusters. ThéReuters-21578 corpus is at
estimated conditional probability density functiétizx|d;) can be http://www.daviddlewis.com/resources/testcollections/reuters21578/




Table 5: Clustering performance on TDT2

& Accuracy (%) Normalized Mutual Information (%)
PLSI | LDA | LapPLSI| k-means| AA | NC | NMF | PLSI | LDA | LapPLSI| k-means| AA | NC | NMF
2 915 | 931 99.8 97.6 [939]998| 99.7 || 71.9| 79.3 98.0 90.3 |[84.8|97.8| 975
3 82.3 | 88.2 99.7 904 [90.6|97.9| 959 | 68.2| 79.0 97.7 844 |826|94.1| 90.9
4 76.1 | 80.8 99.3 86.3 |[86.4|959| 93.2 | 65.1| 74.2 96.8 82.2 78.6| 91.0| 89.1
5 70.0 | 77.6 98.6 811 |[816|94.7| 89.9 | 629 | 71.7 95.7 79.2 75.3| 90.4| 85.6
6 69.0 | 73.6 97.5 79.2 [ 79.4]934| 914 | 636 | 71.7 94.7 79.6 | 76.0| 90.3| 88.8
7 63.7 | 67.4 96.3 73.8 [80.4|89.1| 858 | 60.0| 66.6 92.9 756 | 76.0|851| 83.6
8 59.8 | 65.1 94.1 725 | 738|850 823 | 57.6 | 64.7 90.4 73.6 | 70.7| 814 80.7
9 63.2 | 66.5 93.8 73.6 | 73.6|86.0| 839 | 62.7| 68.9 90.5 776 | 738|839 839
10 || 60.7 | 65.8 92.8 723 | 735|814 826 | 61.8| 68.7 89.8 765 | 73.4|805| 829
Avg || 70.7 | 75.3 96.9 80.8 [815[915| 894 | 638 | 71.6 94.1 79.9 | 76.8|88.3| 87.0
k is the number of clusters
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Figure 1: (a) Accuracy (b) Normalized mutual information vs. the number of classes on TDT2 corpus

30 categories. This left us with 8067 documents in total. Table 4 wherep(c;) andp(c}) are the probabilities that a document arbi-

provides the statistics of the two document corpora. trarily selected from the corpus belongs to the clusterandc’;,
. . respectively, angh(c;, c) is the joint probability that the arbitrar-
4.2.2 Evaluation Metric ily selected document belongs to the clusterss well asc at

The clustering result is evaluated by comparing the obtained la- the same time. In our experiments, we use the normalized mutual
bel of each document with that provided by the document corpus. informationM I as follows:
Two metrics, the accuracyA() and the normalized mutual in- - MI(C,C")
formation metric {/I) are used to measure the clustering perfor- MI(C,C") = (H(C)7 HT)
mance [21][6]. Given a documert, letr; ands; be the obtained max ’
cluster label and the label provided by the corpus, respectively. ThewhereH(C) and H(C") are the entropies of' andC’, respec-
AC is defined as follows: tively. It is easy to check thad/I(C,C") ranges from 0 to 1.
S 8(si, map(ri)) MI = 1if the twp sets of clusters are identical, andll = 0
if the two sets are independent.

AC =
n

wheren is the total number of documents afigz, y) is the delta 4.2.3 Performance Evaluations and Comparisons

function that equals one if = y and equals zero otherwise, and To demonstrate how the document clustering performance can

map() is the permutation mapping function that maps each clus- pe improved by topic modeling approaches, we implemented four

ter labelr; to the equivalent label from the data corpus. The best state-of-the-art clustering algorithms as follows.

mapping can be found by using the Kuhn-Munkres algorithm [13].
Let C denote the set of clusters obtained from the ground truth

and C’ obtained from our algorithm. Their mutual information

metric M I(C, C") is defined as follows:

e Canonicalk-means clustering metho#-neans in short).

e Two representative spectral clustering methods: Average As-
, , p(ci,c)) sociation (AA in short) [22], and Normalized Cut (NC in
MI(C,C') = Z p(ci, ) - logg———"—1— short) [18][15]. Spectral clustering methods have recently

ci€C,cheC p(ei) - p(c)) emerged as one of the most effective document clustering



Table 6: Clustering performance on Reuters

& Accuracy (%) Normalized Mutual Information (%)
PLSI | LDA | LapPLSI| k-means| AA | NC | NMF | PLSI | LDA | LapPLSI| k-means| AA | NC | NMF
2 72.6 | 79.1 93.1 79.0 [822]86.3| 87.0| 234 | 39.1 69.1 39.7 | 450 56.3| 55.7
3 65.8 | 69.2 88.4 68.7 | 73.0| 78.7| 77.6 | 29.2| 39.5 65.5 445 | 43.6|54.2| 543
4 56.7 | 59.6 79.9 62.2 | 63.1|745| 745 | 31.4 | 38.8 59.5 473 | 435 525| 56.2
5 52.1 | 56.5 75.2 59.6 |[59.2|720| 714 | 351 | 423 60.5 51.1 | 48.5| 56.7| 58.6
6 52.6 | 53.2 72.5 59.7 | 58.6| 70.2| 68.7 | 37.3 | 43.9 59.4 54.3 | 50.7| 56.4| 59.2
7 455 | 47.3 71.8 53.8 [ 54.0|64.1| 63.6 | 34.6 | 39.2 58.6 49.7 | 45.1|50.8| 534
8 45.6 | 46.8 66.8 50.2 [ 47.6|59.9| 541 | 34.2| 37.2 52.1 47.2 | 42.7| 47.6| 46.5
9 41.1 | 422 62.6 445 | 43.2|57.6| 528 | 31.1| 34.6 46.7 425 | 37.7| 441 451
10 || 43.0 | 445 61.0 470 | 44.2|57.0| 53.3 | 351 | 385 515 47.4 | 42.6| 48.3| 49.1
Avg || 52.8 | 55.4 74.6 58.3 | 58.3|68.9| 67.0 | 32.4 | 39.2 58.1 47.1 | 444|519 531
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Figure 2: (a) Accuracy (b) Normalized mutual information vs. the number of clusters on Reuters corpus

tools. These methods are based on graph partitioning theo-
ries. They model the given document set using a undirected
graph in which each node represents a document, and each
edge is assigned a weight to reflect the similarity between
two documents. The clustering task is accomplished by find-
ing the best cut of the graph with respect to the predefined
criterion function. The difference between AA and NC is the
different cut criteria they used. Interestingly, Zéal. [22]

has shown that the AA criterion is equivalent to that of the
LSI followed by the K-means clustering method if the inner
product is used to measure the document similarity.

Nonnegative Matrix Factorization (NMF) based clustering.
We implemented a normalized cut weighted version of NMF
(NMF in short) [21], which has been shown to be a very ef-
fective document clustering method.

topics are generated from the same Dirichlet distribution,
LDA avoids the overfitting problem of PLSI. This can be ob-
served from our experimental results. However, both of these
two topic modeling approaches fail to outperform those stan-
dard clustering methods, especially comparing with NC and
NMF-NCW. One reason is that both PLSI and LDA discover
the hidden topics in the Euclidean space and fail to consider
the discriminant structure.

e Our LapPLSI approach gets significantly better performance
than PLSI and LDA. Moreover, LapPLSI can even achieve
better results than the state-of-the-art clustering algorithms.
This shows that by considering the intrinsic geometrical struc-
ture of the document space and directly performing topic
modeling on this document manifold, LapPLSI can have bet-
ter hidden topic modeling power in the sense of semantic
structure.

Table 5 and 6 show the evaluation results using the TDT2 and the ) )
Reuters corpus, respectively. The evaluations were conducted with ~ ® The improvement of LapPLSI over other methods is more

the cluster numbers ranging from two to ten. For each given clus- significant on the TDT2 corpus than the Reuters corpus. One

ter numberk, 50 test runs were conducted on different randomly possible reason is that the document clusters in TDT2 are

chosen clusters, and the final performance scores were obtained by ~ 9enerally more compact and focused than the clusters in Reuters.

averaging the scores from the 50 tests. Thus, the nearest neighbor graph constructed over TDT2 can
These experiments reveal a number of interesting points: better capture the geometrical structure of the document space.

e The LDA approach consistently outperforms PLSI. By as- 4.2.4 Parameter Selection
suming that the probability distributions of documents over  Our LapPLSI model has two essential parameters: the number
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Figure 3: The performance of LapPLSI vs. parameterA. The LapPLSI is very stable with respect to the parameter\. It achieves
consistent good performance with the\ varying from 500 to 50000.

of nearest neighbors and the regularization parameter Figure of \ is critical to our algorithm. It remains unclear how to do

3 and Figure 4 show how the performance of LapPLSI varies with model selection theoretically and efficiently.

the parameters andp, respectively. As we can see, the LapPLSl is . . . .

very stable with respect to both the parametemndyp. It achieves 2. We consider the topic modeling on document manifold and

consistent good performance with thearying from 500 to 50000 develop our approach based on PLSI. The idea of exploit-

andp varying from 5 to 11. ing mamf_old structure can glso be naturally |r_190rporated into
other topic modeling algorithme,g, Latent Dirichlet Allo-
cation.

5. CONCLUSIONS AND FUTURE WORK

We have presented a novel method for topic modeling, called
Laplacian Probabilistic Latent Semantic Indexing (LapPLSI). Lap-
PLSI models the document space as a submanifold embedded in
the ambient space and directly performs the topic modeling on
this document manifold in question. As a result, LapPLSI can
have more discriminating power than traditional topic modeling ap-
proaches which discover the hidden topics in the Euclidean space,
e.g PLSI and LDA. Experimental results on document modeling ACknOWIedgment

and document clustering show that LapPLSI provides better repre- The work was supported in part by the U.S. National Science Foun-
sentation in the sense of semantic structure. dation NSF 11S-05-13678, NSF BDI-05-15813 and MIAS (a DHS
Several questions remain to be investigated in our future work: |nstitute of Discrete Science Center for Multimodal Information
) ] Access and Synthesis). Any opinions, findings, and conclusions or
1. There is a parametérwhich controls the smoothness of our  yecommendations expressed here are those of the authors and do
LapPLSI model. LapPLSI boils down to original PLSIwhen  not necessarily reflect the views of the funding agencies.
A = 0. Also, it is easy to see thdt(z|d;) will be the same
for all the documents wheh = +oco. Thus, a suitable value

3. Itwould be very interesting to explore different ways of con-
structing the document graph to model the semantic struc-
ture in the data. There is no reason to believe that the nearest
neighbor graph is the only or the most natural choice. For
example, for web page data it may be more natural to use the
hyperlink information to construct the graph.
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