Diffusion of Innovations Revisited:
From Social Network to Innovation Network

Xin Rong
School of Information
University of Michigan
ronxin@umich.edu

ABSTRACT

The spreading of innovations among individuals and orga-
nizations in a social network has been extensively studied.
Although the recent studies among the social computing and
data mining communities have produced various insightful
conclusions about the diffusion process of innovations by
focusing on the properties and evolution of social network
structures, less attention has been paid to the interrelation-
ships among the multiple innovations being diffused, such
as the competitive and collaborative relationships between
innovations. In this paper, we take a formal quantitative ap-
proach to address how different pieces of innovations “social-
ize” with each other and how the interrelationships among
innovations affect users’ adoption behavior, which provides
a novel perspective of understanding the diffusion of inno-
vations. Networks of innovations are constructed by mining
large scale text collections in an unsupervised fashion. We
are particularly interested in the following questions: what
are the meaningful metrics on the network of innovations?
What effects do these metrics exert on the diffusion of in-
novations? Do these effects vary among users with different
adoption preferences or communication styles? While exist-
ing studies primarily address social influence, we provide a
detailed discussion of how innovations interrelate and influ-
ence the diffusion process.
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1. INTRODUCTION

“We don’t adopt techniques; techniques adopt us.”

The study of the diffusion of innovations is concerned with
the adoption and spreading of new products, techniques,
algorithms, and ideas via certain communication channels
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among individuals and organizations, usually in the context
of a social network [24]. Having an innovation spread quickly
in a social system is not a trivial problem. Many social
scientists and economists have developed theories to opti-
mize rival marketing strategies for promoting innovations.
Among such studies, three elements of the diffusion process
are often considered: the attributes of the innovation, the
communication channel, and the social network structure
[24, 25].

Considerable effort in diffusion studies has been devoted
to both modeling the macro diffusion process and modeling
the behavior of individual users. Studies on the macro level
usually focus on modeling the growth of a population’s col-
lective attention to an innovation [4, 11, 19, 5]. Other works
look into the structural characteristics of interpersonal net-
works and capture the impact of social influence [18, 23,
26, 29]. Diffusion studies regarding individual user’s behav-
ior have become increasingly popular by taking advantage
of newly emerged social network data, such as Facebook,
Twitter and LiveJournal [2, 28, 32], as well as academic
collaboration networks, such as co-authorship networks and
citation networks [8, 12, 15]. These studies have revealed
and reconfirmed the underlying connections between social
influence and the outcomes of diffusion.

While the data mining community has extensively ex-
plored the impact of social influence on the dynamics of
diffusion, less attention has been paid to the interactions be-
tween innovations. In contrast, rival marketing studies focus
on the diffusion of multiple competing products and model
product interactions [1, 13], but such studies typically con-
sider just two or a few products that roll out concurrently,
and lack a comprehensive account for the inter-relationships
among all innovations in the same industry. We think that a
study enabled by big data addressing the interaction among
a large group of innovations and its impact on diffusion is
urgent.

In this paper, we take a formal quantitative approach to
account for how the inter-innovation relationships explain
the variance of user adoptions. In many real-life situations,
we have access to text content that describes, documents,
reviews, and compares the innovations. Innovations most
often appear as noun phrases or entities in such textual doc-
uments, which allows us to use text mining methods to dis-
cover and analyze the relationships among the entities under
different statistical association or similarity measures.

Compared to other methods that establish similarity mea-
surement among entities, such as collaborative filtering, ex-
tracting relationships from textual content allows the sepa-



ration of innovation-specific information from user-involved
information. This separation is especially important in pre-
dicting the diffusion pattern at the early stage of diffusion,
when few adoption records are available. Given these mo-
tivations, we choose to establish a network of computer al-
gorithms and statistical models (i.e., the network of inno-
vations) for our study. We build this network by mining a
large collection of journal articles and conference papers in
computer science. Within the network, a link exists between
two innovations if their similarity or association is above a
threshold. In our analysis, we also include a citation network
of authors, which helps us distinguish and compare the fac-
tors related to the social network and factors related to the
innovation network in predicting users’ adoption behavior
and innovation diffusion patterns.

We are particularly interested in the following research
questions: (1) What are the meaningful metrics on the net-
work of innovations? (2) How do innovations with different
network attributes (measured under the above metrics) dif-
fer in terms of their diffusion process? (3) How do such
effects relate and compare to social influence through so-
cial networks? (4) Do these effects vary among users with
different adoption preferences or communication styles?

To address these research questions, we transfer concepts
from socioeconomic literature, such as exclusiveness, per-
ceived advantage, prestige and social influence, to quantita-
tive measures on innovation networks and social networks.
We also introduce multiple concepts on innovation networks
according to the analogy that an innovation and a user are
symmetric in an adoption record (i.e., the expression that
“user u has adopted innovation a” is symmetric to that “inno-
vation a has reached user v”). An example of such concepts
is the peer influence on innovation networks, which imitates
the real social influence in social networks, but instead mea-
sures how prior adoption history of a specific user affects her
later adoption decisions.

To evaluate the predictive value of the innovation net-
works, we design a real task of predicting a user’s adoption
decision about a specific innovation. We are especially in-
terested in the contribution of innovation-network-related
features on the improvement of performance.

The contribution of this paper can be summarized as fol-
lows:

1. We provide a novel perspective of the study of the dif-
fusion of innovations, by investigating how the innova-
tions compete and collaborate with each other. These
relationships can be identified through an automated
text mining process, which results in large scale net-
works of innovations.

2. On top of the features from social networks, features
extracted from the innovation networks significantly
improve the prediction of the adoption of innovations.

3. The study of innovation networks provides new in-
sights on the variance and categorization of adopters,
which could not be obtained from previous studies on
social influence.

The rest of this paper is organized as follows. We start
with a brief introduction of the related work in Section 2.
Section 3 elaborates on the process of building networks of
innovations and explores various network metrics. Section 4
provides a formal quantitative study of the predictive value
of innovation networks, followed by Section 5, which con-

cludes our findings and discusses the implications of our re-
sults on the social science research.

2. RELATED WORK

To the best of our knowledge, this is the first study of the
network of innovations and its predictive power on the adop-
tion of innovation based on large-scale text data. Similar in-
tuitions of studying the interaction between innovations in
diffusion have been seen in recent literature [27, 30, 1, 13].
These works consider competition as the only relationship
between the entities that are diffused, and do not address
collaboration in the context of innovation networks.

The most related work that addresses both competition
and collaboration between items being diffused is presented
by Myers and Leskovec [20]. They study the interaction be-
tween memes in diffusion through social media by construct-
ing a model that quantifies the degree to which different clus-
ters of memes compete or cooperate with each other. They
conclude that stronger (more infectious) memes enhance the
diffusion of relevant-weaker memes, but prohibit the diffu-
sion of irrelevant-weaker memes. The relevance is measured
by the cosine similarity between the language models of the
memes. Although their characterization of competition and
cooperation is similar to our setting, their approach relies
on the availability of large-scale user adoption history for
training the infection model. In contrast, the presented in-
novation networks are directly extracted from text data in
an unsupervised fashion, which captures the interactions be-
tween innovations without the requirement of user adoption
records.

There is also a body of work that addresses the diffusion of
topics or community memberships among scholars through
certain kinds of social structure, such as co-authorship net-
works and citation networks [15, 2, 8, 12, 17]. These studies
primarily focus on instantiating and interpreting structural
features of the social networks, or developing algorithms that
can generate effective and efficient diffusion strategies. Com-
pared to these studies, the proposed framework of innova-
tion networks provides a novel and orthogonal perspective
on modeling and interpreting various diffusion processes.

3. ESTABLISHING INNOVATION NETWORKS

In this section, we introduce our approach to establish-
ing innovation networks by analyzing a large collection of
text documents. This approach allows us to investigate the
attributes of innovations and their inter-relationships sepa-
rated from the effects of social networks.

3.1 Network Components

Nodes: innovations. We select algorithms in computer
science as the nodes of the innovation network. As our target
of diffusion analysis, new algorithms are being constantly
created by computer scientists every year and spread via
multiple communication channels. By regarding citations as
indicators of diffusion of innovation, we can create a directed
network of users featuring social influence.

We analyze the CiteSeer dataset which was originally used
for HCIR 2011 Challenge. The dataset is public on their
website. It contains over 800,000 research papers in com-
puter science published by over 2 million authors (among
which group there are 36.8 million citation links), with com-
plete meta-data information, including publishing date and
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Figure 1: Networks and relationships involved in
this paper. The top 6 competitors (left) and collab-
orators (right) of support vector machine extracted
from real data are shown. Node sizes correspond
to connection strengths. &(¢): compepetitor net-
work, U(t): collaborator network, (t): social net-
work, d(u,a;t): adoption status.

citations. We consider 804,000 research papers in our anal-
ysis, which range from the year of 1900 to 2010. We identify
the event that a researcher adopts an innovation at the first
time she mentions the innovation in one of the papers she
authors/coauthors.

To obtain a good list of innovations, we extract computer
algorithms from the Wikipedia category lists. It has a rel-
atively complete set of computer algorithms documented in
hierarchical categories. We start from three root categories,
“algorithms,” “statistical models,” and “probabilistic mod-
els” and extract a total number of 8,500 entities.® After de-
duplication and manual removal of false positives, we iden-
tify 1,692 algorithms and models as our final list. Wikipedia
redirection links are used to obtain the aliases of the algo-
rithms, so that synonyms can be regarded as one entity.

In sum, by choosing the target of innovation diffusion
analysis, we have also identified the community of users (au-
thors in computer science), communication channels (jour-
nals and conferences) and the behavior of adoption (writing
about the algorithm in one’s publications). We believe this
setting of diffusion analysis is generalizable to other domains
of innovation diffusion.

Edges: competition and collaboration. Social ties are
formed partially because of the commonalities between peo-
ple. Similarly, innovations are bonded to each other due to
their similar characteristics. For example, two algorithms
are considered to be related, either because they belong to
the same category and share similar functions, or because
they are often used together. To quantitatively evaluate
the relationships among innovations (i.e., entities), we em-

"We choose these two extra root categories in order to enrich
the set of innovations with models such as latent semantic
analysis and kernel trick.

pirically define two types of relationships: competition and
collaboration.

Definition 1. If two entities a; and a; are replaceable in
many contexts, define them as competitors. A context c(a;|d)
is a part of the sentence d with a certain length L sur-
rounding the position where a; has appeared. For exam-
ple, “quicksort” and “merge sort” share similar contexts
in multiple documents, such as “using the _ algorithm to
sort”; thus they are competitors. Let us denote the network
of competing entities as D (t).

Definition 2. If two entities a; and a; co-occur in multiple
sentences {d.}, define the two entities as collaborators. For
example, “Support Vector Machine” and “Kernel tricks”
co-occur in a great number of contexts, because support vec-
tor machines can apply kernel tricks; therefore, these two en-
tities are collaborators. Denote the network of collaborating
entities as W(t).

The two types of relationships, competition and collab-
oration, define two different types of links, and thus two
different innovation networks. The subsequent analysis will
show that these two networks effectively recover the under-
lying commonalities and interactions among entities, and
contribute to the prediction of the adoption of innovations.

In practice, to extract competitors, we extract the contex-
tual words (i.e., neighboring words) of each occurrence for
each entity of interest and break them into multiple shingles
of 4 to 6 words long. Then we aggregate the shingles for each
entity, constituting a context vector (“bag of shingles”) and
compute the cosine similarity between the context vectors
of each pair of entities, and identify those pairs with cosine
similarity above a threshold as competitors. This is related
to the distributional similarity [16] in the literature of nat-
ural language processing, but is defined on bag of shingles
instead of bag of words.

To extract collaborators, we compute the pointwise mutual
information (PMI) [9] between each pair of entities that co-
occur for at least once, and identify those pairs with PMI
value higher than a threshold as collaborators. Then we use
the two types of scores to build two innovation networks for
the same set of innovations, and thus obtaining the competi-
tor network and the collaborator network.

Note that although it may sound absurd, a pair of entities
could be identified as competitors and collaborators at the
same time. This is because of the nature of the way we iden-
tify such relationships, and the fact that authors do men-
tion competitors in the same context occasionally, especially
when they make comparisons among a set of alternative al-
gorithms. In the subsequent analysis, we do not perform
additional processing for this situation. Although ignoring
the existence of competitor-collaborator overlaps may result
in undesired correlation between the effects of the competi-
tor network and the collaborator network, such a way of
processing will minimize human interference with the data,
and as we show later, it will still be capable of revealing the
separated effects of the two types of relationships.

Degree distributions. The constructed innovation net-
works are undirected networks with the density depending
on the selected thresholds of similarity scores. Figure 2 il-
lustrates the distribution of network measures for the two
types of innovation networks. The weights on the links (i.e.,
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Figure 2: Weighted degree distributions on innova-
tion networks.

the similarity scores between innovations) on a network ap-
proximately follows a log-normal distribution. Interestingly,
the weighted degrees of both networks follow log-normal dis-
tributions, comparing to social networks which are usually
featured with a power-law degree distribution.

3.2 Interplay between Innovation Network and
Social Network

If we want to model diffusion using innovation networks,
we have to ask an important question: how do innovation
networks interplay with the social network? This question
can be addressed by revisiting two common factors on social
networks that are frequently considered in diffusion litera-
ture, social influence and prestige [31, 2, 7, 24].

Social Influence. Social influence theories typically posit
that the probability of an individual user adopting an inno-
vation increases with the number of friends having adopted
the same innovation [24, 26, 29, 2]. What would be the
equivalent hypothesis on innovation networks? If we switch
the roles of the user and the innovation in the above propo-
sition about social influence, then we obtain the following
hypothesis: the probability of an innovation being adopted
by a user increases with the number of its neighbors (i.e.,
its competitors and collaborators) that have been adopted
by the same user. We denote this effect as the innovation
influence.

Prestige. Diffusion studies also suggest that one of the mo-
tivations of innovation adoption is to increase the adopter’s
prestige [24]. Innovations with high likelihood of increas-
ing the user’s social prestige are more likely to be adopted
than ordinary innovations. A robust measurement of a user’s
prestige on citation networks is PageRank [22], which evalu-
ates both the number of followers of the unit and the prestige
of those followers.2

By a similar analogy to the one used in defining social in-
fluence, we define the innovation’s prestige as the weighted
degree of the innovation on the innovation network. This

2In addition to PageRank, a widely-used prestige metric for
scholars is the h-index, which considers both the number of
publications and the number of citations. Recent studies
suggest that in real citation networks, h-index is not signif-
icantly correlated with PageRank or other centrality mea-
sures [6, 10]. To preserve generalizability to domains outside
of scientometrics, we use the PageRank as the measurement
of social prestige for the authors.

definition is consistent with social prestige because innova-
tion networks are undirected and PageRank on undirected
networks converges to weighted degree.

In addition to measuring the prestige of users and inno-
vations in their networks respectively, we can also measure
the prestige of an innovation by looking at the prestige of
its adopters, and measure the prestige of a user by looking
at the prestige of her adopted innovations. Here we de-
fine innovation’s user prestige as the average (logarithm of)
PageRank score p,, of the users u having adopted this inno-
vation [31], and define user’s innovation prestige as the av-
erage (logarithm of ) weighted degree of the innovations that
have been adopted by this user. These two additional met-
rics serve as alternatives to the original prestige definition,
and may provide richer information for studying diffusion.
To be specific, a higher value of the former metric, innova-
tion’s user prestige, indicates that the innovation tends to
be adopted by more prestigious users, and a higher value of
latter metric, user’s innovation prestige, may indicate that
the user has more strict criteria for innovations.

In sum, we extend the concepts of social influence and
prestige from social networks to innovation networks by switch-
ing the roles of the user and the innovation in the concepts.
The analogies we have used here between users and innova-
tions are solely for the purpose of finding a way to model
the new interactions. The conjugate pairs of metrics, such as
social influence vs. innovation influence, or social prestige
vs. innovation prestige, may possess very distinct meanings.
In the next section, we perform drill-down analysis on these
features to find out their meanings and their impact on dif-
fusion.

4. THE PREDICTIVE POWER OF INNOVA-
TION NETWORKS

In this section we provide empirical evidence to show that
the innovation network is a new and valuable perspective for
studying diffusion of innovations. Note that our goal here is
by no means to do feature engineering or proposing a new
computational algorithm (for which there has been plenty of
good effort, such as [2, 8, 12, 15, 17, 27]), but to answer the
research questions asked in the first section, which also can
be phrased as: how different is this new perspective from the
old ones? What are the relations between the two? What
new conclusions can be made from this new perspective?

We answer these questions by designing a prediction task
regarding the individual user’s adoption behavior and per-
forming regression analysis on the new family of features.
These features can only be derived from innovation net-
works. We show that this family of features do provide
meaningful interpretations of the diffusion process that could
not be obtained before.

4.1 Predicting adoption behavior

Notations. For every year in our data set, t, we construct
a snapshot of the innovation networks taken at ¢ (e.g., t =
2005) which reflects all the activities from the earliest record
of the data set until the end of the year t. Let ¢o(u) be the
year when a user u € U publishes her first paper. Let to(a)
be the year when an entity a € A is first adopted by any
u € U. Let d(u,a;t) be an indicator function of the status
of adoption: d(u,a;t) = 1 if user u has adopted innovation



Feature Category | Depend. | Feature: Explanation
Usspec User’s age of activeness: t1 — to(u)
Basic feature set pec. User’s “popularity”: number of innovations the user has adopted
(non-network- Lspec Innovation’s active years: t1 — to(a)
involved) pec. Innovation’s popularity: number of adopters (users that have adopted the innovation)
-dep. elevance: cosine similarity between the n-gram models of D, (¥) an o(t), n=1, 2,
UI-d Rel i imilarity bet th dels of D, (¢ d Dg(t 1,2,3
Us-spec User’s weighted degree, in-degree, out-degree on the social network
Social-network- pec. User’s social prestige po(u,t): user’s log-PageRank score on the social network
involved T-spec. Innovation’s user prestige pqg(a,t): average log-PageRank score of the adopters
ocial influence nq(u, a;t): number of user’s followees that have adopte: e innovation
Q Ul-de Social infl n t ber of ’s foll that h d d the i t1
P- | Prestige difference on the social network: pg(a,t) — pa (u, t)
Lspoc Innovation’s weighted degree on the innovation network
Innovation- pec. Innovation’s prestige pr(a,t): innovation’s weighted degree on the innovation network
. -spec. ser’s innovation prestige p;/(u,t): average weighted degree of innovations the user adopte
network-involved U User’s i ti t1 I t ighted d fi ti th dopted
nnovation influence ny(u, a;t): number of the innovation’s neighbors adopted by the user
(I € {®,¥}) I tion infl n t b f the i tion’ ighb dopted by th
’ Ul-dep. Preference 7} (u, a;t): average weight of the innovation’s neighbors adopted by the user
Prestige difference on the innovation network: pr(a,t) — p;s(a,t)

Table 1: Description of features. Each of the features involved with the innovation network are instantiated
on both the competitor network and the collaborator network, i.e., I € {®, U}.

a by year t and d(u, a;t) = 0 otherwise. For the two types of
innovation networks, let ®(¢) be a snapshot of the competitor
network taken at t, U(t) be the collaborator network, and the
Q(t) be the snapshot of the social network. By the year t,
denote the collection of documents published by u as D (t)
and the collection of documents mentioning a as Dg(t).

Task setting. Our task is: at a given year t1, for a user-
innovation pair (u,a) where u € U, a € A, to(u),to(a) < t1,
d(u,a;t1) = 0, to predict whether v will adopt a within At
years (At > 0). This is equivalent to estimating the value
of d(u,a;t1 + At). The prediction is based on the adop-
tion history of all users and all innovations in the past, i.e.,
d(p, a;t) for any p € U, a € A, and t < t1, the snapshots of
three networks ®(t1), ¥(t1), (1), and all text information
available at time ¢1, namely D, (¢1) and Dq(¢1).

We construct two samples for training and testing pur-
poses. The training sample is selected at t; = 1995 and
At = 5. There are 120,411 positive cases, including all (u, a)
pairs that satisfy the above constraint plus d(u, a; t1 + At) =
1. The same number of negative cases are randomly sam-
pled from all other (u,a) pairs where d(u,a;t + At) = 0.
The test sample is selected at t2 = 2000 and At = 5, which
yields 402,911 positive examples and the same number of
negative examples.

Following the methods described in Section 3.1, we con-
struct the snapshots of the competitor networks ®(t) and
collaborator networks W(t) at ¢ = 1995,2000. To minimize
human interference, no threshold is used to filter edges in
®(t), and the threshold for ¥(¢) is simply set to 0. Ac-
cordingly, all the features related to the degree of nodes are
weighted by the strengths of the links.

Features. Following the intuitions explained in Section 3.2,
we formally instantiate the features of innovation networks
now. We also include baseline measurements of the innova-
tion (e.g., popularity) and metrics related to social influence,
all presented in Table 1.

All of the features defined in Table 1 have their corre-
sponding concepts in classical diffusion studies. For exam-
ple, the degree of an innovation in ¢ corresponds to the
uniqueness of the innovation, and the degree in ¥ corre-
sponds to compatibility. The prestige difference corresponds

to the user’s perceived benefits of the innovation. These con-
nections are explained in greater details in Section 5.
Among all new features, innovation influence is one of
the most important. We use three ways to compute it in
practice. The first way is just as defined in Table 1:

nr(u,a;t) = Z Wiq - d(u, i5t), (1)

i€ENy(a)

which equals the number of neighbors of the innovation a
that have been adopted by u, where Ny(a) refers to the set
of neighboring nodes of a on network I. The measure relates
to the standard threshold model of the diffusion of informa-
tion [14, 24]. The second way is to calculate the proportion
of neighbors, i.e., to normalize Eq.(1) by |N7(a)|™", which
is a variation of the threshold model that is also widely dis-
cussed. The third way of calculating the innovation influence
is:
-1

g Wia

i€N[(a)

nr(u,a;t) = -nr(u, a; t). (2)

We denote Eq.(2) as preference (see Table 1), because it
measures the average closeness (or intimacy) between what
user u has adopted to what she is considering adopting. The
third metric is conceptually different from the first two met-
rics.

Note that for either the user or the innovation, there are
two types of prestige metrics defined on the innovation net-
works and the social network respectively, so there are four
prestige definitions in total (i.e., pa(u,t), pas(a,t), pr(a,t),
pr(u,t), I,I' € {®,¥}), which all have different seman-
tics. In addition, two types of difference of prestige metrics
are defined by subtracting the corresponding user-innovation
prestige scores on different networks (i.e., po/(a,t) —pa(u, t)
and pr(a,t) — pr(a,t)). They characterize the user’s men-
tal process of comparing the innovation with her personal
criteria or past adoption history. This metric also has an
interpretation related to the theory of social status.

Figure 3 compares the distribution of innovation-network-
involved features on positive cases and negative cases. All
the present features show some level of predictive power,
indicating that they may contribute to modeling the user’s
adoption behavior. In general, a user is more likely to adopt
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Figure 3: Distribution of measurements on innova-
tion networks on the training set factorized by user’s
adoption decision. 0: non-adopted, 1: adopted.

an innovation if the innovation has more competitors or col-
laborators, or if she has already adopted more competitors
or collaborators of the innovation, or the prestige of the inno-
vation is higher than the average prestige of the innovations
she adopted. Although, by definition, some of the metrics
are correlated with the popularity and active years of inno-
vations to some degree, they still provide extra information
for modeling diffusion that may be valuable.

In addition, among the present features, the ones associ-
ated with the collaborator network (¥) appear to be more
distinctive than those associated with the competitor net-
work (@), though this distinction is subject to parameteri-
zation during the establishment of the networks.

In short, the innovation-network-involved features are in-
formative of predicting the user’s adoption behavior.
Correlation analysis. To understand how the features
inter-relate and the structure of the feature set, we con-
struct the correlation matrix between the aforementioned
three groups of features. A sample of 220,412 cases in which
the user-innovation relevance is greater than 0.1 is selected
for analysis. Pearson’s r is reported, and the features are
reordered based on hierarchical clustering analysis for illus-
tration. Figure 4 presents a heat map and a dendrogram.

An important observation is that several pairs of features
instantiated on the competitor network (®) and the collab-
orator network (¥) are correlated, including user’s innova-
tion prestige (on ® vs. on ¥) and innovation influence, with
r = 0.450 and 0.771 respectively. This is not surprising be-
cause the local structure of the competitor and collaborator
networks are highly dependent on the popularity of the inno-
vation. This dependency makes the features that are closely
related to the local structure of both ® and V¥ interrelated.
Despite the pairs of correlated features of ® and W, there
is also substantial difference between the two types of inno-
vation networks. For example, the preference features on ®
and U present very weak correlations.

From Figure 4, we can also observe that a number of fea-
tures defined on the innovation networks are not strongly
correlated with features defined on the social network. This
implies that the features from innovation networks add sub-
stantial new information to the features from the social net-
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Figure 4: Correlation analysis between selected fea-
tures. Darkness of cells corresponds to Person’s r
correlation. U: user, I: innovation, {2: social net-
work, ®: competitor network, ¥: collaborator net-
work.

work. We may utilize this new information in improving the
performance of prediction in the subsequent study.

Regression analysis. To further evaluate the predictive
value of the features, we want to quantify the impact of each
individual feature on increasing the probability of adoption.
Logistic regression is able to provide an answer. Note that
we have observed some features that are inter-correlated,
such as the user’s popularity and innovation influence. There-
fore, to prevent feature collinearity from impairing the in-
terpretation of the regression results, we select multiple sub-
groups of features by constraining the maximum correla-
tion between any features in each subgroup to be less than
0.3. For each of the subgroup, a logistic regression model
is trained accordingly (called “a run”), and the coefficients
and the significance levels of the independent variables are
recorded for each run. Then we horizontally compare the
coefficients for each feature across multiple runs, and we
have observed that all features exhibit high significance lev-
els, and the signs and magnitudes of the coefficients remain
stable and robust across multiple runs.

Table 2 summarizes the regression analysis. The mag-
nitudes of the coefficients are not comparable because the
independent variables are not normalized, but the signs of
the coefficients tell a story that is good enough. From Ta-
ble 2, we can observe that the features defined on the com-
petitor network and the collaborator network have similar
effects in predicting adoption decisions. Generally, the prob-
ability of adoption increases with the innovation’s degree on
innovation networks, the user’s preference over the innova-
tion, and the innovation influence. While a high value of the
user’s innovation prestige (i.e., a high criterion for adoption)
will result in a low probability of adoption, enlarging the



difference between the innovation’s prestige and the user’s
prestige criterion (i.e., prestige difference ®, W) will increase
the probability of adoption. The result shown in Table 2
is promising. It indicates that the features we extract are
all strong predictors of the user’s adoption behavior and the
effects are significant.

The results of baseline features and social-network-related
features are also shown in Table 2. The results match general
intuition. We can observe that the probability of adoption
increases with user’s popularity (number of innovations she
has adopted), innovation’s popularity, relevance between the
user and innovation, and social influence. Interestingly, the
coefficients of prestige difference on the social network are
negative. This could be explained as an effect of regression
to the mean—if the user has already adopted a number of
innovations that are highly prestigious, then the next inno-
vation she adopts is more likely to be less prestigious, which
explains the negative coefficient.

Category Feature Ave. Coefficient
User’s popularity 5.3E-05 ¥*¥
Baseline Inno’s popularity 2.5E-03 ***
Relevance 6.5E-01 ***
Inno’s user prstg €2 1.7E-01 ***
Social Net Q2 User’s social infl Q 1.7E-03 ***
Prestige diff Q -6.5E-02 ***
Innovation’s deg ® 2.7E-03 ***
Innovation’s deg ¥ 2.5E-04 ***
User’s inno prstg ® -8.4E-03 **
User’s inno prstg ¥ -4.8E-02 ***
Preference ® 2.6E+00 ***
Inno Nets @, W Preference ¥ 4.3E-02 ***
Inno influence ® 2.0E+00 ***
Inno influence ¥ 1.6E+00 ***
Prestige diff ® 1.3E-01 ***
Prestige diff ¥ 1.9E-01 ***

Significant at the: *** 0.01, ** 0.05, * 0.1 level.

Table 2: Logistic regression on adoption decisions.
For each feature, the average coefficient and the
minimum significance level of multiple runs are re-
ported. The signs of the coefficients of all features
remain stable across multiple runs.

Classification results. To further illustrate the predictive
power of innovation networks, we compare the classification
performance of different feature combinations on the test
set (see task setting), although feature engineering is not
our major goal here. Our task is still to predict whether
a user will adopt an innovation within five years. Table 3
summarizes the result. To investigate how the integration
of new features improves the performance, we separate a
subsample NEW of the test set where t; — to(a) <= 1,
which means these innovations are no more than 1 year old.
The NEW set includes 8,018 cases. Conversely, the OLD
set includes all innovations that satisfy ¢; — to(a) > 10, in-
cluding 784,365 cases. All models are trained on the same
training set. From Table 3, it can be seen that innovation-
network-involved features can improve the performance be-
yond social-network-involved features. This improvement
is especially significant on the NEW sample where less in-
formation about the innovation is available. This implies
that while the social network is sufficient for predicting the
adoption of older innovations, it is insufficient in predicting

“new” innovations. In each innovation set, we also examine
the performance of the features related to the competitor
network (®) and the collaborator network (¥) separately.
The results show that the collaborator network contributes
the most to the improvement of the performance. Utilizing
more sophisticated machine learning methods, such as the
Support Vector Machines, will very likely further improve
the prediction accuracy, which, however, is not our intent
here.

Inno Set | Feature Set Fos Precision | Recall
% % %

Basic features (B) | 81.88 80.25 89.11

B+Q 84.12 82.46 91.50

ALL B+Q + & 83.47 81.52 92.31
B+Q+ ¥ 86.49 86.02 88.43

B+Q+ o+ W 86.44 85.98 88.31

B4+® + ¥ 81.02 78.90 90.80

B 36.48 36.23 37.48

B+Q 41.34 44.10 33.06

NEW B+Q + @ 40.95 43.34 33.55
B+Q+ ¥ 51.43 58.81 34.24
B+Q+d+ ¥ 50.84 57.65 34.53

B4+® + ¥ 27.37 30.07 20.13

B 82.93 81.15 90.90

B+Q 85.01 83.18 93.20

OLD B+Q+ @ 84.39 82.29 93.96
B+Q + W 87.20 86.48 90.24
B+Q+d+ ¥ 87.17 86.48 90.05

B+d + W 81.98 79.66 92.80

Table 3: Prediction accuracy on the held-out dataset
and sub-datasets with different combinations of fea-
tures. Innovation networks are especially useful to
predict the adoption of NEW innovations. NEW in-
cludes only innovations whose active years < 1. OLD
includes innovations whose active years > 10.

In sum, our major finding in this section is that the fea-
tures derived from the innovation networks are strong and
robust predictors of users’ adoption decision, and they sig-
nificantly improve the prediction on top of all features ex-
tracted from the social network.

4.2 Effects of Adopter Variance

A very interesting question to ask about the above regres-
sion study is: do adopters (i.e., users) that possess different
characteristics and communication styles exhibit different
adoption patterns? Diffusion studies give an answer of “yes”
to the question by confirming the distinction between the
roles played by different subgroups of population (e.g., early
adopters, late adopters) [24]. In this section, we are inter-
ested in what new interpretations of this distinction can be
brought by looking at the diffusion problem from the per-
spective of innovation networks.

Classifying adopters. To study the effects of the vari-
ance of adopters, we first need to define the variance, which,
in this case, is equivalent to finding a way to classify the
users into different categories based on their earliness or
eagerness of adoption. In the existing diffusion literature,
adopter category is defined in the context of diffusion of a
single innovation. For example, Rogers [24] uses the four
quantiles of earliness of adoption to categorize adopters into
five categories: innovators, early adopters, early majority,



late magority, and laggards. To make full use of our dataset,
we need to make an extension to Rogers’s adopter catego-
rization to account for a user’s behavior in the diffusion of
multiple innovations concurrently.

Intuitively, to obtain a user’s general eagerness of adop-
tion, we can evaluate the eagerness of the user in the diffu-
sion of each individual innovation in which she is involved,
and combine the eagerness by taking the average. For a
given time ¢, a user u, and an innovation of that time a € A?,
we characterize the eagerness of w in the diffusion of a us-
ing the position of u among all users who have adopted a
ranked by the order of adoption. This value is denoted as
the Earliness Indez, given by

El(u,a,t) = ﬁ Z d(u', a;t(u;a) — 1), (3)

u' €Ut

where U! is the set of users that have adopted a by time
t, and t(u,a) is the time when u adopts innovation a. |U!|
is the number of users in the set Ul. As before, d(u,a;t)
means that u has adopted a by time t. A lower value of
ET indicates that u is more eager in adopting innovation a
compared to the other users. Taking the average of EI for
all innovations a € A*, we obtain the general eagerness of
user u, given by
1
AEI(u,t) = A7 agt EI(u,a,t). (4)

For any given u, AEI(u,t) € [0,1). A lower value of AET
implies that the user generally tends to adopt any innovation
at an earlier stage of the innovation’s diffusion process.

Adopter Category | Theoretical Parition | AEI Range
Innovators (—o0, u — 20) [0,0.027)
Early Adopters w—20,u—0) [0.027,0.177)
Early Majority [w—o,p) [0.177,0.430)
Late Majority [+ o) [0.430,0.686)
Laggards [n+ o,00) [0.686,1)

Table 4: Categorization of users using quantiles of
Average Earliness Index.

We calculate the AFEI scores of 46,069 unique users based
on their prior adoption history prior in the training set (see
Section 4.1). The AEI approximates a normal distribution
N(u,c?), with mean g = 0.421, and standard deviation o =
0.216. Following Rogers [24], we categorize all users into
five adopter categories according to the four quantiles of
AET distribution (see Table 4).

Hypotheses and experiment design. Classical diffusion
models [3, 24] suggest that early adopters are less sensitive to
social influence than late adopters, and are more influenced
by other communication channels, such as mass media. If
this argument is true, then we should observe the same trend
in our data: compared to conservative researchers, schol-
ars that are more enthusiastic in experimenting with new
ideas should keep their eyes more open to a wider variety
of sources of information besides their followed researchers,
and thus they should be less subject to social influence, and
more influenced by other factors.

To verify this intuition, we formulate the following hy-
potheses for testing:

(1) Innovators and early adopters are less influenced by
social influence than majorities.

(2) Innovators and early adopters are more influenced
by innovation influence (including competitor influence and
collaborator influence) than majorities.

While the first hypothesis is supported by classical diffu-
sion studies, the second hypothesis is new and can only be
tested by constructing innovation networks. To test the hy-
potheses, we build multiple logistic regression models, each
of which includes only one independent variable out of so-
cial influence, competitor influence, and collaborator influ-
ence, and is trained on each individual category of adopters
separately. Having trained all the regression models, we
then examine the coefficients of the independent variables.
For each independent variable and each adopter category,
a higher coefficient means that a unit increase in the value
of the independent variable will cause a more significant in-
crease in the probability that the user adopts the innovation;
therefore, horizontal comparison of the coefficients across
different adopter categories is informative for investigating
the distinction between different groups of users.

Results. Figure 5 summarizes the results of the above ex-
periment. It compares the impact of four distinct features,
including social influence®, popularity of the item, innova-
tion influence on the competitor network, and innovation
influence on the collaborator network, on different user cat-
egories.

Note that the upper right chart in Figure 5 looks specially
at the variable of innovation popularity, which is the num-
ber of users that adopted an innovation. This variable is
one of the basic features, neither associated with social in-
fluence nor innovation influence. We include this feature in
the experiment to confirm that our setting of the AET met-
ric and the computation are correct. Since innovators and
early adopters often adopt innovations at the early stage, a
unit increase in the popularity of the innovation should not
increase the probability of their adoption as much as for the
majorities. The distribution of the coefficients in the result
matches our expectation, and thus confirms our setting and
computation.

The upper left chart in Figure 5 is associated with the first
hypothesis. We can observe a very clear contrast between
different adopter categories regarding social influence. In-
novators and early adopters are significantly less prone to
social influence than early and late majorities are. In ad-
dition, between innovators and early adopters, the former
are less affected than the latter. This result supports the
first hypothesis, and hence matches the conclusions of the
existing diffusion literature [3, 24].

In contrast to social influence, innovation influence (the
bottom charts in Figure 5) shows the opposite trend. The
decisions made by innovators and early adopters appear to
be much more influenced by their prior adoption history of
similar items than early and late majorities. This result
supports the second hypothesis above, and implies that the
first two categories of adopters, compared to the majorities,
are more interested in the properties of the innovation itself
rather than their peer opinions. In addition, the difference

3Here social influence is computed as the proportion of
friends that have adopted the innovation, instead of the
number of friends. The latter one is tricky due to collinearity
effect.
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Figure 5: Comparison of predictor coefficients across
adopter categories with 90% confidence interval. X-
axis: adopter categories. C1: Innovators, C2: Early
adopters, C3: Early majority, C4: Late majority,
C5: Laggards. Y-axis: coefficient of the predictor in
the logistic regression model.

between innovators and early adopters regarding collabora-
tor influence is more significant than that regarding com-
petitor influence.

It is noteworthy that in all the comparisons, the confi-
dence intervals of the coefficients for the innovators are the
largest. This is because the way we partition the data leads
to fewer cases for the innovator category than for other cate-
gories. In fact, the behavior of innovators are truly the least
predictable given the small number of them in society and
the wide variety of reasons why they are innovative. In ad-
dition, we ignore laggards in our analysis because they are
the least important in the diffusion process.

S. DISCUSSION AND CONCLUSION

We summarize the four most important observations from
the series of analyses above. First, the adoption rate of an
innovation will increase if it has either more competitors or
more collaborators. This is intuitive because having more
competitors and collaborators is likely to increase the expo-
sure of an innovation.

Second, the adoption rate of an innovation increases with
the proportion of its competitors or collaborators adopted
by the user. Among the users of different adoption styles,
the innovators and early adopters are more sensitive to such
an influence. Between innovators and early adopters, the
former is more likely to be influenced by the collaborators
of an innovation than its competitors. (Figure 5). When
the diffusion of an innovation become prevalent, the social
influence becomes the driven force.

Third, the prestige measurements on innovation networks
have stable negative coefficients (Table 2), indicating that
the users with higher standards of selecting innovations are
less likely to adopt an innovation. This implies a way of
defining users’ individual thresholds in modeling diffusion.
In addition, the difference of prestige on innovation networks
characterize how much the innovation supersede the user’s
standard, and is very discriminative in predicting whether
the user will adopt the innovation (Figure 3).

Finally, the features instantiated on innovation networks
have a strong predictive power of the adoption of innovation,
even when combined with the baseline and social features.
In particular, such improvement in performance are more
significant for cases where the innovations have just started
to diffuse and there exists relatively little social influence
with regard to the fresh innovation.

Connection with the social science literature. Clas-
sical diffusion studies suggest that the diffusion of innova-
tions is impacted jointly by multiple factors, which include
the attributes of the innovation, types of the communication
channel, and the social network [24, 21, 25]. The network
of innovation can be interpreted as a special attribute of
innovations, among which, according to diffusion literature,
the five most important ones are: uniqueness, compatibility
with the user’s past experience, perceived benefits, visibility
in the social network, and the cost of adoption.

Most of these characteristics are captured and modeled
by our proposed innovation networks in a principled way.
Among the features we have instantiated, the degree of the
innovation in the competitor network corresponds to the
uniqueness; the degree of the innovation in the collaborator
network and innovation influence corresponds to compatibil-
ity, the prestige of innovations and the prestige difference
correspond to the user’s perceived benefits; the popularity
of the innovation and the social influence correspond to the
global and local wvisibility of the innovation respectively.

Our results strengthen a series of conclusions made by so-
cial scientists with the evidence from large scale empirical
analysis. First, through regression analysis we have observed
that uniqueness, compatibility, perceived benefits and social
influence are all strong and robust predictors of the user’s
adoption decision, which is consistent with many analyses in
diffusion literature [24, 25, 5]. Second, in the analysis of the
adopter variance, we have seen a distinct contrast between
the effect of social influence and that of innovation influence
on early adopters and late adopters, which is also perfectly
compatible with existing theories [3, 24]. The matching be-
tween our results and the social theories is a very meaningful
one, because it provides a plausible way for social scientists
to access large-scale text data and make a number of obser-
vations that were previously impossible, such as quantitative
measurements of the compatibility and the perceived bene-
fits of innovations.

New implications. We have also discovered new inter-
esting results that implies new directions of research. In
the adopter variance analysis, the results show that past
adoption experience with the collaborators of an innovation
exerts more influence on innovators (the earliest category)
than on early adopters (the second earliest category). How-
ever, with regard to the competitors of the innovation, such
a distinction is no longer significant. A possible explanation



is that innovators, often being the inventors of the innova-
tions, prefer to devote efforts to the innovations that are
more compatible (with more collaborators) than those that
are more exclusive (with fewer competitors).

However, as shown in Figure 5, due to the small sample
size of innovators , the estimations of the attributes of inno-
vators are uncertain. Given the importance of innovators in
the diffusion process and the rare number of them in society,
modeling the behavior of innovators remains challenging.

Limitations and future directions. The current work
has the following limitations: (1) the construction of innova-
tion networks relies on automated text mining of documents
in a specific domain, and thus the conclusions may suffer
from lack of generalizability and selection bias introduced
by the selected metrics of competition and collaboration,
and the corresponding thresholds; (2) the presented analy-
sis is purely empirical. In future work, it will be meaningful
to build a statistical model that abstracts the empirical ob-
servations and provides a unified theory of diffusion based
on the innovation networks; (3) some groups of features are
correlated, possibly leading to multicollinearity. In the se-
ries of regression analysis, the significance of a feature in
each run does not necessarily imply significance in the com-
plete model. Meanwhile, this strong correlation between the
features may imply that they correspond to the same set of
underlying metrics. In the future, it will be interesting to
explore advanced topics such as the evolution patterns of
the communities on innovation networks, or the impact of
local network structure on the process of diffusion.
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