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Abstract 
Social news aggregator services generate readers’ subjective 
reactions to news opinion articles. Can we use those as a 
resource to classify articles as liberal or conservative, even 
without knowing the self-identified political leaning of most 
users? We applied three semi-supervised learning methods 
that propagate classifications of political news articles and 
users as conservative or liberal, based on the assumption 
that liberal users will vote for liberal articles more often, 
and similarly for conservative users and articles. Starting 
from a few labeled articles and users, the algorithms 
propagate political leaning labels to the entire graph. In 
cross-validation, the best algorithm achieved 99.6% 
accuracy on held-out users and 96.3% accuracy on held-out 
articles. Adding social data such as users’ friendship or text 
features such as cosine similarity did not improve accuracy. 
The propagation algorithms, using the subjective liking data 
from users, also performed better than an SVM based text 
classifier, which achieved 92.0% accuracy on articles. 

Introduction
In U.S. politics, opinions on a variety of issues involving 
taxes, the role of government, domestic policy, and 
international relations are substantially though imperfectly 
correlated with each other and with party affiliation and 
with an overall self-identification as liberal or 
conservative. Thus, classifying people, media outlets, and 
opinions expressed in individual articles as liberal or 
conservative conveys meaning to most people. 
 The liberal vs. conservative classification scheme has its 
critics (e.g., Klein and Stern 2008). One reason is that the 
single dimension cannot capture cases such as the 
libertarians who align with liberals on some issues and 
conservatives on others. Another is that definitions of 
conservative and liberal are vague and inconsistently 
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applied. Moreover, many political news and opinion 
articles express a mixture of conservative and liberal 
ideology. Thus, not everyone will agree about the correct 
classification of particular items, or even the correct 
classification of their own stance.  
 Despite some fuzzy boundaries, however, the one-
dimensional classification scheme persists in our discourse, 
and many people, articles, and news sources fit clearly into 
one category or the other. The ability to classify blogs as 
liberal or conservative enabled Adamic and Glance (2005) 
to analyze patterns of inter-linking between them. It also 
served as the basis for investigating people’s preferences 
for difference mixtures of reinforcing and challenging 
articles in a news aggregator (Munson and Resnick, 2010) 
and for sorted or annotated displays (Gamon et al 2008; Oh 
et al 2009; Munson and Resnick 2010). 
 Here we consider the problem of automatically 
classifying people and items as liberal or conservative. 
Most people do not wear “liberal” or “conservative” labels, 
either in person or on their on-line profiles. And an 
article’s political position may not always be easy to glean 
from surface analysis of its text. Our inspiration is that a 
few manually coded labels might be propagated to other 
people and articles, since liberal people are likely to 
endorse liberal articles, and similarly for conservative 
people and articles. 
 There is a naturally occurring source for the data needed 
to propagate, a large pool of subjective “votes” for 
individual articles. Digg.com, a popular social news 
aggregator, has links to political stories from both blogs 
and news sites. Users can “digg” stories they like. 
Individual diggs are visible on the website and accessible 
through a public API.  
 Figure 1 illustrates the potential propagation of a few 
initial labels. Following the current convention in the U.S. 
media, we color-code conservative as red and liberal as 
blue. The links in the graph represent diggs, the votes by 
users for particular articles. The articles dugg by the red 
user can be colored red. Similarly, the people who dugg the 
blue articles can be colored blue. In subsequent rounds, 
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those colorings can be propagated still further. Some 
people or items may lie in the middle, not clearly liberal or 
conservative. We will think of items that cannot be 
decisively labeled during the propagation process as 
“gray.” We consider three alternatives for the semi-
supervised learning propagation algorithm, as well as a 
variety of data sources that can affect the structure of the 
graph and the initial seed labels, and then evaluate 
classification accuracy. 

Related Work 
Literature from both political science and computer science 
has studied the problem of classifying political positions 
from texts. One line of work used word frequencies, 
Bayesian statistical models, and topic models (Laver et al 
2003, Martin and Vanberg 2008, Lin 2006, Lin et al 2008, 
Monroe et al 2008, Slaping and Proksch 2008). Another 
line of work focused on using SVM with optimization of 
text feature selection (Jiang and Argamon 2008, Oh et al 
2008, Yu et al 2008, Hirst et al 2010), as well as 
complementing with sentiment analysis (Durant and Smith 
2006, Mullen and Malouf 2006, Malouf and Mullen 2007). 
 Rather than using text features, Efron (2004) used co-
citations from Google search to classify political blogs. 
Park et al (2011) used a panel of users and their comments’ 
sentiments to predict the political leaning of articles.  
 Semi-supervised learning approaches utilize a large 
amount of unlabeled data in the classification process, and 
thus achieve good classification performance even if only a 
small set of labeled examples are available. A particular 
family of semi-supervised classification algorithms, which 
we draw on, cast the classification task as a process of 
label propagation in the graph structure of labeled and 
unlabeled data (Zhu et al. 2003, Zhou et al. 2004).   
 The closest study to ours is Lin and Cohen (2008), who 
used a semi-supervised learning algorithm called 
“multirank” to classify political blogs using the HTML 
links between blog stories. We use different algorithms and 
find that, once we propagate via diggs, adding propagation 
via blog-to-blog HTML links decreases accuracy.  

Semi-Supervised Learning Algorithms 

Problem Formulation 
From Digg, we have a set of stories Vstory, users Vuser, and 
the diggs from users to stories as approval votes, denoted 

as Edigg={(i,j)}, where i�Vuser and j�Vstory. We also have 1) 
other types of nodes, Vextra, such as the domain names of 
blogs, and 2) other types of links, Eextra, which will be 
discussed in the Datasets section. Let V=Vuser �� �����	� ��
�
����, E=Edigg �� 

����, and then we can construct a graph G 
= <V, E>. Edges e�E are undirected because the color 
label of either node of e should propagate to the other. 

From G, we construct the symmetric affinity matrix W, 
where Wij=1 if (i,j)�E, or 0 otherwise. Define D as the 
diagonal matrix of degrees of the nodes. That is, 
Dii=� ���� . 
 Denote the initially labeled nodes as L (L�V). Let 
C={red, blue, gray} be the set of category labels. For each 
i�L, we have an initial label ci�C. Let T=V-L be the set of 
unlabeled nodes (i.e., nodes that need to be classified). The 
labels will be divided into a training set Ltraining and a 
testing set Ltesting, where L = Ltraining �� Ltesting. The goal of 
our algorithms is to use the initial labels from Ltraining and 
assign a label c'j�C as the classification output to each 
node j�T�Ltesting.  
 We also introduce a |V|×2 matrix Y, where the 2 column 
vectors are indexed as R for red and B for blue. YiR=1 if 
i�Ltraining and ci=red; YiB=1 if i�Ltraining and ci=blue; 0 for 
the other elements. 
 Note that any gray labels in L are simply ignored for the 
purposes of training. Intuitively, we do not treat gray as an 
independent classification category but rather as nodes for 
which the classification is mixed or uncertain. Thus, we do 
not propagate gray classifications. However, our 
algorithms could still output gray for borderline items. 

Random Walk with Restart (RWR) 
Our first semi-supervised algorithm, shown in the box, is 
based on the popular “random walk with restart” model 
(Grinstead and Snell 1997). After convergence, F* is the 
stationary distribution specifying the probability that a 
random walk with restart at Y' will be at each of the nodes. 
 In our case, the restart matrix Y' has two columns, 
corresponding to two separate random walks, leading to 
two stationary distributions. The first walk, with the R 
column of Y', restarts from only the red labeled nodes, and 
the F*

iR scores indicate the stationary probabilities 
restarting only from the red nodes. Similarly, the second 
walk, with the B columns of Y', yields the F*

iB scores. 
Intuitively, F*

iR>F*
iB means a walk starting from the red 

nodes is more likely to reach node i than a walk starting 
from the blue nodes, and thus we should label i as red. 
When F*

iR is close to F*
iB, there is not a clear classification 

and we label them gray.  Two threshold parameters �R and 
�B control how big the ratio of F*

R and F*
B has to be in 

order to make a red/blue classification. Increasing the 
thresholds leads to output of more gray labels for 
borderline nodes. 

Local Consistency Global Consistency (LCGC) 
Our second semi-supervised learning algorithm, also 
shown in the algorithm box, follows the “local consistency 
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Figure 1. Intuition for the propagation process 
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global consistency” classification algorithm proposed in 
Zhou et al (2004). Note that the iteration process differs 
from RWR only in normalization factors for S and Y.  
 The intuition behind the algorithm is to optimize for two 
conditions: a) the labels assignment should not change too 
much between nearby nodes (“local consistency”), and b) 
the initial labels assignment should not change too much 
after propagation (“global consistency”). The parameter � 
controls the trade-off between the two objectives.  

Absorbing Random Walk (ARW) 
The “absorbing random walk” model is different from the 
original random walk model in that it has “absorbing 
states” without outgoing links (Grinstead and Snell 1997). 
Let A�V be a set of absorbing states. After convergence, 
each node i�V has a probability score P(a|i) for each 
absorbing state a�A, indicating the probability that i would 
eventually be absorbed into a. We have � ������ � ���� , 
and P(a|a)=1. The use of absorbing random walks in 
classification is closely related to Zhu et al (2003).  
 In our case, we didn’t use the labeled dataset L as the 
absorbing states, because the initial labels are not 100% 
accurate and should be allowed to change color during 
propagation. Therefore, we added two new absorbing 
states ared and ablue to V, and added directed edges {(i, ared)} 
and {(j, ablue)} if i,j�L and ci=red, cj=blue.  
 In step 1, k�[0, �) is the weight of the newly added 
edges {(i, ared)} and {(j, ablue)}. In step 2, weights on edges 
(including the new edges) are normalized to create 
probability distributions over transitions from each node. 
The normalized matrix decomposes into Q, which gives 
probabilities of transitions to edges in the original graph, 
and Y', which gives probabilities of transitions to the 
absorbing states  ared and ablue. After the random walk 
converges, F*

iR and F*
iB are the probabilities for each i�V 

eventually getting absorbed in ared and ablue respectively. In 
steps 4 and 5, we classify the nodes using the “class mass 
normalization” method suggested by Zhu et al (2003). 
 Intuitively, this algorithm classifies i�V as red if it has a 
much higher probability to be absorbed in ared, and the 
same for blue. 

Datasets 

Graph Structure 
Diggs as votes from user nodes to story nodes (Vstory, 
Vuser, Edigg). This is the primary dataset for our study. With 
the Digg API, we harvested 480,932 stories and their 
6,298,104 diggs from 2 categories, ‘political news’ and 
‘political opinions’, from 2009-5-25 to 2010-8-11. That is 
an average of 1,083 and 14,185 new stories and diggs each 
day, with an average of 13 diggs per story. Our study only 
used the |Vstory|=84,433 “popular” stories that received 
more than 10 diggs, and the |Vuser|=74,844 “frequent” users 
who submitted more than 5 diggs. Those “frequent” users 

made a total of |Edigg|=5,216,273 diggs to the “popular” 
stories. The median degree for items (number of frequent 
users in the dataset who dugg the popular item) was 22. 
Note that each user could submit an unlimited number of 
diggs, but only one per story. The largest connected 
component covers 99.98% of the nodes. 
Domain source links (Vsource, Esource).  For each story in 
Vstory, we have its source domain name. For example, 
stories posted on HuffingtonPost.com would all share the 
same domain name. We hypothesize that stories with the 

Algorithm 1: RWR 

Input: W, D, Y 
Algorithm: 

1. Construct the transition matrix S=D-1W 
2. Construct Y'=(DY

-1YT)T, where DY is a 
diagonal matrix with DY-ii=� ���� . 

3. Iterate F(t+1)=(1-�)SF(t)+�Y', where F(t) is a 
|V|×2 matrix, F(0)=Y', and � is a tunable 
teleport factor. Let F* denote the limit of the 
sequence {F(t)} 

Classification: Label i�V as: 
a. red if F*iR/ F*iB >�R  
b. blue if F*iB/ F*iR >�B  
c. gray otherwise 
(�R and �B are tunable threshold parameters.) 

 
Algorithm 2: LCGC 

Input: W, D, Y 
Algorithm: 

1. Construct the matrix S=D-1/2WD-1/2 
2. Iterate F(t+1) = (1-�)SF(t)+�Y, where � is a 

tunable parameter in (0, 1), and F(0)=Y. Let 
F* denote the limit of the sequence {F(t)} 

Classification: the same as in RWR 
 
Algorithm 3: ARW 

Input: W, D, Y 
Algorithm: 

1. Construct W'=�� ��
�  �, where k=(1-�)/�, 

��(0,1] is a tunable parameter; I is a 2×2 
identify matrix. 

2. Construct S'=D'-1W', where D' is a diagonal 

matrix with D'ii=� �!��� . S' has form �" �!
�  �. 

3. Iterate F(t+1)=Y'+QF(t), where F(0)=Y'. Let 
F* denote the limit of the sequence {F(t)}. 

4. Let DP=#���$%&� �
� ���'()%�#, where 

P(ared)=� �*�+,��- .����, P(ablue)=� �*�/,��- .
����. P(ared)+P(ablue)=1.  

5. Calculate F*'=(DP
-1F*T)T 

Classification: the same as in RWR using F*' 
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same domain name would share the same political leaning. 
This is clearly true for political blogs like 
HuffingtonPost.com, but not necessarily true for 
NYTimes.com or Blogspot.com.  We created domain 
source nodes Vsource and edges Esource={(i,s):  i�Vstory was 
posted on source domain s�Vsource}. 
Links from blogs to stories (Vlink-to, Elink-to). Munson et al 
(2008) created a dataset consisting of political blogs and 
their HTML links to other stories. We hypothesize that 
stories linked to by the same blog would have the same 
political leaning as the blog. We created Vlink-to for the 396 
political blogs that linked to any stories in Vstory, and 
undirected edges Elink-to={(i,j): i�Vlink-to HTML links to 
j�Vstory}. |Elink-to|=17,372, which is 21% of |Vstory|. 
User friendship links (Euser).   Digg.com allows users to 
mark other users as friends, by mutual consent. We 
hypothesize that users who are friends on Digg.com will 
tend to share the same political leaning. Using the Digg 
API, we harvested a total of 2,247,591 user-user friendship 
links, among which 755,303 are between u�Vuser. We 
created Euser={(i,j): i,j�Vuser are friends on Digg.com}.  
Story similarity links (Estory). Using the Digg API, we 
obtained the title and a short text snippet for each story, 
which was used to calculate text similarity between each 
story pair. We hypothesize that stories that have similar 
text would also share similar political leaning. We used 
Apache Lucene to calculate text similarity. We considered 
only terms that appeared in at least 5 stories but not more 
than 40% of the total stories. For each story, we selected its 
20 terms with the highest tf*idf scores and used them to 
calculate a cosine similarity with each other story. If i was 
one of the 10 stories with highest similarity to j, and also j 
was one of the 10 most similar to i, an undirected edge (i, 
j) was added to Estory.  |Estory|=107,961, so each story had an 
average of 1.3 text similarity links.  

Labels 
Users identified in a news article (Luser-reported). A news 
article1 reported a group of conservative Digg users who 
created a Yahoo group called the “Digg Patriots” and self-
organized themselves to deliberately bury liberal stories on 
Digg. The article identified 106 conservative users of the 
group. It also identified 44 liberal users on Digg who were 
their primary targets (i.e., stories suggested to Digg by 
those 44 liberal users were voted down). Digg.com has 
purged some members of the “Digg Patriots” from the 
system to prevent manipulation. But we still have 104 
labeled Digg users, 68 red and 36 blue. We denote these 
labeled users as Luser-reported. These users dugg 69,785 (83%) 
of the stories in Vstory. 
Labeled blogs  (Lblogs).  From five sites that classify 
blogs2, we compiled 1,635 blogs tagged as conservative or 
liberal. Of these, only 240 (15%) had any stories in Vstory. 
Those blogs form a subset of Vsource that we call Lblogs. 

                                                 
1 http://goo.gl/ipQn 
2 They are: blogcatalog.com, blogarama.com, httpetalkinghead.com, 
blogs.botw.org, and wonkosphere.com 

25,643 (30%) of the stories in Vstory were from one of these 
labeled blogs. 
More labeled blogs (Llink-to). For the 396 political blogs in 
Vlink-to, Munson et al (2008) also labeled them as liberal or 
conservative. We used them as Llink-to, which overlapped 
but was distinct from the Lblogs above. 
Manually coded stories from Amazon Mechanical Turk 
(Lmturk). We randomly selected 1000 stories from Vstory and 
posted them on AMT. For each story, we accepted 6 
ratings (3 from self-identified liberals and 3 from self-
identified conservatives), at the cost of 3 cents per rating 
and a $1-$2 weekly bonus to the most productive turkers. 
We collected the ratings from 2010-7-8 to 2010-8-22, with 
50-500 incoming ratings per week. 41 turkers coded at 
least one story, and 13 (8 liberals and 5 conservatives) 
coded more than 50 stories. 
 For quality control purposes, we required the turkers to 
pass a qualification test with 9 correct answers out of 10 
questions: 5 questions on basic political knowledge (e.g., 
who was the Republican candidate in the 2008 presidential 
election?) and 5 questions on the real coding tasks to test 
their understanding of the coding guideline. They also had 
to meet the following criteria: a) located in the US, b) > 
90% acceptance rate on other AMT tasks, and c) complete 
our survey on their political leaning 
 We also randomly inserted verification questions (e.g., 
“1+4=?”) into 100 stories, and got correct answers from all 
turkers who encountered them. The turkers spent an 
average of 63 seconds on each story. The Fleiss inter-rater 
reliability score was 0.53, a “moderate agreement” (Landis 
and Koch 1977 ). 
 The limited inter-rater reliability suggests that there is 
not universal agreement about the liberal-conservative 
categories and that they apply more clearly to some stories 
than others. We considered those stories where all 6 turkers 
agreed to be clear examples. There were 73 red and 234 
blue stories in our labeled dataset Lmturk. In the Extensions 
section we return to consideration of stories where raters 
were not unanimous.  
Manually coded users (Luser-coded). We selected 220 Digg 
users from Vuser who had made more than 15 comments, 
with more than half of their most recent comments on 
political stories. Then, we took a snapshot of their 15 most 
recent comments, and hired 2 undergraduate students to 
code them into red, blue and gray based on the political 
leaning inferred from the 15 comments. 
 Before the coding process, we trained the coders to 
follow coding guidelines. For quality control purposes, we 
inserted six known Digg users from Luser-reported into the 220 
user pool, and both coders correctly classified them. When 
both coders felt confident enough to assign a red or blue 
label, their agreement was 94.5% and their Cohen’s kappa 
score was 0.89. We took the 69 red users and 62 blue users 
that both coders agreed upon as clear examples, and 
formed dataset Luser-coded. 
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Evaluation 
We organized our evaluation process into 4 steps. Due to 
limited space, we only document the detailed optimization 
process for the RWR algorithm, and simply report the 
results for the other 2 algorithms in the first 3 steps. In the 
last step, we compared the three algorithms. For all 4 steps, 
we used 10-fold cross validation, repeatedly holding out 
one tenth of the nodes with known labels for testing. 
 The primary measurement was “accuracy”, averaged 
across the 10 folds of cross validation. Let Otesting�O be the 
output for i�Ltesting. Let O*

testing be the subset of Otesting that 
are correctly classified. 

0112��1	 � �3,4%54�67�
�34%54�67� �

Step 1: Optimizing Parameters 
We were not confident on the usefulness of the extra 
structural datasets beyond the diggs, nor of two of the label 
datasets, Lblogs and Llink-to. Thus, to tune the algorithm 
parameters, we used the limited network G'=<V',E'>, 
where V'= Vstory� �� Vuser, E'= Edigg, and labeled data  
L'=Luser-reported���Luser-coded���Lmturk8�39��:
��;
<� =���9�>
��
�9� �� 1����?:�@�>����9� �
��� �
�<� the shortest path from a 
node in the training set is 2.55, suggesting that a small but 
non-trivial amount of propagation will be necessary to 
propagate labels to nodes in the test set. 
 First, we optimized the teleport factor � for RWR, fixing 
�R and �B at 1.0. Fig. 2(a) shows that accuracy was not 
sensitive to � in the range 0.1 to 0.7. The optimal was 
�=0.3, yielding accuracy 94.8%. For the LCGC and 
algorithms, the optimized � was 0.3 and 0.1 respectively. 
We used these values for the rest of the evaluation. 
 Since our labeled datasets include only definitively 
labeled items (reds and blues, but no grays), overall 
accuracy will be optimized only when all items are 
assigned a red or blue label definitively. Not surprisingly, 
then, holding �R=1.0 the optimal value for �B was also 1.0, 
and vice versa. Thus, we assign red labels whenever F*

R > 
F*

B and blue labels when F*
B > F*

R.  
 However, �R and �B could be used to trade off precision 
and recall rather than simply optimizing for overall 
accuracy. Precision and recall for red are defined as 
follows (for blue they are defined analogously): 

��
1����9+ � �A,B�
�AB� , C
1�@@+ � �A,B�

�DEFGEHIJ<B� 

In the formula, OR is a subset of Otesting that are red. O*
R is 

the subset of O*
testing that are correctly classified as red. 

Ltesting,R  is the set of red nodes in the initial testing set.  
 The results are shown in Table 1. At �R=�B=1.0, red had 
higher recall and blue had higher precision. That means our 
algorithm tended to over-classify nodes as red. 
 

Table 1. High recall for red; high precision for blue 
 Precision Recall 

Red 88.0% 99.7% 
Blue 99.6% 92.1% 

 
To trade off precision and recall, we could adjust the �R 
and �B threshold parameters. In general, as we increase �R, 
fewer things are classified as red and more are left as gray, 
increasing precision but decreasing recall for red items, 
and similarly for �B. We have similar results for LCGC and 
ARW algorithms, too. We will return to the � parameters 
in the Extensions section, where items that Turkers did not 
agree on are labeled gray for the purpose of evaluation. 

Step 2: Evaluating Source and Link-to Relations 
from Labeled Blogs  
In this step, we evaluated the usefulness of the two labeled 
sets of blogs, Lblogs and Llink-to. We added nodes for the 
blogs in Lblogs and edges from them to stories that appeared 
in those blogs, and added nodes for the blogs in Llink-to and 
edges for their HTML links to stories. Table 2 shows the 
effects on accuracy.  We get similar results using LCGC 
and ARW algorithms. Since the labels (and nodes and 
edges) associated with Lblogs were useful, we included them 
in the baseline for assessments in step 3. But we excluded 
Llink-to and the associated Vlink-to and Elink-to because they did 
not increase accuracy. The optimized labeled dataset was 
then L*= Luser-reported ����Luser-coded ����Lmturk  �  Lblogs. 
 

Table 2. Blog sources are useful; not blog links 
Add Llink-to?

No Yes
Add 

Lblogs? 
No 94.8% 92.1%
Yes 95.4% 92.9%

Step 3: Evaluating Structural Datasets 
In this step, we evaluated the usefulness of the three extra 
structural datasets Vsource, Esource, Euser, and Estory that added 
additional nodes and links without adding any additional 
labels. Prior to this step, we used E=Edigg, and the weight 
wij for each (i,j)�E was set to 1. Since we have more than 
5 million links in Edigg and the number of extra links, 
|Edomain �� Euser � Estory|, is only 10% of |Edigg|, adding the 
extra links to E with the same weight as Edigg would not 
have much effect. Therefore, we also optimized the weight 
for the extra links by varying their values from 1 up to 100. 
 First, we added Vsource and Esource to G. Note that Lblogs 
was already included in G, so the only additional source 
nodes added were those not associated with known labeled 
blogs. Fig.2(b) shows that their addition, with weight 1, 
decreased accuracy from 95.4% to below 95%. Increasing 
the weight of edges e�Esource, including the edges from the 
labeled blogs, increased accuracy, up to an optimal weight 
of 50, which yielded accuracy of 96.6% . 
 Second, we added Euser to the original G (without Vsource 
and Esource). As shown in Fig.2(c), adding the friendship 
links reduced accuracy. Even though accuracy peaked at 
weight=10, it was still lower than the previous optimum.  
 Finally, we added Estory to G. As shown in Fig.2(d), 
accuracy dropped steadily as the weight of e�Estory 
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increased, and it was always lower than the previous 
optimum of 95.4% without Estory.  
 Thus, the optimal graph structure G*=<V*,E*> has V*= 
Vstory � Vuser � Vsource, and E*= Edigg � Esource with the 
weight of e�Esource equal to 50. We found similar results 
for LCGC and ARW algorithms too, where Esource 
improved accuracy, but Euser and Estory did not. 

Step 4: Semi-Supervised Algorithms Comparison 
Next, we compared the performance of the three semi-
supervised learning algorithms, using the optimized 
parameters from step 1 and the optimized L* and G* from 
steps 2 and 3. In addition to the overall accuracy, we also 
show accuracy for stories and users separately in Table 3. 
 

Table 3. Algorithms comparison 

 Accuracy 
(overall) 

Accuracy 
(stories) 

Accuracy 
(users)

RWR 96.6% 95.4% 99.5%
LCGC 96.9% 95.6% 100%
ARW 97.3% 96.3% 99.6%

Discussion 
Overall, the results are quite promising, suggesting that a 
relatively small number of seed people and stories that are 
clearly liberal and conservative, together with a large 
number of people to item votes, can be used to classify, 
with high precision and recall, the other people and items 
that are clearly liberal or conservative. The three 
algorithms all had very high accuracy, with the absorbing 
random walk performing the best of the three. 
 Precision was higher for blue classifications, but true 
reds had higher recall. We suspect that this is because Digg 
is quite skewed in favor of liberal stories, but the color 
distribution in our training data is more balanced.  
 The liberal/conservative labels of source blogs, together 
with links from source blogs to the items that appeared in 
those blogs, proved to be useful inputs to the propagation 
algorithms. A closer look at the results of the optimized 

RWR algorithm reveals that 98.5% of stories in Lblogs had 
the same political leaning as their source blogs. We suspect 
that congruence, together with reasonably high quality 
classifications of the blogs, made those labels and links 
useful for classification.  
 Propagating liberal/conservative labels from blogs 
through their HTML links to stories, however, decreased 
overall classification accuracy. Although Adamic and 
Glance (2005) found that HTML links between blogs that 
have different ideologies are rare, such links are frequent 
enough to make propagating labels over those links 
misleading. According to the RWR algorithm’s 
classification, only 76.5% of HTML links led from blogs 
to stories that had the same political leaning. 
 Adding nodes for website domains (including the non-
labeled ones) with links to stories that appeared on those 
domains was helpful for the classification. This implies 
that most Digg stories posted on the same website indeed 
share the same political leaning.  Classification improved 
most when the links from sites to stories were given weight 
equal to fifty individual diggs. We suspect that if we had a 
dataset with many more diggs per story, the optimal weight 
for these site-story links might be even higher.  
 Adding links between declared “friends” decreased 
classification accuracy.  The classification results from our 
algorithm suggest that only 63.3% of the 755,303 
friendship pairs share the same political leaning. One 
possible explanation is that since Digg is not for political 
news only, friendship on Digg is not necessarily based on 
political preference but perhaps on other non-political 
factors such as the same hobbies or locations.  
 Adding links between stories with textual similarities 
also decreased classification accuracy. One plausible 
explanation is that stories that have similar topics and 
content features do not necessarily share the same 
opinions. For example, “thumbs up to healthcare reform” 
has similar text to “thumbs down to healthcare reform”, but 
clearly they have the opposite political leanings. Another 
reason was that we didn’t have the full text of the stories, 
which prohibited further optimization on the text similarity 
links. It could be, however, that more sophisticated text 
comparisons, perhaps based on topic modeling and 
sentiment analysis, would provide better inputs to our 
graph propagation algorithms.  

Comparison to SVM 
We compared the semi-supervised learning algorithms to 
the supervised learning algorithm, SVM, which was the 
most frequently used approach in prior studies on political 
leaning classification. Our semi-supervised learning 
algorithms outperformed the SVM algorithm. 
 We tried three versions of the SVM classifier. All text 
features were generated using Apache Lucene, and we used 
the SVM-light3 application to run the algorithm. 

                                                 
3 http://svmlight.joachims.org/ 

 

 
Figure 2. (a)  optimal � = 0.3 (b) Vsource/Esource helpful, with 
optimal weight = 50  (c) Euser not helpful  (d) Estory not helpful. 
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 In the first version, we simply generated the uni-gram 
text features from each story’s title and text snippet, and 
ran SVM. In the second version, we followed the 
optimization process in (Oh et al, 2009): for the text 
features, we used the combination of uni-gram, bi-gram 
and tri-gram, and then used �2 feature selection that 
selected 5,440 out of 3,079,759 features with p<0.1. 
 The first two versions only worked for stories that have 
text features. In the third version, we first ran SVD on W to 
generate 6 major components for both stories and users, 
and then used them as 6 features the classifier. 
 The result is in Table 4. SVM with feature selection 
worked quite well, achieving 92% accuracy for stories. 
However, it has two limitations. First, after feature 
selection, SVM was not able to classify 9.8% of the stories 
that didn’t have any selected features. To be able to 
classify those stories, we would have had to add more 
features, possibly noisy ones, which would have driven 
down accuracy. Second, a text classifier was not able to 
classify the users (except for using features from SVD) that 
didn’t have any text features. 
 

Table 4. Result of SVM 

 Accuracy 
(overall) 

Accuracy 
(classified 

stories) 

Accuracy 
(users) 

All features N/A 76.2% N/A
�2 feature selection N/A 92.0% N/A

SVD features 81.4% 87.6% 76.0%

Extensions 
Online updating. Running the algorithm with full iteration 
would be too time-consuming in an online setting each 
time a new digg arrived. For the RWR algorithm, we 
developed a simple online algorithm to classify stories and 
users using 1-level propagation of previously-computed 
RWR scores F*i=(F*iR, F*iB) through the complete set of 
diggs, including those that had newly arrived: 

*� � S * ,�
>
;�
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�
���< V� � 


�
 

 Using the two automatically collected datasets Ltraining= 
Lblogs � Luser-reported to generate the pre-computed F*i scores 
with RWR, we evaluated the 1-level propagation algorithm 
using the two manually coded datasets for testing, 
Ltesting=Lmturk � Luser-coded. Compared to the first row of 
Table 5, accuracy of 1-level propagation was only a little 
lower. We conclude that it would be reasonable to use 1-
level propagation online and periodically re-compute the 
stationary F*i scores. We leave it to future work to develop 
similar approximations of the LCGC and ARW algorithms. 
 

Table 5. Result of 1-level propagation on , with RWR 
 Accuracy 

(overall) 
Accuracy 
(stories)

Accuracy 
(users) 

Ltraining=Ldomain � Luser-reported 
Ltesting=Lmturk � Luser-coded 

95.2% 94.1% 97.7% 

1-level propagation 93.8% 92.5% 96.9% 
 
Using gray labels in testing set. So far, we have showed 
the semi-supervised learning algorithms achieved high 
accuracy on clearly labeled red and blue items. Some 
stories and users, however, do not fit cleanly into either 
category. In some contexts, either red or blue labels for 
ambiguous items would be acceptable. In others, however, 
it would be better to mark such ambiguous items as gray, 
and classifying them as either red or blue would be 
considered erroneous. In that case, excluding gray items 
from the calculation of error rates, as we have done, would 
lead to overestimates of the precision of the classifications. 
 We have conducted some preliminary analysis of how 
the algorithms would perform if classifications of gray 
items as red or blue counted as errors.  From the 1000 
Mechanical Turk stories, we defined the rest of the 653 
stories (excluding 40 broken link stories) that were not in 
Lmturk, those without unanimous ratings from turkers, as 
gray. Adding the new gray labels to the testing set, we got 
the optimal threshold parameters as �R=1.6 and �B=1.45 
for RWR, which switched some of the red and blue 
classifications to gray. Accuracy overall dropped to 72.4%. 
Accuracy for the clearly labeled red and blue items 
dropped to 89.9% with the new threshold parameters. 
 For comparison, we used two binary SVMs (one 
classifies red vs. not-red, the other classifies blue vs. not-
blue) to classify red (as red and not-blue), blue (as blue 
and not-red), and gray (otherwise) using the new testing 
data. Accuracy was 85.7%, higher than RWR. Note that 
SVM could not classify 13% of the stories that did not 
have any selected features, and we simply labeled them as 
gray. This helped SVM because there are many gray labels 
in the testing set. 
 With a slightly different definition of true red, blue, and 
gray, the results turned out differently. For Mechanical 
Turk stories, we defined red as any story having >2/3 red 
ratings from the turkers, blue as having >2/3 blue ratings, 
and gray for the rest, which resulted in 490 blue, 203 red, 
and 267 gray. Using these new data in the testing set for 
RWR, we got the optimal �R=1.15, �B=1.1, and overall 
accuracy 74.8%. For clearly labeled red and blue items, we 
still have 95.6% accuracy using the new threshold 
parameters. The SVM algorithm got accuracy 73.9%, now 
slightly lower than RWR. 

Conclusion and Future Work 
To conclude, in the paper, we discussed 3 semi-supervised 
learning algorithms to propagate political leaning of known 
articles and users to the target nodes. The best algorithm 
achieved 97.3% accuracy on users and stories that people 
agreed were clearly liberal or conservative, noticeably 
better than the most commonly used SVM algorithm. 
 The biggest challenge for future research is to improve 
the algorithm’s ability to separate clearly liberal and 
conservative items from those that do not fit neatly into 
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either category. This will require further methodological 
innovation as well in developing evaluation schemes for 
situations where the ground-truth is not crisply defined. 
 Another interesting direction for future work is to try to 
understand and characterize the properties of datasets for 
which the different propagation algorithms will perform 
better or worse, possibly with an axiomatic approach.  
 We note that the propagation algorithms gained 
accuracy with the addition of datasets such as domain 
source links, where the linked items tend to have high 
correlation in their labels, but lost accuracy with the 
addition of datasets such as friendship links and HTML 
links where the correlation was lower. We therefore 
discarded those datasets. Clearly, this is not optimal, since 
even a positive correlation much less than 1 in principle 
provides some information. Future research should find 
ways to make use of these noisy datasets rather than 
discarding them entirely. 
 Another limitation of the propagation algorithms is that 
they require interactions between stories and users (i.e., 
diggs). For unpopular articles not covered in social news 
sites such as Digg, our algorithm won’t be able to classify 
them. However, the advantage of these algorithms is that 
they do not require much training data. This is 
complementary to SVM, which requires lots of training 
data, but does not require user-story votes. Therefore, one 
idea is to use the propagation algorithms to generate many 
labeled data with high accuracy, and then feed this data to 
train SVM, and then use the well-trained SVM model to 
classify any textual items. 
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