

Classifying the Political Leaning of
News Articles and Users from User Votes

Daniel Xiaodan Zhou, Paul Resnick, Qiaozhu Mei

School of Information, University of Michigan
105 S. State St, Ann Arbor, MI 48109 USA

{mrzhou, presnick, qmei}@umich.edu

Abstract
Social news aggregator services generate readers’ subjective
reactions to news opinion articles. Can we use those as a
resource to classify articles as liberal or conservative, even
without knowing the self-identified political leaning of most
users? We applied three semi-supervised learning methods
that propagate classifications of political news articles and
users as conservative or liberal, based on the assumption
that liberal users will vote for liberal articles more often,
and similarly for conservative users and articles. Starting
from a few labeled articles and users, the algorithms
propagate political leaning labels to the entire graph. In
cross-validation, the best algorithm achieved 99.6%
accuracy on held-out users and 96.3% accuracy on held-out
articles. Adding social data such as users’ friendship or text
features such as cosine similarity did not improve accuracy.
The propagation algorithms, using the subjective liking data
from users, also performed better than an SVM based text
classifier, which achieved 92.0% accuracy on articles.

Introduction
In U.S. politics, opinions on a variety of issues involving
taxes, the role of government, domestic policy, and
international relations are substantially though imperfectly
correlated with each other and with party affiliation and
with an overall self-identification as liberal or
conservative. Thus, classifying people, media outlets, and
opinions expressed in individual articles as liberal or
conservative conveys meaning to most people.
 The liberal vs. conservative classification scheme has its
critics (e.g., Klein and Stern 2008). One reason is that the
single dimension cannot capture cases such as the
libertarians who align with liberals on some issues and
conservatives on others. Another is that definitions of
conservative and liberal are vague and inconsistently

Copyright © 2011, Association for the Advancement of
Artificial Intelligence (www.aaai.org). All rights reserved.

applied. Moreover, many political news and opinion
articles express a mixture of conservative and liberal
ideology. Thus, not everyone will agree about the correct
classification of particular items, or even the correct
classification of their own stance.
 Despite some fuzzy boundaries, however, the one-
dimensional classification scheme persists in our discourse,
and many people, articles, and news sources fit clearly into
one category or the other. The ability to classify blogs as
liberal or conservative enabled Adamic and Glance (2005)
to analyze patterns of inter-linking between them. It also
served as the basis for investigating people’s preferences
for difference mixtures of reinforcing and challenging
articles in a news aggregator (Munson and Resnick, 2010)
and for sorted or annotated displays (Gamon et al 2008; Oh
et al 2009; Munson and Resnick 2010).
 Here we consider the problem of automatically
classifying people and items as liberal or conservative.
Most people do not wear “liberal” or “conservative” labels,
either in person or on their on-line profiles. And an
article’s political position may not always be easy to glean
from surface analysis of its text. Our inspiration is that a
few manually coded labels might be propagated to other
people and articles, since liberal people are likely to
endorse liberal articles, and similarly for conservative
people and articles.
 There is a naturally occurring source for the data needed
to propagate, a large pool of subjective “votes” for
individual articles. Digg.com, a popular social news
aggregator, has links to political stories from both blogs
and news sites. Users can “digg” stories they like.
Individual diggs are visible on the website and accessible
through a public API.
 Figure 1 illustrates the potential propagation of a few
initial labels. Following the current convention in the U.S.
media, we color-code conservative as red and liberal as
blue. The links in the graph represent diggs, the votes by
users for particular articles. The articles dugg by the red
user can be colored red. Similarly, the people who dugg the
blue articles can be colored blue. In subsequent rounds,

417

Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media

those colorings can be propagated still further. Some
people or items may lie in the middle, not clearly liberal or
conservative. We will think of items that cannot be
decisively labeled during the propagation process as
“gray.” We consider three alternatives for the semi-
supervised learning propagation algorithm, as well as a
variety of data sources that can affect the structure of the
graph and the initial seed labels, and then evaluate
classification accuracy.

Related Work
Literature from both political science and computer science
has studied the problem of classifying political positions
from texts. One line of work used word frequencies,
Bayesian statistical models, and topic models (Laver et al
2003, Martin and Vanberg 2008, Lin 2006, Lin et al 2008,
Monroe et al 2008, Slaping and Proksch 2008). Another
line of work focused on using SVM with optimization of
text feature selection (Jiang and Argamon 2008, Oh et al
2008, Yu et al 2008, Hirst et al 2010), as well as
complementing with sentiment analysis (Durant and Smith
2006, Mullen and Malouf 2006, Malouf and Mullen 2007).
 Rather than using text features, Efron (2004) used co-
citations from Google search to classify political blogs.
Park et al (2011) used a panel of users and their comments’
sentiments to predict the political leaning of articles.
 Semi-supervised learning approaches utilize a large
amount of unlabeled data in the classification process, and
thus achieve good classification performance even if only a
small set of labeled examples are available. A particular
family of semi-supervised classification algorithms, which
we draw on, cast the classification task as a process of
label propagation in the graph structure of labeled and
unlabeled data (Zhu et al. 2003, Zhou et al. 2004).
 The closest study to ours is Lin and Cohen (2008), who
used a semi-supervised learning algorithm called
“multirank” to classify political blogs using the HTML
links between blog stories. We use different algorithms and
find that, once we propagate via diggs, adding propagation
via blog-to-blog HTML links decreases accuracy.

Semi-Supervised Learning Algorithms

Problem Formulation
From Digg, we have a set of stories Vstory, users Vuser, and
the diggs from users to stories as approval votes, denoted

as Edigg={(i,j)}, where i�Vuser and j�Vstory. We also have 1)
other types of nodes, Vextra, such as the domain names of
blogs, and 2) other types of links, Eextra, which will be
discussed in the Datasets section. Let V=Vuser �� �����	� ��
�
����, E=Edigg ��

����, and then we can construct a graph G
= <V, E>. Edges e�E are undirected because the color
label of either node of e should propagate to the other.

From G, we construct the symmetric affinity matrix W,
where Wij=1 if (i,j)�E, or 0 otherwise. Define D as the
diagonal matrix of degrees of the nodes. That is,
Dii=� ���� .
 Denote the initially labeled nodes as L (L�V). Let
C={red, blue, gray} be the set of category labels. For each
i�L, we have an initial label ci�C. Let T=V-L be the set of
unlabeled nodes (i.e., nodes that need to be classified). The
labels will be divided into a training set Ltraining and a
testing set Ltesting, where L = Ltraining �� Ltesting. The goal of
our algorithms is to use the initial labels from Ltraining and
assign a label c'j�C as the classification output to each
node j�T�Ltesting.
 We also introduce a |V|×2 matrix Y, where the 2 column
vectors are indexed as R for red and B for blue. YiR=1 if
i�Ltraining and ci=red; YiB=1 if i�Ltraining and ci=blue; 0 for
the other elements.
 Note that any gray labels in L are simply ignored for the
purposes of training. Intuitively, we do not treat gray as an
independent classification category but rather as nodes for
which the classification is mixed or uncertain. Thus, we do
not propagate gray classifications. However, our
algorithms could still output gray for borderline items.

Random Walk with Restart (RWR)
Our first semi-supervised algorithm, shown in the box, is
based on the popular “random walk with restart” model
(Grinstead and Snell 1997). After convergence, F* is the
stationary distribution specifying the probability that a
random walk with restart at Y' will be at each of the nodes.
 In our case, the restart matrix Y' has two columns,
corresponding to two separate random walks, leading to
two stationary distributions. The first walk, with the R
column of Y', restarts from only the red labeled nodes, and
the F*

iR scores indicate the stationary probabilities
restarting only from the red nodes. Similarly, the second
walk, with the B columns of Y', yields the F*

iB scores.
Intuitively, F*

iR>F*
iB means a walk starting from the red

nodes is more likely to reach node i than a walk starting
from the blue nodes, and thus we should label i as red.
When F*

iR is close to F*
iB, there is not a clear classification

and we label them gray. Two threshold parameters �R and
�B control how big the ratio of F*

R and F*
B has to be in

order to make a red/blue classification. Increasing the
thresholds leads to output of more gray labels for
borderline nodes.

Local Consistency Global Consistency (LCGC)
Our second semi-supervised learning algorithm, also
shown in the algorithm box, follows the “local consistency

�

Figure 1. Intuition for the propagation process

418

global consistency” classification algorithm proposed in
Zhou et al (2004). Note that the iteration process differs
from RWR only in normalization factors for S and Y.
 The intuition behind the algorithm is to optimize for two
conditions: a) the labels assignment should not change too
much between nearby nodes (“local consistency”), and b)
the initial labels assignment should not change too much
after propagation (“global consistency”). The parameter �
controls the trade-off between the two objectives.

Absorbing Random Walk (ARW)
The “absorbing random walk” model is different from the
original random walk model in that it has “absorbing
states” without outgoing links (Grinstead and Snell 1997).
Let A�V be a set of absorbing states. After convergence,
each node i�V has a probability score P(a|i) for each
absorbing state a�A, indicating the probability that i would
eventually be absorbed into a. We have � ������ � ���� ,
and P(a|a)=1. The use of absorbing random walks in
classification is closely related to Zhu et al (2003).
 In our case, we didn’t use the labeled dataset L as the
absorbing states, because the initial labels are not 100%
accurate and should be allowed to change color during
propagation. Therefore, we added two new absorbing
states ared and ablue to V, and added directed edges {(i, ared)}
and {(j, ablue)} if i,j�L and ci=red, cj=blue.
 In step 1, k�[0, �) is the weight of the newly added
edges {(i, ared)} and {(j, ablue)}. In step 2, weights on edges
(including the new edges) are normalized to create
probability distributions over transitions from each node.
The normalized matrix decomposes into Q, which gives
probabilities of transitions to edges in the original graph,
and Y', which gives probabilities of transitions to the
absorbing states ared and ablue. After the random walk
converges, F*

iR and F*
iB are the probabilities for each i�V

eventually getting absorbed in ared and ablue respectively. In
steps 4 and 5, we classify the nodes using the “class mass
normalization” method suggested by Zhu et al (2003).
 Intuitively, this algorithm classifies i�V as red if it has a
much higher probability to be absorbed in ared, and the
same for blue.

Datasets

Graph Structure
Diggs as votes from user nodes to story nodes (Vstory,
Vuser, Edigg). This is the primary dataset for our study. With
the Digg API, we harvested 480,932 stories and their
6,298,104 diggs from 2 categories, ‘political news’ and
‘political opinions’, from 2009-5-25 to 2010-8-11. That is
an average of 1,083 and 14,185 new stories and diggs each
day, with an average of 13 diggs per story. Our study only
used the |Vstory|=84,433 “popular” stories that received
more than 10 diggs, and the |Vuser|=74,844 “frequent” users
who submitted more than 5 diggs. Those “frequent” users

made a total of |Edigg|=5,216,273 diggs to the “popular”
stories. The median degree for items (number of frequent
users in the dataset who dugg the popular item) was 22.
Note that each user could submit an unlimited number of
diggs, but only one per story. The largest connected
component covers 99.98% of the nodes.
Domain source links (Vsource, Esource). For each story in
Vstory, we have its source domain name. For example,
stories posted on HuffingtonPost.com would all share the
same domain name. We hypothesize that stories with the

Algorithm 1: RWR

Input: W, D, Y
Algorithm:

1. Construct the transition matrix S=D-1W
2. Construct Y'=(DY

-1YT)T, where DY is a
diagonal matrix with DY-ii=� ���� .

3. Iterate F(t+1)=(1-�)SF(t)+�Y', where F(t) is a
|V|×2 matrix, F(0)=Y', and � is a tunable
teleport factor. Let F* denote the limit of the
sequence {F(t)}

Classification: Label i�V as:
a. red if F*iR/ F*iB >�R
b. blue if F*iB/ F*iR >�B
c. gray otherwise
(�R and �B are tunable threshold parameters.)

Algorithm 2: LCGC

Input: W, D, Y
Algorithm:

1. Construct the matrix S=D-1/2WD-1/2
2. Iterate F(t+1) = (1-�)SF(t)+�Y, where � is a

tunable parameter in (0, 1), and F(0)=Y. Let
F* denote the limit of the sequence {F(t)}

Classification: the same as in RWR

Algorithm 3: ARW

Input: W, D, Y
Algorithm:

1. Construct W'=�� ��
� �, where k=(1-�)/�,

��(0,1] is a tunable parameter; I is a 2×2
identify matrix.

2. Construct S'=D'-1W', where D' is a diagonal

matrix with D'ii=� �!��� . S' has form �" �!
� �.

3. Iterate F(t+1)=Y'+QF(t), where F(0)=Y'. Let
F* denote the limit of the sequence {F(t)}.

4. Let DP=#���$%&� �
� ���'()%�#, where

P(ared)=� �*�+,��- .����, P(ablue)=� �*�/,��- .
����. P(ared)+P(ablue)=1.

5. Calculate F*'=(DP
-1F*T)T

Classification: the same as in RWR using F*'

419

same domain name would share the same political leaning.
This is clearly true for political blogs like
HuffingtonPost.com, but not necessarily true for
NYTimes.com or Blogspot.com. We created domain
source nodes Vsource and edges Esource={(i,s): i�Vstory was
posted on source domain s�Vsource}.
Links from blogs to stories (Vlink-to, Elink-to). Munson et al
(2008) created a dataset consisting of political blogs and
their HTML links to other stories. We hypothesize that
stories linked to by the same blog would have the same
political leaning as the blog. We created Vlink-to for the 396
political blogs that linked to any stories in Vstory, and
undirected edges Elink-to={(i,j): i�Vlink-to HTML links to
j�Vstory}. |Elink-to|=17,372, which is 21% of |Vstory|.
User friendship links (Euser). Digg.com allows users to
mark other users as friends, by mutual consent. We
hypothesize that users who are friends on Digg.com will
tend to share the same political leaning. Using the Digg
API, we harvested a total of 2,247,591 user-user friendship
links, among which 755,303 are between u�Vuser. We
created Euser={(i,j): i,j�Vuser are friends on Digg.com}.
Story similarity links (Estory). Using the Digg API, we
obtained the title and a short text snippet for each story,
which was used to calculate text similarity between each
story pair. We hypothesize that stories that have similar
text would also share similar political leaning. We used
Apache Lucene to calculate text similarity. We considered
only terms that appeared in at least 5 stories but not more
than 40% of the total stories. For each story, we selected its
20 terms with the highest tf*idf scores and used them to
calculate a cosine similarity with each other story. If i was
one of the 10 stories with highest similarity to j, and also j
was one of the 10 most similar to i, an undirected edge (i,
j) was added to Estory. |Estory|=107,961, so each story had an
average of 1.3 text similarity links.

Labels
Users identified in a news article (Luser-reported). A news
article1 reported a group of conservative Digg users who
created a Yahoo group called the “Digg Patriots” and self-
organized themselves to deliberately bury liberal stories on
Digg. The article identified 106 conservative users of the
group. It also identified 44 liberal users on Digg who were
their primary targets (i.e., stories suggested to Digg by
those 44 liberal users were voted down). Digg.com has
purged some members of the “Digg Patriots” from the
system to prevent manipulation. But we still have 104
labeled Digg users, 68 red and 36 blue. We denote these
labeled users as Luser-reported. These users dugg 69,785 (83%)
of the stories in Vstory.
Labeled blogs (Lblogs). From five sites that classify
blogs2, we compiled 1,635 blogs tagged as conservative or
liberal. Of these, only 240 (15%) had any stories in Vstory.
Those blogs form a subset of Vsource that we call Lblogs.

1 http://goo.gl/ipQn
2 They are: blogcatalog.com, blogarama.com, httpetalkinghead.com,
blogs.botw.org, and wonkosphere.com

25,643 (30%) of the stories in Vstory were from one of these
labeled blogs.
More labeled blogs (Llink-to). For the 396 political blogs in
Vlink-to, Munson et al (2008) also labeled them as liberal or
conservative. We used them as Llink-to, which overlapped
but was distinct from the Lblogs above.
Manually coded stories from Amazon Mechanical Turk
(Lmturk). We randomly selected 1000 stories from Vstory and
posted them on AMT. For each story, we accepted 6
ratings (3 from self-identified liberals and 3 from self-
identified conservatives), at the cost of 3 cents per rating
and a $1-$2 weekly bonus to the most productive turkers.
We collected the ratings from 2010-7-8 to 2010-8-22, with
50-500 incoming ratings per week. 41 turkers coded at
least one story, and 13 (8 liberals and 5 conservatives)
coded more than 50 stories.
 For quality control purposes, we required the turkers to
pass a qualification test with 9 correct answers out of 10
questions: 5 questions on basic political knowledge (e.g.,
who was the Republican candidate in the 2008 presidential
election?) and 5 questions on the real coding tasks to test
their understanding of the coding guideline. They also had
to meet the following criteria: a) located in the US, b) >
90% acceptance rate on other AMT tasks, and c) complete
our survey on their political leaning
 We also randomly inserted verification questions (e.g.,
“1+4=?”) into 100 stories, and got correct answers from all
turkers who encountered them. The turkers spent an
average of 63 seconds on each story. The Fleiss inter-rater
reliability score was 0.53, a “moderate agreement” (Landis
and Koch 1977).
 The limited inter-rater reliability suggests that there is
not universal agreement about the liberal-conservative
categories and that they apply more clearly to some stories
than others. We considered those stories where all 6 turkers
agreed to be clear examples. There were 73 red and 234
blue stories in our labeled dataset Lmturk. In the Extensions
section we return to consideration of stories where raters
were not unanimous.
Manually coded users (Luser-coded). We selected 220 Digg
users from Vuser who had made more than 15 comments,
with more than half of their most recent comments on
political stories. Then, we took a snapshot of their 15 most
recent comments, and hired 2 undergraduate students to
code them into red, blue and gray based on the political
leaning inferred from the 15 comments.
 Before the coding process, we trained the coders to
follow coding guidelines. For quality control purposes, we
inserted six known Digg users from Luser-reported into the 220
user pool, and both coders correctly classified them. When
both coders felt confident enough to assign a red or blue
label, their agreement was 94.5% and their Cohen’s kappa
score was 0.89. We took the 69 red users and 62 blue users
that both coders agreed upon as clear examples, and
formed dataset Luser-coded.

420

Evaluation
We organized our evaluation process into 4 steps. Due to
limited space, we only document the detailed optimization
process for the RWR algorithm, and simply report the
results for the other 2 algorithms in the first 3 steps. In the
last step, we compared the three algorithms. For all 4 steps,
we used 10-fold cross validation, repeatedly holding out
one tenth of the nodes with known labels for testing.
 The primary measurement was “accuracy”, averaged
across the 10 folds of cross validation. Let Otesting�O be the
output for i�Ltesting. Let O*

testing be the subset of Otesting that
are correctly classified.

0112��1	 � �3,4%54�67�
�34%54�67� �

Step 1: Optimizing Parameters
We were not confident on the usefulness of the extra
structural datasets beyond the diggs, nor of two of the label
datasets, Lblogs and Llink-to. Thus, to tune the algorithm
parameters, we used the limited network G'=<V',E'>,
where V'= Vstory� �� Vuser, E'= Edigg, and labeled data
L'=Luser-reported���Luser-coded���Lmturk8�39��:
��;
<� =���9�>
��
�9� �� 1����?:�@�>����9� �
��� �
�<� the shortest path from a
node in the training set is 2.55, suggesting that a small but
non-trivial amount of propagation will be necessary to
propagate labels to nodes in the test set.
 First, we optimized the teleport factor � for RWR, fixing
�R and �B at 1.0. Fig. 2(a) shows that accuracy was not
sensitive to � in the range 0.1 to 0.7. The optimal was
�=0.3, yielding accuracy 94.8%. For the LCGC and
algorithms, the optimized � was 0.3 and 0.1 respectively.
We used these values for the rest of the evaluation.
 Since our labeled datasets include only definitively
labeled items (reds and blues, but no grays), overall
accuracy will be optimized only when all items are
assigned a red or blue label definitively. Not surprisingly,
then, holding �R=1.0 the optimal value for �B was also 1.0,
and vice versa. Thus, we assign red labels whenever F*

R >
F*

B and blue labels when F*
B > F*

R.
 However, �R and �B could be used to trade off precision
and recall rather than simply optimizing for overall
accuracy. Precision and recall for red are defined as
follows (for blue they are defined analogously):

��
1����9+ � �A,B�
�AB� , C
1�@@+ � �A,B�

�DEFGEHIJ<B�

In the formula, OR is a subset of Otesting that are red. O*
R is

the subset of O*
testing that are correctly classified as red.

Ltesting,R is the set of red nodes in the initial testing set.
 The results are shown in Table 1. At �R=�B=1.0, red had
higher recall and blue had higher precision. That means our
algorithm tended to over-classify nodes as red.

Table 1. High recall for red; high precision for blue
 Precision Recall

Red 88.0% 99.7%
Blue 99.6% 92.1%

To trade off precision and recall, we could adjust the �R
and �B threshold parameters. In general, as we increase �R,
fewer things are classified as red and more are left as gray,
increasing precision but decreasing recall for red items,
and similarly for �B. We have similar results for LCGC and
ARW algorithms, too. We will return to the � parameters
in the Extensions section, where items that Turkers did not
agree on are labeled gray for the purpose of evaluation.

Step 2: Evaluating Source and Link-to Relations
from Labeled Blogs
In this step, we evaluated the usefulness of the two labeled
sets of blogs, Lblogs and Llink-to. We added nodes for the
blogs in Lblogs and edges from them to stories that appeared
in those blogs, and added nodes for the blogs in Llink-to and
edges for their HTML links to stories. Table 2 shows the
effects on accuracy. We get similar results using LCGC
and ARW algorithms. Since the labels (and nodes and
edges) associated with Lblogs were useful, we included them
in the baseline for assessments in step 3. But we excluded
Llink-to and the associated Vlink-to and Elink-to because they did
not increase accuracy. The optimized labeled dataset was
then L*= Luser-reported ����Luser-coded ����Lmturk � Lblogs.

Table 2. Blog sources are useful; not blog links
Add Llink-to?

No Yes
Add

Lblogs?
No 94.8% 92.1%
Yes 95.4% 92.9%

Step 3: Evaluating Structural Datasets
In this step, we evaluated the usefulness of the three extra
structural datasets Vsource, Esource, Euser, and Estory that added
additional nodes and links without adding any additional
labels. Prior to this step, we used E=Edigg, and the weight
wij for each (i,j)�E was set to 1. Since we have more than
5 million links in Edigg and the number of extra links,
|Edomain �� Euser � Estory|, is only 10% of |Edigg|, adding the
extra links to E with the same weight as Edigg would not
have much effect. Therefore, we also optimized the weight
for the extra links by varying their values from 1 up to 100.
 First, we added Vsource and Esource to G. Note that Lblogs
was already included in G, so the only additional source
nodes added were those not associated with known labeled
blogs. Fig.2(b) shows that their addition, with weight 1,
decreased accuracy from 95.4% to below 95%. Increasing
the weight of edges e�Esource, including the edges from the
labeled blogs, increased accuracy, up to an optimal weight
of 50, which yielded accuracy of 96.6% .
 Second, we added Euser to the original G (without Vsource
and Esource). As shown in Fig.2(c), adding the friendship
links reduced accuracy. Even though accuracy peaked at
weight=10, it was still lower than the previous optimum.
 Finally, we added Estory to G. As shown in Fig.2(d),
accuracy dropped steadily as the weight of e�Estory

421

increased, and it was always lower than the previous
optimum of 95.4% without Estory.
 Thus, the optimal graph structure G*=<V*,E*> has V*=
Vstory � Vuser � Vsource, and E*= Edigg � Esource with the
weight of e�Esource equal to 50. We found similar results
for LCGC and ARW algorithms too, where Esource
improved accuracy, but Euser and Estory did not.

Step 4: Semi-Supervised Algorithms Comparison
Next, we compared the performance of the three semi-
supervised learning algorithms, using the optimized
parameters from step 1 and the optimized L* and G* from
steps 2 and 3. In addition to the overall accuracy, we also
show accuracy for stories and users separately in Table 3.

Table 3. Algorithms comparison

 Accuracy
(overall)

Accuracy
(stories)

Accuracy
(users)

RWR 96.6% 95.4% 99.5%
LCGC 96.9% 95.6% 100%
ARW 97.3% 96.3% 99.6%

Discussion
Overall, the results are quite promising, suggesting that a
relatively small number of seed people and stories that are
clearly liberal and conservative, together with a large
number of people to item votes, can be used to classify,
with high precision and recall, the other people and items
that are clearly liberal or conservative. The three
algorithms all had very high accuracy, with the absorbing
random walk performing the best of the three.
 Precision was higher for blue classifications, but true
reds had higher recall. We suspect that this is because Digg
is quite skewed in favor of liberal stories, but the color
distribution in our training data is more balanced.
 The liberal/conservative labels of source blogs, together
with links from source blogs to the items that appeared in
those blogs, proved to be useful inputs to the propagation
algorithms. A closer look at the results of the optimized

RWR algorithm reveals that 98.5% of stories in Lblogs had
the same political leaning as their source blogs. We suspect
that congruence, together with reasonably high quality
classifications of the blogs, made those labels and links
useful for classification.
 Propagating liberal/conservative labels from blogs
through their HTML links to stories, however, decreased
overall classification accuracy. Although Adamic and
Glance (2005) found that HTML links between blogs that
have different ideologies are rare, such links are frequent
enough to make propagating labels over those links
misleading. According to the RWR algorithm’s
classification, only 76.5% of HTML links led from blogs
to stories that had the same political leaning.
 Adding nodes for website domains (including the non-
labeled ones) with links to stories that appeared on those
domains was helpful for the classification. This implies
that most Digg stories posted on the same website indeed
share the same political leaning. Classification improved
most when the links from sites to stories were given weight
equal to fifty individual diggs. We suspect that if we had a
dataset with many more diggs per story, the optimal weight
for these site-story links might be even higher.
 Adding links between declared “friends” decreased
classification accuracy. The classification results from our
algorithm suggest that only 63.3% of the 755,303
friendship pairs share the same political leaning. One
possible explanation is that since Digg is not for political
news only, friendship on Digg is not necessarily based on
political preference but perhaps on other non-political
factors such as the same hobbies or locations.
 Adding links between stories with textual similarities
also decreased classification accuracy. One plausible
explanation is that stories that have similar topics and
content features do not necessarily share the same
opinions. For example, “thumbs up to healthcare reform”
has similar text to “thumbs down to healthcare reform”, but
clearly they have the opposite political leanings. Another
reason was that we didn’t have the full text of the stories,
which prohibited further optimization on the text similarity
links. It could be, however, that more sophisticated text
comparisons, perhaps based on topic modeling and
sentiment analysis, would provide better inputs to our
graph propagation algorithms.

Comparison to SVM
We compared the semi-supervised learning algorithms to
the supervised learning algorithm, SVM, which was the
most frequently used approach in prior studies on political
leaning classification. Our semi-supervised learning
algorithms outperformed the SVM algorithm.
 We tried three versions of the SVM classifier. All text
features were generated using Apache Lucene, and we used
the SVM-light3 application to run the algorithm.

3 http://svmlight.joachims.org/

Figure 2. (a) optimal � = 0.3 (b) Vsource/Esource helpful, with
optimal weight = 50 (c) Euser not helpful (d) Estory not helpful.

�8K
�8KL
�8M

�8ML
�8N

�8NL

�8�� �8�L �8O� �8L� �8K� �8ML �8NN

ac
cu

ra
cy

(a). teleport factor �

�8NOL
�8NP

�8NPL
�8NL

�8NLL
�8NQ

�8NQL
�8NK

� L �� R� O� P� L� Q� K� M� N� ��
�

ac
cu

ra
cy

(b). weight for e�Esource

�8NPO
�8NPP
�8NPL
�8NPQ
�8NPK
�8NPM
�8NPN
�8NL

�8NL�
�8NLR

� L �� R� O� P� L� Q� K� M� N� ��
�

ac
cu

ra
cy

(c). weight for e�Euser

�8NR
�8NRL
�8NO

�8NOL
�8NP

�8NPL
�8NL

�8NLL

� L �� R� O� P� L� Q� K� M� N� ��
�

ac
cu

ra
cy

(d). weight for e�Estory

422

 In the first version, we simply generated the uni-gram
text features from each story’s title and text snippet, and
ran SVM. In the second version, we followed the
optimization process in (Oh et al, 2009): for the text
features, we used the combination of uni-gram, bi-gram
and tri-gram, and then used �2 feature selection that
selected 5,440 out of 3,079,759 features with p<0.1.
 The first two versions only worked for stories that have
text features. In the third version, we first ran SVD on W to
generate 6 major components for both stories and users,
and then used them as 6 features the classifier.
 The result is in Table 4. SVM with feature selection
worked quite well, achieving 92% accuracy for stories.
However, it has two limitations. First, after feature
selection, SVM was not able to classify 9.8% of the stories
that didn’t have any selected features. To be able to
classify those stories, we would have had to add more
features, possibly noisy ones, which would have driven
down accuracy. Second, a text classifier was not able to
classify the users (except for using features from SVD) that
didn’t have any text features.

Table 4. Result of SVM

 Accuracy
(overall)

Accuracy
(classified

stories)

Accuracy
(users)

All features N/A 76.2% N/A
�2 feature selection N/A 92.0% N/A

SVD features 81.4% 87.6% 76.0%

Extensions
Online updating. Running the algorithm with full iteration
would be too time-consuming in an online setting each
time a new digg arrived. For the RWR algorithm, we
developed a simple online algorithm to classify stories and
users using 1-level propagation of previously-computed
RWR scores F*i=(F*iR, F*iB) through the complete set of
diggs, including those that had newly arrived:

*� � S * ,�
>
;�

��� < TU
�
���< V� �

�

 Using the two automatically collected datasets Ltraining=
Lblogs � Luser-reported to generate the pre-computed F*i scores
with RWR, we evaluated the 1-level propagation algorithm
using the two manually coded datasets for testing,
Ltesting=Lmturk � Luser-coded. Compared to the first row of
Table 5, accuracy of 1-level propagation was only a little
lower. We conclude that it would be reasonable to use 1-
level propagation online and periodically re-compute the
stationary F*i scores. We leave it to future work to develop
similar approximations of the LCGC and ARW algorithms.

Table 5. Result of 1-level propagation on , with RWR
 Accuracy

(overall)
Accuracy
(stories)

Accuracy
(users)

Ltraining=Ldomain � Luser-reported
Ltesting=Lmturk � Luser-coded

95.2% 94.1% 97.7%

1-level propagation 93.8% 92.5% 96.9%

Using gray labels in testing set. So far, we have showed
the semi-supervised learning algorithms achieved high
accuracy on clearly labeled red and blue items. Some
stories and users, however, do not fit cleanly into either
category. In some contexts, either red or blue labels for
ambiguous items would be acceptable. In others, however,
it would be better to mark such ambiguous items as gray,
and classifying them as either red or blue would be
considered erroneous. In that case, excluding gray items
from the calculation of error rates, as we have done, would
lead to overestimates of the precision of the classifications.
 We have conducted some preliminary analysis of how
the algorithms would perform if classifications of gray
items as red or blue counted as errors. From the 1000
Mechanical Turk stories, we defined the rest of the 653
stories (excluding 40 broken link stories) that were not in
Lmturk, those without unanimous ratings from turkers, as
gray. Adding the new gray labels to the testing set, we got
the optimal threshold parameters as �R=1.6 and �B=1.45
for RWR, which switched some of the red and blue
classifications to gray. Accuracy overall dropped to 72.4%.
Accuracy for the clearly labeled red and blue items
dropped to 89.9% with the new threshold parameters.
 For comparison, we used two binary SVMs (one
classifies red vs. not-red, the other classifies blue vs. not-
blue) to classify red (as red and not-blue), blue (as blue
and not-red), and gray (otherwise) using the new testing
data. Accuracy was 85.7%, higher than RWR. Note that
SVM could not classify 13% of the stories that did not
have any selected features, and we simply labeled them as
gray. This helped SVM because there are many gray labels
in the testing set.
 With a slightly different definition of true red, blue, and
gray, the results turned out differently. For Mechanical
Turk stories, we defined red as any story having >2/3 red
ratings from the turkers, blue as having >2/3 blue ratings,
and gray for the rest, which resulted in 490 blue, 203 red,
and 267 gray. Using these new data in the testing set for
RWR, we got the optimal �R=1.15, �B=1.1, and overall
accuracy 74.8%. For clearly labeled red and blue items, we
still have 95.6% accuracy using the new threshold
parameters. The SVM algorithm got accuracy 73.9%, now
slightly lower than RWR.

Conclusion and Future Work
To conclude, in the paper, we discussed 3 semi-supervised
learning algorithms to propagate political leaning of known
articles and users to the target nodes. The best algorithm
achieved 97.3% accuracy on users and stories that people
agreed were clearly liberal or conservative, noticeably
better than the most commonly used SVM algorithm.
 The biggest challenge for future research is to improve
the algorithm’s ability to separate clearly liberal and
conservative items from those that do not fit neatly into

423

either category. This will require further methodological
innovation as well in developing evaluation schemes for
situations where the ground-truth is not crisply defined.
 Another interesting direction for future work is to try to
understand and characterize the properties of datasets for
which the different propagation algorithms will perform
better or worse, possibly with an axiomatic approach.
 We note that the propagation algorithms gained
accuracy with the addition of datasets such as domain
source links, where the linked items tend to have high
correlation in their labels, but lost accuracy with the
addition of datasets such as friendship links and HTML
links where the correlation was lower. We therefore
discarded those datasets. Clearly, this is not optimal, since
even a positive correlation much less than 1 in principle
provides some information. Future research should find
ways to make use of these noisy datasets rather than
discarding them entirely.
 Another limitation of the propagation algorithms is that
they require interactions between stories and users (i.e.,
diggs). For unpopular articles not covered in social news
sites such as Digg, our algorithm won’t be able to classify
them. However, the advantage of these algorithms is that
they do not require much training data. This is
complementary to SVM, which requires lots of training
data, but does not require user-story votes. Therefore, one
idea is to use the propagation algorithms to generate many
labeled data with high accuracy, and then feed this data to
train SVM, and then use the well-trained SVM model to
classify any textual items.

Acknowledgement
We thank Malvika Deshmukh for developing an early
version of the LCGC algorithm, and Emily Rosengren and
Erica Willar for classifying Digg users. Participants at a
NIPS workshop and a University of Michigan AI Lab
seminar provided useful feedback. This work was
supported by the National Science Foundation under
awards IIS-0916099 and award IIS-1054199-.

References
Adamic, L., and Glance, N. 2005. The Political Blogo-sphere and
the 2004 US Election: Divided They Blog, In Proc. of the 3rd
Intl. workshop on Link discovery, pp.36-43.
Grinstead, C. M. and Snell, J.L. 1997. Introduction to Probability
(2nd edition). American Mathematical Society.
Durant, K. T., and Smith, M. D. 2006. Mining sentiment
classification from political web logs. In Proc. of WebKDD’06.
Efron, M. 2004. The liberal media and right-wing conspiracies:
using cocitation information to estimate political orientation in
web documents. In Proceedings of CIKM 2004.
Gamon, M., Basu, S., Belenko, D., Fisher, D., Hurst, M., &
Konig, A. C. 2008. BLEWS: Using Blogs to Provide Context for
News Articles. In Proceedings of ICWSM-08.

Hirst, G., Riabinin, Y., & Graham, J. 2010. Party status as a
confound in the automatic classification of political speech by
ideology . In Proceedings of JADT 2010.
Jiang, M., and Argamon, S. 2008. Political leaning categorization
by exploring subjectivities in political blogs. In Proceedings of
DMIN 2008.
Klein, D. B., and Stern, C. 2008. Liberal Versus Conservative
Stinks. Society, 45(6), 488-495.
Landis, J. R., and Koch, G. G. 1977. The measurement of
observer agreement for categorical data. Biometrics, 33(1).
Laver, M., Benoit, K., & Garry, J. 2003. Extracting policy
positions from political texts using words as data. American
Political Science Review, 97(02), 311-331.
Lin W. H. 2006. Identifying perspectives at the document and
sentence levels using statistical models. In Proc. of NAACL '06.
Lin, F., and Cohen, W. W. 2008. The multirank bootstrap
algorithm: Semi-supervised political blog classification and
ranking using semi-supervised link classification. In Proceedings
of ICWSM-08.
Lin, W. H., Xing, E., & Hauptmann, A. 2008. A joint topic and
perspective model for ideological discourse. Machine Learning
and Knowledge Discovery in Databases, 17-32.
Malouf, R., & Mullen, T. 2007. Graph-based user classification
for informal online political discourse. In Proc. of the 1st
Workshop on Info. Credibility on the Web.
Martin, L. W., and Vanberg, G. 2008. A robust transformation
procedure for interpreting political text. Political Analysis, 16 (1),
93.
Monroe, B. L., Colaresi, M. P., & Quinn, K. M. 2008.
Fightin'Words: Lexical Feature Selection and Evaluation for
Identifying the Content of Political Conflict. Political Analysis,
16(4), 372.
Mullen, T., & Malouf, R. 2006. A preliminary investigation into
sentiment analysis of informal political discourse. In Proceedings
of the AAAI symposium on computational approaches to
analyzing weblogs.
Munson, S., Zhou, D. X., & Resnick, P. 2009. Sidelines: An
Algorithm for Increasing Diversity in News and Opinion
Aggregators. In Proceedings of ICWSM'09.
Munson, S., & Resnick, P. 2010. Presenting Diverse Political
Opinions: How and How Much. In Proc. of CHI’10.
Oh, A., Lee, H., & Kim, Y. 2009. User Evaluation of a System
for Classifying and Displaying Political Viewpoints of Weblogs.
In Proceedings of ICWSM-09.
Park, S., Ko, M., Kim, J., Liu, Y., & Song, J. 2011. The Politics
of Comments: Predicting Political Orientation of News Stories
with Commenters' Sentiment Patterns. In Procs. of CSCW 2011.
Slapin, J. B., and Proksch, S. O. 2008. A scaling model for
estimating time-series party positions from texts. American
Journal of Political Science, 52 (3), 705-722.
Yu, B., Kaufmann, S., & Diermeier, D. 2008. Classifying party
affiliation from political speech. Journal of Information
Technology & Politics, 5(1), 33-48.
Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Scholkopf, B.
2004. Learning with local and global consistency. In Proceedings
of NIPS 2004.
Zhu, X., Ghahramani, Z., & Lafferty, J. 2003. Semi-supervised
learning using gaussian fields and harmonic functions. In
Proceedings of ICML-03.

424

