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ABSTRACT
Selecting and prioritizing major device models are critical
for mobile app developers to select testbeds and optimize
resources such as marketing and quality-assurance resources.
The heavily fragmented distribution of Android devices makes
it challenging to select a few major device models out of
thousands of models available on the market. Currently
app developers usually rely on some reported or estimated
general market share of device models. However, these es-
timates can be quite inaccurate, and more problematically,
can be irrelevant to the particular app under consideration.
To address this issue, we propose PRADA, the first ap-
proach to prioritizing Android device models for individ-
ual apps, based on mining large-scale usage data. PRADA
adapts the concept of operational profiling (popularly used
in software reliability engineering) for mobile apps – the us-
age of an app on a specific device model reflects the impor-
tance of that device model for the app. PRADA includes a
collaborative filtering technique to predict the usage of an
app on different device models, even if the app is entirely
new (without its actual usage in the market yet), based on
the usage data of a large collection of apps. We empirically
demonstrate the effectiveness of PRADA over two popular
app categories, i.e., Game and Media, covering over 3.86
million users and 14,000 device models collected through a
leading Android management app in China.
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1. INTRODUCTION
The wide adoption of smartphones and tablet comput-

ers has triggered a surge of developing mobile applications,
a.k.a, apps, in recent years. As of 2015, millions of apps have
been developed and made available in app marketplaces such
as the Apple Store and Google Play, which have received bil-
lions of downloads. Numerous app developers have profited
from the revenues generated by the downloads and usages
of their apps.
Compared to the iOS and Windows platforms, which have

a rather fixed set of device models1, the Android platform is
adopted by a diverse set of device manufacturers and mod-
els. Indeed, the openness and flexibility of the Android plat-
form have greatly contributed to its popularity: the Android
platform holds more than 80% of the smartphone market
share. Famous brands, such as Samsung, HTC, Motorola,
and Lenovo, have developed numerous device models using
Android. Meanwhile, most small and medium device man-
ufacturers also adopt Android as their platforms.
The heavily fragmented distribution of Android device

models is noticeable. It is reported by OpenSignal [6] that
there have been more than 20,000 Android device models on
the market up to the year 2014. Such a fragmentation brings
significant challenges to software engineering practices for
mobile apps, such as the design, development, maintenance,
quality assurance, and revenue generation [20, 31]. A recent
study [1] (in 2013) shows that 94% of app developers who
avoid the Android platform cited fragmentation as the main
reason. Developers have to take into account device-specific
factors such as screen sizes, resolution levels, and other hard-
ware specifications. An app (especially a game app) can run
smoothly on high-end device models, which have powerful
computation power and high resolution, but may run slug-
gishly or improperly on lower-end devices. Developers need
to conduct extensive testing and other quality assurance ac-
tivities to validate the functionality and usability (such as
the GUI effects) of their apps on multiple device models.
The fragmentation also influences the revenue, of which in-
app advertisement (or ads) is an important channel, espe-
cially for some types of apps (e.g., game and media apps).
To more accurately target the audience, device-specific ads
are often preferred. For example, Facebook customizes mo-
bile ads according to device model types [4] since 2014. De-
velopers would like to know through which device models
they can gain more users and more ads-clicking opportuni-
ties, so that they can invest their effort in customizing the

1A device model refers to the specific model of devices that
share the same hardware specification.



ads on those models, e.g., designing banners of proper sizes
or placing videos at proper positions on the screen. As it
is unrealistic to customize for every Android device model,
selecting the major device models to focus on is quite impor-
tant to Android app development. A suboptimal selection
may cause to waste money and human effort, miss potential
bugs, or even lose revenue, etc.

Most developers prioritize a small number of device mod-
els (normally less than ten) based on their market shares.
These developers rely on the widely accessible market share
reports or predictions, such as those provided by AppBrain [2].
However, the market share of a device model is usually
calculated based on how many devices are sold instead of
how they are used, which is what the developers really care
about. More importantly, the market share of a device
model may not be relevant to particular apps. Indeed, it
is not uncommon that an app is heavily installed on less
popular device models and less preferred by those who use
a majority model. Even if an app is installed on a device,
it may be frequently or barely used [32]. To make the right
decision, the developers need an accurate estimate of how
their apps are actually used on different device models.

To address this issue, we propose a novel approach, named
PRADA (Prioritizing Android Devices for Apps), to pri-
oritizing major device models of a given app. Rather than
counting the number of devices installing an app, PRADA
utilizes a different signal – how the app is actually used on
the devices. The key intuition of PRADA is derived from the
concept of operational profile [28], a concept popularly used
in software reliability engineering, which is a quantitative
representation of how a system is used. PRADA assumes
that a device model is of a higher priority for an app if the
app is consumed more intensively by the users using that de-
vice model. PRADA then builds a data mining model that
accurately predicts the major device models for every app,
even if it is newly launched on the market and the actual us-
age data is unavailable. Based on the predictions, PRADA
recommends a ranked list of device models that should be
prioritized for an app.

We evaluate the effectiveness of PRADA through a real
world data set collected by a leading Android app market-
place in China, Wandoujia [9]. Wandoujia provides its na-
tive management app to facilitate searching, downloading,
and updating apps. In addition, the management app also
provides an interface to monitor the daily usage of the apps
installed on a device. We choose the top 100 popular apps in
two app categories, i.e., Game and Media. These apps (100
apps from each category) cover 3,861,444 users and 14,709
device models. We adopt browsing time as the typical metric
of usage data, as it indicates the total time that users in-
teract with a specific app under network. We then evaluate
the significance of PRADA-selected device models account-
ing for the actual browsing time. Empirical results show
that, compared to the baseline of marketshare, PRADA se-
lects device models with top browsing time, i.e. device mod-
els that can maximize the coverage of browsing time, more
accurately.

In summary, we make the following main contributions:

• We propose the first approach to prioritizing Android
device models by mining app usage data collected from
Android devices.

• We develop a collaborative filtering technique that pre-
dicts major device models for a new app based on the
usage of other apps with similar functionalities.

• We present the largest study to date on prioritizing
device models using a real-world data set.

• We conduct experiments to evaluate the effectiveness
of PRADA and its related approaches.

The rest of this paper is organized as follows. Section 2
describes the related work of Android device prioritization.
Section 3 presents the overview of PRADA including its key
ideas and workflows. Section 4 illustrates PRADA through
an example case and Section 5 presents an evaluation. Sec-
tion 6 presents the findings and implications for developers.
Section 7 discusses threats to validity of our study. Section
8 concludes the paper with future work.

2. RELATED WORK
We next present a summary of existing studies on Android

device fragmentation, operational profiles, and analyses of
app usage data.

2.1 Android Fragmentation
Compared to software development for PC, one unique

challenge of developing Android apps is how to cope with
the heavy fragmentation of Android devices. Halpern et
al. [19] make a careful analysis of the market fragmenta-
tion caused by hardware specifications and OS versions, and
propose a capture-and-replay approach for testing. Park et
al. [31] propose two approaches to handle Android fragmen-
tation at the code level and the API level. Han et al. [20]
analyze the bug reports related to the two popular mobile-
device vendors, HTC and Motorola, and propose an approach
for tracking fragmentation using feature analysis on project
repositories. Khalid et al. [22] leverage user reviews to fo-
cus on proper Android devices for app testing. They collect
about 100 thousand user reviews of 99 free game apps on
Google Play. However, Google Play has recently shut down
the API of browsing user reviews for all device models, ex-
cept for the user reviews from specific device models asso-
ciated with a user’s Google account; such constraint may
introduce a considerable bias when leveraging user reviews.
Another concern is the potential subjectiveness and biases
in user reviews. For example, it is reported that users from
different countries may behave very differently in writing
reviews [25].
Some existing industrial cloud-based testing services, such

as Testin [8] and AppthWack [3], provide remote services
and offer a sufficient coverage of device models. However,
the cost ranges from approximately one dollar per every 15-
minute use of a device, leading to a very high expense if one
wants to test many device models.

2.2 Operational Profiles
The concept of operational profile is widely used in soft-

ware engineering, especially software reliability engineering
and software testing [11, 16]. Musa [28] defined an opera-
tional profile as “a quantitative representation of how
a system will be used”. It models how users execute a
system, specifically the occurrence probabilities of function
calls and the distributions of parameter values. Such a de-
scription of the user behavior can be used to generate test
cases and to direct testing to the most used functions. For
example, with a software system, if operation A occurs in
60 percent of the time, B occurs in 30 percent, and C oc-
curs in 10 percent, then the profile is [A, 0.6...B, 0.3...C,
0.1]. Descriptions of the user behavior as in an operational



profile can also be used for other purposes besides software
testing [10]. The performance and correctness of the system
can be analyzed, and the system can be effectively adapted
to specific user groups. For example, Mobahser et al. [27]
use operational profiles of Web-based systems for personal-
ization.

An operational profile helps improve the communication
between customers and developers, and make the developers
think more deeply about the features of interest and their
importance to the customers. In contrast, if developed early,
an operational profile may be used to prioritize operations
under development, so that more resources are invested on
more important operations.

2.3 App Usage Data Analysis
From the perspective of software engineering, usage data

of apps is a typical operational profile. Understanding how
an app is used by real-world users is also important to im-
prove the development of the app. One common approach is
to conduct a field study with typically a small group of users,
as proposed in LiveLab [39, 34, 33]. Many other studies have
been conducted in a similar fashion, for reporting the diver-
sity of cellular usage from different user groups, different
app categories, etc. [21, 15, 12, 13, 17]. To collect usage
data, some researchers develop third-party apps and deploy
them as system-level services, such as AppInsight [35] and
AppJoy [41]. The app usage data can include detailed infor-
mation such as the total launch time, the traffic volume, and
the session lengths to investigate user preferences and inter-
ests in depth. However, these apps are not widely adopted
and their users are usually at the scale of hundreds. Com-
pared to these field studies, our approach relies on a commer-
cial app, Wandoujia, which has been widely deployed among
over 250 million users. Although most Wandoujia users are
from China, our recent work [24] conducts a series of studies
of understanding user behaviors from multiple dimensions
such as app popularity, network usage, and price sensitiv-
ity, and validates the general findings from previous efforts
made over other popular app stores [32] and the traces at
tier-1 cellular network in US [40]. The results show that con-
ducting studies using Wandoujia data can reduce the threats
caused by user selection bias. In addition, such a longitudi-
nal data set collected from about 4 million anonymized users
can make many more comprehensive analyses feasible.

3. THE PRADA APPROACH
In this section, we present the PRADA approach of prior-

itizing device models by using large-scale usage data. The
key idea of PRADA is that, a device model should be given
higher priority for an app, if the device model accounts for
more user activities. Naturally, when an app is already used
by many users on many devices, estimating the length of
time it is used or the number of user interactions is an easy
task. We are motivated, however, to explore whether we can
make accurate estimates for a new app, which has not yet
reached a critical mass of users or even has not yet released.
Market targeting and prioritized testing at this stage are
particularly important and challenging for the developers.
PRADA relies on the usage data of apps on specific device
models collected by Wandoujia.

3.1 Wandoujia
The app usage data are collected through a commercial

Android app management tool developed by a leading An-

Figure 1: Screenshots of advanced settings in the Chinese
version of the Wandoujia management app (the advanced
settings are not supported in the current English version).
(a) is the homepage of the Wandoujia management app,
where users can navigate to “settings” by clicking on the
text circled by red; (b) refers to the setting of background
management services, highlighted by the red rectangle; (c)
refers to the option of allowing Wandoujia to collect the data
of network activities or not.

droid marketplace in China, called the Wandoujia. Wan-
doujia was founded in 2009 and has grown into one of the
largest Android app marketplaces in the world, with over
250 million users and 1.5 million free Android apps2 as of
the year 2015. Each user is associated with at least one
Android device, either a smartphone or a tablet computer.
Wandoujia provides a native management app, through

which users can manage the apps on their devices, e.g.,
downloading, searching, updating, and uninstalling apps.
Users can also rate/review apps. Beyond these basic fea-
tures, the Wandoujia management app is developed with
some optional features that can monitor and optimize system-
wide activities. These features include network activity statis-
tics, permission monitoring, content recommendation, etc.
All features are developed upon Android system APIs and
do not require the “root” privilege. Users can opt in and out
these features. For example, as shown in Figure 1, tracking
the network statistics is an explicit option for end users, and
therefore our analysis is made on only those users who agree
to share and upload their usage data. However, it should be
noted that these features are supported in only the Chinese
version of Wandoujia.
We obtain three months of app usage data collected from

July 1st, 2014 to September 30th, 2014. The data cover
4,775,293 unique users, 16,602 device models, and 238,231
apps. Every device has a unique IMEI identifier, and the
corresponding information of the device model is also cap-
tured.
• User Privacy Protection. We take a series of steps
to preserve the privacy of involved users in our data set.
First, all raw data collected for this study are kept on the
Wandoujia data-warehouse servers (which live behind a com-
pany firewall). Second, our data-collection logic and analy-

2Most apps released on Wandoujia can also be found on
other app stores such as Google Play.



Figure 2: Overview of the PRADA Approach.

sis pipelines are governed by Wandoujia employees3 to en-
sure compliance with the commitments of Wandoujia pri-
vacy stated in the Term-of-Use statements. Third and the
most significantly, Wandoujia employees anonymize the user
identifiers before any data analysis. Only aggregated statis-
tics are produced for the users covered in our study period.
Finally, we obtain the approval from the research ethnics
committee of School of Electronics Engineering and Com-
puter Science in Peking University to conduct this research.

3.2 PRADA: in a Nutshell
Based on the collected data, PRADA aims to recommend

the device models that should be prioritized for a new app,
which has not been used by many users and therefore its
usage data is either unavailable or untrustable. The basic
idea is to predict the “expected”usage of this new app based
on the characteristics of the device models of existing apps
that are similar to the new app. We assume that the usage
data of this new app cannot be attained or is not informative
to use. We describe the key components and workflows of
PRADA, as illustrated in Figure 2.
• Usage-Data Collection. PRADA is general by lever-
aging various usage data from an operational profile. Cur-
rently, PRADA employs the Wandoujia management app,
which provides the interface for collecting multiple types of
usage data of an app on a device, such as the lengths of
in-app network sessions, the volume of network traffic, the
energy drain, and the user reviews. Developers can choose
one or more types of usage statistics of their interest as fea-
tures for prioritizing device models. For example, some de-
velopers may want to know which device models account
for longer time of network usage and design device-specific
ads to target that audience; some developers may distribute
more testing efforts on device models that contribute to more
negative user reviews, etc.
• Similar-App Selection. PRADA employs the idea of
collaborative filtering : for an app whose major device mod-
els need to be predicted, PRADA relies on the usage data
from a set of existing similar apps. In practice, PRADA
is compatible to different types of app similarity measure-
ment [14], e.g., the name, textual description, code, library,
and category. In this paper, we adopt the category of Wan-

3The last author is the co-founder and CTO of Wandou-
jia. He supervises the process of data collection and de-
identification.

doujia’s classification system4. For each new app, we choose
some existing apps with usage data from the same category
and perform the following steps. Although the category may
be conceptually coarse-grained, using the category can help
achieve sufficient effectiveness as shown in our evaluation.
• Device-Model Clustering. Given the selected type(s)
of usage statistics, PRADA conducts an offline analysis of
the device model distribution of each app from the selected
similar apps. In this step, PRADA summarizes all devices
that have ever produced the selected usage data of the app,
and clusters them according to their device models (specified
in their identifiers). For example, assuming that there are
1,000 Samsung Galaxy S3 smartphones using a specific app,
we aggregate together the selected usage data generated over
them.
• Device-Model Prioritization. As the core component
of PRADA, device-model prioritization produces a ranked
list of device models based on predicting the selected type
of usage statistics. To prioritize the device models, PRADA
is designed based on the following two rationales.

• Pareto Distribution. It is well known that in many
situations, a larger portion of effects comes from a
smaller percentage of the causes (or roughly 80%-20%
rule), known as the Pareto distribution [30]. We hy-
pothesize that a similar distribution is still valid in
the distribution of usage data contributed by device
models. If such a hypothesis holds, we can remove a
large portion of device models to significantly reduce
the space of prioritization.

• Collective Intelligence. The second rationale is that
similar apps may share similar distributions of device
models. Hence, we can leverage the knowledge de-
rived from a large number of existing similar apps to
predict the to-be-prioritized device models for a new
app. This rationale is shared by collaborative filtering
[36], which is a major approach underlying most rec-
ommender systems [37]. Various collaborative filtering
techniques adopt different notions of “similarity”.

Based on the preceding two rationales, the goal of PRADA
is to recommend a small set of device models that account
for a desired coverage of usage data of a new app, given by
the distribution of usage data of existing similar apps.

3.3 Effectiveness Metrics
Before presenting the details of PRADA, we introduce

some metrics to evaluate the effectiveness of any concrete
algorithm that PRADA incorporates.
The first metric is the Device Model Hit, which is the

number of recommended device models (by PRADA for an
app) that are “actually” among the top device models of the
app (observed after the app is deployed and used by users).
• Definition 1: Given the number of device models (de-
noted as N) to be recommended and the number of the
existing similar apps (denoted as K-1), the Device Model
Hit is the size of the overlap between the recommended N

device models {D′
1, D

′
2, ...., D

′
N} and the actual top N device

models {D1, D2, ...., DN}. Formally, we can define

Device Model Hit(N,K) = |DNrecommended

⋂
DNactual |

(1)
4Wandoujia’s classification system is based on criteria in-
cluding the developer’s annotation, textual description, and
some code-level analytics. The details of the classification
system is out of the scope of this paper.



Suppose the actual top 5 device models are {D1, D2, D3, D4, D5}.
If PRADA recommends {D2, D3, D1, D5, D6}, the device model
hit is 4.
The Device Model Hit measures how many recommended

device models are valid, but does not distinguish among
these recommended items. In practice, the ranking of the
recommendations is usually important so that the develop-
ers can prioritize on any number of device models based on
their budget. We use the metric of Average Precision (ab-
breviated as AP in the rest of this paper) to evaluate the
effectiveness of the ranking of device models; such metric
has been widely used in evaluating search engines [26].
• Definition 2: Average Precision (AP) of the selected

N device models {D′
1, D

′
2, ...., D

′
N} is the average precision

of D
′
i (1� i � N) against the actual top N device models

selected for their top ranking in the contribution of the usage
data:

AP =

N∑

i=1

Precision(D
′
i)/N (2)

Precision(D
′
i) denotes the precision at cut-off position i

where the device model D
′
i stays in the ranked device model

list. Precision(D
′
i) is equal to 0 when D

′
i is not found in

the actual top N device model list.
We take a simple example to illustrate AP. Suppose that

the actual top 5 device models (the ground truth) with the
most usage data are {D1, D2, D3, D4, D5}, where each de-
vice model is ordered according to its contribution to us-
age data. When the set of ground truth is fixed, the or-
der of the device models is no longer concerned. Assume
that the top 5 device models recommended by PRADA are
{D1, D2, D3, D4, D6}, then the AP is computed as ((1/1 +
2/2 + 3/3 + 4/4 + 0))/5 = 0.8.
Note that two sets of device models that have the same

Device Model Hit may vary much in terms of AP. Consider
another list of device models {D6, D1, D2, D3, D4}, whose
Device Model Hit is still 4. However, its AP is ((0 + 1/2 +
2/3 + 3/4 + 4/5))/5 = 0.54.
The third metric that we use is the Usage Data Coverage,

which measures how much the recommended device models
cover the entire set of usage by the actual top N devices
of the app. Such a metric can reflect how much the rec-
ommended device models can contribute to the usage data
of interest, and therefore has an indication of the potential
opportunity of revenue.
• Definition 3: Usage Data Coverage is the percent-
age of aggregated usage statistics of recommended N device
models over the aggregated usage statistics of actual top N
device models. Formally, we can define

Usage Data Coverage(N,K) =
Usage Data(DNrecommended)

Usage Data(DNactual)
(3)

A successful instantiation of PRADA is expected to achieve
high scores of the three metrics. Next we illustrate how to
use PRADA to prioritize device models.

4. TIME-SHARE DRIVEN PRIORITIZATION
In this section, we illustrate PRADA through an example

case focusing on the in-app browsing time collected from
Wandoujia while using the category to determine similar
apps.

4.1 Browsing Time on an App
As shown in Figure 1, the Wandoujia management app

provides a system-wide service for recording daily network
activity statistics of each app, for both Wi-Fi and cellular
(2G/3G/LTE). The Wandoujia management app does not
record the details of each interaction session. Instead, it
records the total daily access time generated from both Wi-
Fi and cellular network, by aggregating the time across TCP
flows generated by an app. The Wandoujia management app
treats the network access time generated from foreground
and background, respectively.
Foreground access time is computed only when a user

browses an app, i.e., the app is currently active on screen.
We can roughly measure how long a user is really “online”
when she interacts with the app, by aggregating the fore-
ground access time of Wi-Fi and cellular. We call such
aggregated time as “browsing time” (unless stated other-
wise, we exchangeably use “time”and“browsing time” in the
rest of this paper). Such a type of operational profile could
be a useful indicator for app developers. For example, in-
app advertisement is an important revenue for mobile app
developers [18]. Furthermore, as suggested by Facebook [4],
it becomes popular to customize device-specific ads [29]. A
common rationale used by online advertisement is that the
longer a user stays on the site, the more probably she will
click through the ads. Although the browsing time cannot
capture the offline usage of an app, such metric is valuable,
as apps with online app usage are increasingly widespread
and important.
Definition 4: Formally, we define the browsing time for an
app A contributed by device model D as follows:

T ime(D → A) =
∑

T ime(di → A) (4)

Here, D denotes a specific device model and di is a particular
device that belongs to device model D, i.e., di ∈ D.
To reflect the importance of device models that account

for browsing time, we introduce the metric time share as
the indicator of ranking. The time share of a device model
is the percentage of browsing time consumed by the specific
model to that consumed by all the models that use the app.
Definition 5: Formally, we define the time share as follows:

T ime Share(Dj → A) =
T ime(Dj → A)∑
T ime(Dk → A)

(5)

Here, T ime(Dj) is the time spent on a specific device model
and

∑
T ime(Dk) is the total time spent on all device mod-

els, i.e., all users of the app. The higher time share a device
model Dj holds, the more time users use the app on Dj .
Suppose that we select N device models, we can use the

metric of Time Share Coverage to concretize the Usage Data
Coverage defined in equation 3 to measure the effectiveness
of PRADA.

T ime Share Coverage =

Time(DNrecommended
)

∑
Time(Dk→A)

Time(DNautual
)

∑
Time(Dk→A)

=
T ime Share(DNrecommended)

T ime Share(DNactual)

(6)

4.2 Collaborative Filtering by Time Share
Recall that the PRADA approach accepts inputs as (1)

the target app, and (2) N as the number of device models



that app developers would take into account. We predict the
rank of time share from device models for this target app
based on the “known” similar top K-1 apps in the same app
category. Then the collaborative filtering technique outputs
the top N major device models.

More specifically, we derive DM as the set of device mod-
els that at least one app of the K-1 apps uses. Then, across
all apps in the K-1 apps, we compute the aggregated brows-
ing time for each device model in DM . Finally, we sort the
device models in DM by their aggregated browsing time,
and recommend the top N device models as output for the
target app.

To evaluate the effectiveness of the collaborative filtering
technique, we then perform the process of Leave-One-Out
Cross-Validation (LOOCV) [23]. LOOCV uses one obser-
vation as the validation set and the remaining observations
as the training set, and then repeats as each observation has
served as the validation set. Thus, for each of the K apps,
we use the browsing time of the remaining K-1 apps to pre-
dict the top device models for the app. In particular, we use
LOOCV, rather than hold out cross validation, since most
apps have far less browsing time than popular apps.

For each app category, we select K apps and run the Al-
gorithm 1: DH as a list of 〈app, device model hit〉, TC
as a list of 〈app, time share coverage〉 and AP as a list of
〈app,AP 〉. For the inputs, we take a list of K apps (AL),
a total set (Ω) of 〈device model, time〉 for all the K apps.
In each iteration of the algorithm, the app A is treated as
a “new” app (validation set) and the remaining K-1 apps
as the “existing” apps (training set). For each app A, we
first obtain the 〈device model, time〉 set (ωA) from Ω to
find the actual top N device models (TD). Then we use
the other K-1 apps to recommend N apps (TD′) for app
A. Using TD and TD′ of A, we can calculate the inter-
section results as device model hit, and calculate AP using
equation 2. Finally, for each device model D in TD′, we
update the time with the time from ωA and calculate the
time share coverage using equation 6.
To better illustrate the algorithm, we present an example

of Game apps. Suppose that N is 10 and K is 100 in our
example, respectively. We instantiate A as app Modoomar-
ble5, a popular game from Tencent [7]. By aggregating
the browsing time of device models from the other popu-
lar 99 Game apps, we obtain top 10 device models as the
recommendations for Modoomarble. Comparing the device
models with the “actual” top 10 device models of Modoomar-
ble, we find that the first 8 device models are overlapped,
and thus the AP is 0.8. The “actual” top 10 device models
account for 76.3% time share of the total time of Modoomar-
ble, while our selected 10 device models account for 74.2%.
More specifically, the two distinct device models selected
by our technique, Xiaomi 2s and Xiaomi 3, do not occur
in the “actual” top 10 device models of Modoomarble, and
these two device models actually contribute 0.5% and 0.7%
time share, respectively. In contrast, the two device models
missed by our technique (HTC One and Nexus 5 ) account
for 2.3% and 1.1% time share, respectively. However, the
time share coverage of our technique (against the time share
from “actual” top 10 device models) can reach 97.2% (i.e.,
74.2%/76.3%).

5http://www.wandoujia.com/apps/com.tencent.modoomarble

Algorithm 1: Device model hit (DH), time share cov-
erage (TC) and average precision (AP ) against top N
device models with K apps in the same category

Input: AL,Ω, N , K
Output: DH,TC,AP
for each app A in AL do

ωA = Ω(A);
//get 〈device model, time〉 for all device models
//using app A

TDA = maxN (ωA);
//get top N device models most used by A

AL′ = AL− {A};
//AL′ is the list of apps except A
ω′ =

⋃
A′∈AL′ Ω(A

′);
//get 〈device model, time〉 for all device models
//using apps in AL′

//time of same device model is added up
TD′ = maxN (ω′);
//get top N device models most used by AL′

//as the prediction for A
DH(A) = |TDA

⋂
TD′|;

//the intersection of predicted N device models and
//the actual ones

AP (A) =
∑N

i=1 |TD(A)top i
⋂

TD′|/i
N

;
//get the AP of the prediction A

//TD(A)top i means the subset constituted of the
//top i items in set TD(A)
for each device model D in TD′ do

TD′(D) = ωA(D);
//get the time that D (in TD′) spent on A

end
TC(A) =

∑
D
TD′(D)/

∑
D
TDA(D);

//get the time share coverage of the recommended
//device models for A

end

5. EVALUATION
In this section, we evaluate the PRADA approach over

two typical types of apps that care about browsing time,
Game and Media. More specifically, we intend to answer
two research questions:

• RQ1: How many device models account for the major-
ity of the browsing time? To demonstrate the Pareto
distribution underlying PRADA, we perform a char-
acteristic analysis of the time share distribution of all
device models for apps from two popular categories.

• RQ2: How effectively can PRADA identify major de-
vice models for a new app given that developers have no
knowledge about this app’s actual usage? To demon-
strate how the collective intelligence can help device
model prioritization, we explore the utility of the time
share to help app developers select N major device
models of a new app whose time share usage is en-
tirely unknown. Here, we apply our collaborative fil-
tering technique to predict the time share of the app
based on the browsing time of top K-1 apps from the
same app category.

5.1 Device Model Distribution
We first address RQ1, i.e., how many device models ac-

count for the majority of the browsing time? This question



corresponds to the Pareto Principle of the time share distri-
bution of all device models for an app and can indicate the
number of major device models for an app.

In our three-month dataset, we have a total of 16,602 dis-
tinct Android device models. It would seem to be quite
challenging and time-consuming for app developers to work
across the whole set of existing Android device models. Hence,
PRADA first summarizes the distribution of device models
of an app, according to the browsing time.

In our current approach, we take the apps from the same
category as “similar” apps. There are 14 categories defined
by Wandoujia, such as Communication, Tools, Media, and
Game. We aggregate the browsing time of all apps belong-
ing to the same category. This clustering process can better
organize a large number of apps and identify which cate-
gories contribute more browsing time. Results show that
apps from some categories take up a lot of browsing time.
We refer to such apps as networked apps.

We then investigate the time share distribution at the level
of every individual app. We choose two networked app cat-
egories Game and Media.

Table 1: Number of device models and users that use top
100 apps from each of the two categories.

Category # of Device Models # of Unique Users
Game 11,538 2,159,238
Media 13,894 3,547,219

Table 1 shows the number of device models and unique
users that use top 100 apps from each of the two categories.
Each category has millions of recorded users. Such a scale
of data can promise a comprehensive analysis. For each
category, we choose the top 100 apps by their aggregated
browsing time from all device models using the app. Fig-
ure 3 shows the maximum, median, and minimum number
of device models that can account for X% time share of apps
of each category, where X varies from 0 to 90. Although the
maximum and minimum varies a lot for a specific app, the
median number of device models that account for 80% time
share is generally around 100.
Findings. The preceding result of RQ1 validates the Pareto
Principle of the distribution of device models contributing to
browsing time. Although the distribution does not strictly
follow the 80-20 rules in the Pareto principle, it still shows
that a quite small percentage of device models can account
for a quite large portion of browsing time. It indicates that
developers of apps in these app categories can significantly
narrow their selection space. Meanwhile, developers can ap-
proximately estimate how many device models they should
use to reach a desired time share.
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Figure 3: The maximum, median and minimum numbers of
device models covering X% time share for each app in the
two categories.

5.2 Predicting Top Device Models
Based on the distribution of device models derived from

RQ1, we can help reduce a large number of device models
from the fragmented Android markets. However, such a
finding is based on the assumption that the usage data is
already known. For a new app that is to be put on shelf and
is not associated with informative knowledge of usage data,
how can we leverage the findings of RQ1 to predict the
device models to prioritize? Thus, we next address RQ2,
i.e., how effectively can PRADA identify major device models
given that developers have no usage knowledge about this
app?
Such an evaluation is done by applying the collaborative

filtering algorithm 1. We still investigate the 200 apps of
the two categories, Game and Media. For an app A in one
category, we assume that its usage data is unknown. We
then apply the collaborative filtering algorithm to find the
set of N device models with the most time share by leverag-
ing the browsing time from the remaining K-1 apps in the
same category. Here, we assign N as 10 while K as 100.
We then report the distribution of Device Model Hit, Time
Share Coverage, and Average Precision against the ground
truth of A. We repeat the process for all 100 apps for each
category. In particular, to evaluate the overall precision of
all apps, we consider the widely used metric Mean Aver-
age Precision (MAP), which is used to rank the results for
a large number of queries [5]. Hence, we also compute MAP
for apps from each category as follows:

MAP(N) =

K∑

j=1

APj/K (7)

5.2.1 Results
We report the results of Device Model Hit, Time Share

Coverage, and AP of top 10 device models that are predicted
by PRADA for 100 apps in each category, i.e., N =10 and
K=100.
It is observed that PRADA works quite well for both cat-

egories. For apps in the Game category, the Device Model
Hit is with 8 as the median, 10 as the maximum, and 3 as
the minimum (shown in Figure 4(a)). Correspondingly, the
boxplot of Figure 4(b) illustrates the Time Share Coverage
from the 10 selected device models against the 10 “actual”
top device models, with 97.4% as the median, up to 98.9% as
the third quartile, and not less than 94.5% as the first quar-
tile. The median of AP can reach 0.82 as median, and the
MAP for Game apps is 0.75, which is a satisfactory score.
Similar to the Game category, the Device Model Hit re-

sults for Media are shown in Figure 5(a), with 8 as the
median. In terms of Time Share Coverage, as shown in
Figure 5(b), our technique can reach 96.7% as the median,
99.2% as the third quartile, and 90.2% as the first quartile,
respectively. The median of AP is 0.79, and the MAP for
Media apps is 0.72.
Although the core of PRADA is to leverage usage data,

it is quite common that developers usually choose the de-
vice models from the most market share. However, such a
selection is too coarse-grained, as it relies on only the num-
ber of active device models that have been on the market.
More seriously, such selection may be inaccurate, with re-
spect to a specific metric of the developers’ interest. We
make a simple comparison study between the top 10 device
models that are predicted by PRADA and that are directly



Table 2: Top 10 device models with the most time share for two apps (Temple Run 2 and Xunlei Movie), and the selected
device models by AppBrain, Wandoujia, and PRADA.

Top 10 device models in market Top 10 device models for Temple Run 2 Top 10 device models for Xunlei Movie

AppBrain Wandoujia Ground Truth PRADA Ground Truth PRADA
Galaxy S3 Galaxy Note 3 Galaxy Note 3 Galaxy Note 3 Galaxy Note 3 Galaxy Note 3
Galaxy S4 Galaxy S4 Galaxy Note 2 Galaxy Note 2 Galaxy Note 2 Galaxy Note 2
Galaxy Note 3 Galaxy Note 2 Galaxy S4 Galaxy S4 Galaxy S4 Galaxy S4
Galaxy S5 Galaxy S3 MX 3 MX 3 MX 3 MX 3
Motorola Moto G Galaxy Win Galaxy S5 Galaxy S5 MX 2 Galaxy Mega 5.8
Galaxy S3 mini Xiaomi 2s Xiaomi 3 Galaxy Mega 5.8 Galaxy S5 Galaxy S5
Galaxy Tab 3.7 Xiaomi 3 Xiaomi 2s MX 2 Galaxy Mega 5.8 MX 2
Galaxy Note 2 MX 3 Galaxy Mega 5.8 Galaxy S3 HTC One Galaxy S3
Galaxy S Duos 2 Galaxy Mega 5.8 MX 2 Xiaomi 2s Galaxy S3 Xiaomi 2s
Galaxy S2 Galaxy S2 Galaxy S3 Xiaomi 3 LG Nexus 5 Galaxy S2

●

●●

●

●

4

6

8

10

AppBrain Wandoujia our approach
Top 10 device models from AppBrain, Wandoujia and our approach

D
ev

ic
e 

M
od

el
 H

it

(a) Device model hit

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

50%

60%

70%

80%

90%

100%

AppBrain Wandoujia our approach
Top 10 device models from AppBrain, Wandoujia and our approach

Ti
m

e 
S

ha
re

 C
ov

er
ag

e

(b) Time share coverage (c) Average precision

Figure 4: Comparison of Device Model Hit, Time Share Coverage, and AP by using market share and PRADA to recommend
top 10 device models for Game apps.

obtained from the market share, respectively. The goal of
such a comparison is two folds. First, we aim to demonstrate
that simply relying on the market share is too coarse-grained
and even inaccurate for prioritization, with respect to a spe-
cific metric of interest. Second, we aim to demonstrate that
PRADA can achieve a satisfactory accuracy to help select
device models.

To align with the time of our collected dataset, we choose
the market share reports of Android device models of the
3rd quarter 2014, from the well-known AppBrain website [2].
AppBrain provides a global market share of device models.
Due to the lack of detailed local market share of device mod-
els, we derive a local market share by aggregating the active
users of a specific device model from Wandoujia.

We also compute the three metrics, Device Model Hit,
Time Share Coverage, and AP, by using the device mod-
els with the most market share of AppBrain (in short as
using AppBrain) and the ones with the most market share
of Wandoujia (in short as using Wandoujia), respectively.
From Figure 4(a), we can observe that for the Game apps,
the 10 device models selected by using AppBrain reach 5 as
the median of the Device Model Hit. The situation of using
Wandoujia is a bit better than using AppBrain, reaching 7
as the median of the Device Model Hit. In other words, De-
vice Model Hit by market share is worse than using PRADA,
considering time share. In Figure 4(b), the median of time
share covered by the device models by PRADA is 97.4%. In
contrast, the value by using market share of Wandoujia is
92.1%, while the median of using AppBrain is 76.4%, which
is the lowest. Additionally, the MAP value is 0.39 by using
AppBrain, 0.62 by using Wandoujia, which is far away from
0.75 by using PRADA. Similar observations can be made for
Media apps.

We show an example by two typical apps, which are also
popular on Google Play, the Temple Run 26 and Xunlei
Movie7. We list the the device models (1) with top 10 mar-
ket share from AppBrain and Wandoujia (descending order
of market share in Columns 1 and 2), respectively; (2) with
the most actual browsing time for the given apps (descend-
ing order of time share in Columns 3 and 5); (3) ranked by
PRADA (Columns 4 and 6), in Table 2.
The top 10 device models with the most market share

by AppBrain can cover only 5 out of the top 10 device
models for Temple Run 2 and Xunlei Movie, compared to
the ground truth of browsing time. More specifically, App-
Brain misses 5 of the top 10 device models for Temple Run 2.
The device models missed by AppBrain are MX 3, Xiaomi
3, Xiaomi 2s, Galaxy Mega 5.8, and MX 2. In contrast,
PRADA can hit all of the top 10 device models. For the
Xunlei Movie, AppBrain misses 5 device models, i.e., MX 3,
MX 2, Galaxy Mega 5.8, HTC One, and LG Nexus 5, while
PRADA misses only HTC One and LG Nexus 5. The device
models with the most market share from Wandoujia can
have higher device model hit (8 for Temple Run 2 and 6 for
Xunlei Movie), but the hit ratio is still lower than PRADA.
As for time share coverage, it is 72.7% for Temple Run

2 and 70.2% for Xunlei Movie by using the top 10 device
models from AppBrain. In contrast, PRADA can achieve
100% and 97.5%. Using Wandoujia market share performs
better than AppBrain but still worse than PRADA, which
achieves 95.1% and 86.1% for the two apps, respectively.
The AP values by device models of AppBrain of the two

apps are both less than 0.5. The AP is unsatisfactory (0.75
for Temple Run 2 and 0.53 for Xunlei Movie) by the top de-

6https://play.google.com/store/apps/details?id=com.
imangi.templerun2
7https://play.google.com/store/apps/details?id=com.
xunlei.cloud
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Figure 5: Comparison of Device Model Hit, Time Share Coverage, and AP by using market share and PRADA to recommend
top 10 device models for Media apps.

vice models from Wandoujia’s market share. PRADA can
reach the AP of 1.0 and 0.8, respectively. Such result illus-
trates that relying on only the market share is not accurate
to predict the top device models against the actual opera-
tional profile of an app.

5.2.2 Findings
When addressing RQ2, we have some findings. When

prioritizing device models, using the market share is not
always sufficient or even accurate, with respect to a specific
usage data, e.g., browsing time. In contrast, PRADA can
more accurately identify device models on which users spend
most browsing time.

Another finding is that the results derived from the Wan-
doujia market share are usually better than those from App-
Brain. Such result indicates that the localization plays an
important role of device model prioritization. Even relying
on the market share, app developers targeting different areas
would need to treat device models differently.

In both categories, there are some apps not well supported
by our technique. For example, in Media apps, we find 3
apps whose Time share Coverage is 0 or close to 0, e.g., HTC
Album (0%), UMI Media Player (0.6%), and Android Music
Player (1.6%). Indeed, all top devices of HTC Album are
developed by HTC. Most of the top device models of UMI
Media Player and Android Music Player are local manu-
facturers from China. These two apps are also customized
for these manufacturers and preloaded on their devices.

In summary, PRADA can accurately predict top device
models, even if no informative usage data is given.

5.3 Discussion
The key idea of PRADA is to predict top device models of

an app based on the usage of similar apps, and the measure-
ment of similarity is quite general in PRADA. Currently, the
selected “similar” apps are based on the app category. In-
deed, generally assuming that apps from the same category
to be similar is a bit simplistic and coarse-grained, but the
classification system of Wandoujia has some effective criteria
to categorize the apps. Our evaluation has already shown
effective results achieved by using the app category. Indeed,
some existing complex metrics proposed in the literature [14,
38] can be integrated into PRADA.

Although we choose only two popular app categories as
illustrating examples, evidence actually supports that the
top device models can vary a lot among different app cate-
gories. There are 14 categories defined by Wandoujia, i.e.,
Business, Communication, Finance, Game, Lifestyle, Media,
Mother and Baby, News, Productivity, Reading and Study,
Shopping, Social, Tools, and Travel. We perform the pair-

wise comparison of top 100 device models between cate-
gories, and the overlap is quite low. For example, the device
model Xiaomi 2s is ranked as in the top 10 list of Game,
but does not appear in the top 10 lists of 11 other app cat-
egories. Xiaomi 3, which is ranked as in the top 10 list of
Game, is not ranked as in the top 10 lists of 13 other app cat-
egories. Thus, it is important to conduct category-specific
recommendation of device models, as done in PRADA.

6. IMPLICATIONS
Based on a large-scale dataset collected from real-world

users on interacting with Android apps, we have evaluated
that operational profiles such as browsing time can accu-
rately prioritize device models in the app categories of Game
and Media. Although the specific results (e.g., which spe-
cific device models were top for an app or app category)
from this study are useful for developers, device models and
their usage are constantly evolved, and more recent usage
data shall be used to re-apply PRADA in practice. Hence,
we should focus on our general findings and methodologies
beyond the specific results.
Relying on the market share is not always accurate, with

respect to a specific metric of interest. In other words, more
users do not always lead to more usage. Therefore, develop-
ers need to carefully explore and avoid uninformed invest-
ment on popular device models, which may not be significant
with respect to the metrics of their interest.
The idea of leveraging the collective knowledge from large-

scale usage data is feasible. By using the time share from
major device models of other apps in the same app category,
developers of new apps can accurately select major device
models, even when the developers do not know which device
models would heavily use their apps in the future. In addi-
tion, such idea can be extended to other types of usage data
of an app (such as reported bugs, user reviews, traffic, and
energy drain) over a specific device model.
Indeed, applying an approach such as PRADA requires a

sufficient usage dataset that is legally collected from users.
We plan to release a sample anonymized dataset to other
researchers for further study. In addition, we plan to make
PRADA available as an analytic service for assisting An-
droid developers who publish or plan to publish their apps
on Wandoujia.

7. THREATS TO VALIDITY
We have evaluated our approach in two main networked

app categories. This section discusses the threats to validity
in our evaluation.
A threat to validity includes the localization: using only

Wandoujia (primarily in the China market). All users and



usage data are from Wandoujia, because other marketplaces
such as Google Play do not release their usage data exter-
nally. We cannot validate the time-share-based technique
over users and apps that are not included in the Wandou-
jia dataset. Although the large scale of dataset could pro-
vide comprehensive results to developers in China, devel-
opers from other regions cannot directly use the results as
reference to predict device models for their apps used in
their regions. However, the general idea of PRADA could
be applicable, if developers have other published usage data
such as AppJoy [41] and LiveLab [39, 34, 33]. However, the
data should be at scale to enable comprehensive analysis.
In future work, we plan to alleviate this threat by applying
PRADA on other usage data beyond the Wandoujia dataset.

We apply PRADA based on a specific usage data, i.e., the
browsing time that comes from foreground network access
time in an app, indicating how long users interact with the
app. The metric of time share can measure the importance
of a device model for a specific app. Although most of these
apps need the network connection, some of them do not al-
ways produce foreground network activities. Instead, their
network activities are often performed in the background,
such as downloading or updating. Some apps are mainly
used offline, such as PDF readers. Therefore, our approach
could not be generalized to all kinds of apps, if only the
browsing time is used. However, the significance of using
browsing time still remains because apps with online app
usage are increasingly widespread and important. In addi-
tion, as long as using online app usage allows to preserve
the ranking of device models, it can still achieve effective
results.

The time sensitivity also impacts the effectiveness of PRADA.
We limit only 3 months of data to evaluate our approach,
i.e., from July to September. One reason for such study
setup is that we want to compare the effectiveness of the
time share and market share, where the latter is usually
made quarterly. However, it is well known that the upgrade
of smartphones is quite frequent, and users may buy new
devices. Hence, the number of users for a device model may
keep changing, correspondingly leading to the change of time
share for an app. Therefore, for app developers, using our 3
months of dataset could not well predict the currently ma-
jor device models. To alleviate this threat, possible solutions
include performing our approach online by using the latest
time share collected from the Wandoujia management app,
or exploiting Wandoujia data covering a longer time span,
e.g., 1 year or longer, to learn how user behaviors impact
time share and improve the effectiveness of our approach.
To this end, we need the server-side support of Wandoujia
such as exposing online data-retrieval APIs, and avoid po-
tential side effects and interferences to other online services
of Wandoujia.

The release date of a device model can also impact the
effectiveness of PRADA. PRADA relies on the real usage
collected from substantial users within a reasonable period.
If a device model is recently released and no enough usage
data can be collected from this device model, the application
scope of PRADA may be limited. Such a limitation cannot
be completely overcome, as the device model is entirely new.
However, the situation can be alleviated. One promising
solution is to reduce the latency between the release date of
the device model and the collection of usage data. To this
end, PRADA can be deployed over the Wandoujia server,

being timely sensitive to the usage data collected from this
new device model.
To predict device models, we use only the category of

apps defined by Wandoujia, to obtain similar K-1 apps for
the collaborative filtering in PRADA. Therefore, the perfor-
mance of PRADA currently relies on the accuracy of Wan-
doujia’s category taxonomy of apps. As found in our pre-
vious work [24], a lot of apps from different categories may
also have very high similarity. Besides the category infor-
mation, more profiles of apps (such as the vendor informa-
tion, user reviews, app requirements, and libraries) can be
further leveraged to collect those apps sharing similar fea-
tures with the given app under consideration. Some existing
metrics [14, 38] are under consideration to be plugged into
PRADA.

8. CONCLUSION AND FUTURE WORK
To address the challenges caused by Android device frag-

mentation, in this paper, we have presented the novel PRADA
approach by using real-world usage data collected from a
large number of users. PRADA includes a collaborative fil-
tering technique to accurately predict major device models
for a new app, given the usage data from existing apps with
similar functionalities. We have evaluated PRADA by us-
ing the in-app browsing time, which indicates how much
users interact with an app on a specific device model. In
our study, we used 200 apps from two app categories (Game
and Media), spanning three months and covering 3.86 mil-
lion users and 14.71 thousand device models. Implications
derived from our findings provide useful guidelines for An-
droid app developers.
Since most of the data collected from Wandoujia is from

China, a great deal of localization issues may account for
differences compared to the global market. We plan to in-
vestigate the impact of localization on device model prior-
itization in future work. We also plan to further explore
how to cluster device models at different granularities. An-
other ongoing effort is to measure the fragmentation impact
caused by the great diversity of Android OS versions when
applying PRADA.
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