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ABSTRACT

User generated information in online communities has béan-c
acterized with the mixture of a text stream and a networkcgtre
both changing over time. A good example is a web-blogging-com
munity with the daily blog posts and a social network of blegg

An important task of analyzing an online community is to ob-
serve and track the popular events, or topics that evolvetove
in the community. Existing approaches usually focus oreeithe
burstiness of topics or the evolution of networks, but igmpithe
interplay between textual topics and network structures.

In this paper, we formally define the problem of popular event
tracking (PET) in online communities, focusing on the iptay
between textual content and social networks. We propose/el no
statistical method that models the popularity of events tivee,
taking into consideration the burstiness of user inteliesbyma-
tion diffusion in the network structure, and the evolutidriextual
topics. Specifically, a Gibbs Random Field is defined to mdikel
influence of historical status of actors in the network arel di-
pendency relationships among them; thereafter a topic hyme
erates the words in text content of the event, regularizethby
Gibbs Random Field. We prove that two classical models afrinf
mation diffusion and text burstiness are special casesofoadlel
under certain conditions. Empirical experiments with tviftedent
communities and datasetsg, Twitter and DBLP) show that our
approach is effective and outperforms existing methods.
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1. INTRODUCTION

The prevailing of Web 2.0 techniques has led to the boom of var
ious online communities. Good examples are social commasnit
such as Facebodk Blogger? and Twitter®, which successfully fa-
cilitate the information creation, sharing, and diffusemmong the
web users. As a result, a popular topic or event can spreatt muc
faster than in the Web 1.0 age. Indeed, when searching for a re
cent popular evente(g, “Toyota recall”) on Twitter, all the results
returned on the first page were all created within the pastfive
utes.

In many scenarios, it is appealing to have a system thatgrack
the diffusion and evolution of a popular event in a social oom
nity. Who are still interested in watching Avatar 50 day®afts
release date? What do people say about Tiger Woods before and
after the scandal? Hot topics emerge, prevail and die. lessrd
able to monitor whether people like, what they like, and hbeirt
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Tracking the evolution of a popular topic is challenging eTif-
fusion of an event is vague. You don’t know whether | am irgere
in an event; and even if you do, from whom did | get this inté&?es

Fortunately, a large volume of text data is generated frasth
cial communities. Besides communicating with friends, & wser
also constantly generates text contents such as blogststveeel
comments. Both the communications and the contents aregchan
ing along time, resulting in a network structure and a texece
tion which evolve simultaneously and interrelatedly. Wherread
what you've written, we can infer your interest in an evemid a
when we glimpse your communications, we can guess where the
interest came from. When we track the communications ane con
tents over time, we can find out the burstiness, the evolutod
the spread of an event in the community.

*http://www.facebook.com
2http://vww.blogger.com
Shttp:/iwww.twitter.com



As another example, researchers regularly publish papets a
also collaborate with other researchers. By analyzing tlodue
tion of publications and collaborations, we can track hoesearch
topic initializes, evolves, and diffuses over the reseamhmunity,
in terms of both content and impact. In all these scenaresetis
an urgent need for a principled method that couples a strésemto
and a stream of networks in order to track popular events.

In this paper, we propose a novel and principled probalailist
model (called PET) for tracking popular events in a timearatr
social community that consists of both a stream of text imfation
and a stream of network structures. Specifically, PET |lgesa
a Gibbs Random Field to model the interest of users, depgndin
on their historical status as well as the influence from theaial
connections. A topic model is designed to explain the gdivera
of text data given the interest of a user in an event. The Gibbs
Random Field and the topic model thus interplay by regulagiz
each other. The tasks of tracking popular events are thisisasn
optimization problem aiming at the inference of a joint diition
that consolidates all of historical, textual, and struakfeatures.

We show that PET is motivated by and well reflects the existing
observations and findings about information diffusion iciabnet-
works and the topic burstiness in text. PET is well connetiiédio
classical models [14, 21], which are proven to be speciad<a$
PET under certain conditions. Empirical experiments on difo
ferent online communities show that our approach is effecind
outperforms various baselines.

The rest of this paper is organized as follows. Section 2 &tlym
defines the problem of PET, as the solution of which a unifietpr
abilistic model is proposed in Section 3. Section 4 discuste
connection of PET to two classic models in literature. Weseng
experiments and results in Section 5, discuss the relatek iwo
Section 4, and conclude in Section 7.

2. PROBLEM FORMULATION

In this section, we formally define the related concepts &ed t
task of popular event tracking in social communities. Lebegin
with defining a few key concepts as follows.

Definition2.1 Network Stream. LetG = {G1, G2, - - , Gr}
be a stream of network structures, whe¥g is a snapshot of a
general networkz at timety, (k € [1...T]). And Gy, = {Vk, Ex},
whereV}, is a set of vertices andl;, is a set of edges. In a social
network, a vertex corresponds to a person. An edge (i,j) €
E), stands for a connection (or a tie) between verticasdj. We
definegr (7, j) as the strength of the tig, j) at timet,. W.l.o.g
we defineGG, as a complete graph but allaw (7, j) to be any non-
negative real valuej.e, gx(i,7) = 0 if there is no tie between
verticesi andj. Note G can be either undirected or directed.

Definition2.2 Document Stream LetD ={D,,D-,....Dr} be
a stream of document collections, whébg is the set of documents
published between timeg,_1 andt,. We further denoteD;, =
{di,1,dkz2, -, din~}, wheredy ; is the text document(s) associ-
ated with the nodey, ; in Gi. Documentdy, ; is represented by a
bag of words from a fixed vocabula®ty = {w1, wa, -+, war }.
That iS,dk,i = {C(dk,i, wl), C(dk,i, wg)7 e, C(dk,i, w]u)}, where
¢(dk,;, w) denotes the number of occurrences of warih d ;.

Definition2.3. Topic. We present a semantically coherent topic
0 as a multinomial distribution of wordép(w|0)}wew with the
constrainty " .. p(w|#) = 1. We allow a topic to have dif-
ferent versions over time, denoting the version at timeas 6.
(k € [1...77).

Definition 2.4. Event. We define a general event as a stream
of topics©F = {0F,0F, 0% ... 0%}, We callgf’ the primitive
topic of the event, which is independent of the netwa¥k.can ei-
ther be specified by the users or be automatically discougyeh
event detection algorithm [109,F corresponds to the version&f
attimet,,. 67 is dependent of the network, which indicates the ma-
jor aspects of the event in netwotk,. Altogether®” represents
the origin and evolution of the contents of the event oveetiite
use®, 0, 0y, to denote®” 0F  #F when there is no ambiguity.

Definition 2.5. Interest. For a particular event, at each time
point ¢, we assume each nodein G has a certain level of in-
terest in the event. We model such level of interest as a edaév
hi () € [0,1], and denote the set of interest values for all vertices
in G, asHy, i.e, Hy = {hg(1), hx(2), ---, hi(IN)}. Note that
one can also definky, (¢) with a set of discrete levels.

Based on the definitions above, we can definectrent-related
information in a social community as 1) aobservedstream of
network structures; 2) aobservedstream of text documents; 3) a
latent stream of topics about the event; and 4ptent stream of
interests. We illustrate these concepts with two real weddial
communities: Twitter and DBLP.

Example 2.1. For Twitter* (a micro-blogging network), we extract

a collection of N users and all posts published by these users in a
range of T days. A time point;, is defined as th&*" day in the
time range. di; is the document obtained by concatenating all
tweets published by usépn dayk. The edge weighf (4, 7) is an
estimation of how much usérs influenced by useron dayk, e.g,

gk (i, 7) could be defined as the numberitsf tweets that followj

in the past 30 days before d&y Here, Gy, is a directed graph.

Example 2.2. For DBLP® (a bibliographic network), we retrieve
N authors and all publications of these authorsThyears. A
time pointt,, corresponds to thé&'" year. dy ; is the concatena-
tion of titles of authori’s papers in yeark. The networkG}, is
created among these authors according to their co-authlatian-
ship. gx(i,7) is defined as the number of papers co-authored by
authori andj in yeark, so hereGGy, is an undirected graph.

With the definitions of related concepts, we can now formally
define the major tasks in the problempmdpular event tracking
on networks. Given the input of network strea¥, document
streamD and the primitive topic of an evertly, the tasks include:

Task 1: Popularity Tracking. Formally, we want to infer the
latent stream of interestée., Hj, at each time point;, during the
tracking period. Thed, values can not only indicate the overall
popularity trend of the event, but also provide much ricimdor-
mation about how the interest develops, evolves, and spread
the network.

Task 2: Topic Tracking. Formally, we want to infer the latent
stream of topics about the eve®t” over time. An event starts
from its primitive form6Z, and while it is developing, the major
aspects of the event may shift substantially over time. Bgrimg
the stream of topics, we expect to keep track of the new devel-
opment about the event, understand its evolution, andifgehe
most attentive aspect of the event to the community over, tatee

Tracking the popular events in a social community is imparta
and challenging in many ways. To track the popularity of ¢ven
on the network, we should figure out how the interest of eaeh in
dividual is influenced by its social connections, and thevebtp

*http://www.twitter.com
Shttp://www.informatik.uni-trier.detley/db/



reasonable models to simulate the formulation and diffusicthe
interest on the networks. To track the content evolutiohefvent,
we should make sure the topics we track should be alwaysariev
to the event, and more importantly, reflect the current egeof
individuals on the network. This requires us to propose &edi
model that takes interest diffusion, network structure tmdual
contents into consideration at the same time.

It is also worth mentioning that in this work we focus on event
tracking, not detection, since the primitive event toft is con-
sidered as input to our system. We have observed that in @earer
event could be well described by a small number of keywaeds,
“avata”, “tiger woods affair”, so it is feasible for users poovide
the primitive event topic. Indeed, our approach could belioed
with any existing event detection algorithms that can aatically
discover the bursty keywords or topics either from the saete n
work or other sources.g, news articles or the web, then our sys-
tem will track the events on the focused network.

In next section, we present a novel probabilistic model toeae
the tasks of popular event tracking.

3. EVENT TRACKING MODELS

In this section, we present a novel probabilistic mo8&T, for
tracking popular events in social communities. By consiggboth
the evolution of textual documents and the evolution of oekw
structures, our model can capture the popularity and tomitigon
of events in a unified process.

3.1 Intuitions

As discussed in Section 2, a reasonable model of populatsven
in a social community should not only capture the diffusidn o
information on the network, but also the burstiness of edes
and the generation of contents.
sider? What existing observations in social networks axintén-
ing could PET utilize? Before formally introducing the mgdee
first explain several key observations that motivate theehod

Observatiorl. Interest and Connections.It has been shown in
the study ofsocial influencq9] that the behavior of a social actor,
e.g, v;, is usually influenced by its friends [16], especially fidisn
that have stronger ties with [5]. We may expect that the cascade
behavior also applies to the interest in an event. On the bidred,
the study ofhomophilyhas shown that people with similar inter-
ests are more likely to become connected [1]. Moreoverythe
connections have an even stronger influence on the interesso
if v;’s friends have similar interests @f’s friends with the same
interest are strongly connected [3].

Observatior2. Interest and History. The behavior of each in-
dividual should be generally consistent over time, thusgne a
strong “personalized” pattern. This also means interestids
certain events should not change dramatically within atdiroe.
When there is a bursting pattern of the interest at tipét's more
likely to remain at a high level at time, 1, [14].

Observation3. Content and Interest. When an individuak;
has a higher level of interest in an event, the content shergtes
should be more likely to be related to the event. On the otaedh

What factors should PET con-

for {D1, Da, -+, Dy}). Let us assume that we've also known the
previous interest valuefl; . ,_1). We want to infer the current
interest valueH; and topics©; on the network. We may fur-
ther make an Markovian simplification that the current iegtista-
tus only depends on the previous status, Hy_1. So formally,
the task is cast as the inference of the posterioHgfand ©y:
P(Hk, @k|Gk7 Dk, Hk—l)-

Based on the intuitions and observations, we kifdwdepends
on the network structuré&r,. (i.e., Observation 1) as well as the
history Hy,_ (i.e., Observation 2). We also know that the current
topic © and interest statufl;, are mutually dependent.¢., Ob-
servation 3) . We can then introduce two reasonable indegend
assumptions:

(i) Given the current network structut&,, and the previous in-
terest statug$i,_1, the current interest statu$, is independent of
the document collectio®y. The intuition is that people first be-
come interested in the event and therefore generate disnasm
it, i.e, Dj, should be a result rather than a causéfpf Moreover,
the interest of an individual is directly determined by histdrical
status and influential neighbors. Note that the historioaldnents
may still have an impact otif;, but in an indirect way through
Hy—.

(i) Given the current interest statiif, and the document collec-
tion Dy, the current topic modél;, is independent of the network
structureGGy, and the previous interest statfi§,_,. The intuition
is that once the authar; has developed an interest in the event,
the contents she writes will only depend on the event itsedfthe
level of the interest.

With the above two assumptions, our object becomes to infer:

P(Hy,©k|Gr, Dy, Hy 1) = 1)

P(Hi|Gr, Hx—1) - P(©k|Hg, Dy)

We denote the first component in EquatiolPY H |G, Hr—1),
as the interest model and the second compore(®|Hx, D),
as the topic model. In the interest model, we propose a rauidte
Gibbs Random Field [17] to model the dependency among indi-
viduals and the influence of past status (Section 3.3); indpie
model, a mixture model [27] is designed to extract the topaps
shot of the event (Section 3.4). Finally, the inference ef¢bm-
bined model is discussed in Section 3.5.

3.3 The Interest Model
Let us first briefly introduce the Gibbs Random Field [17].
Gibbs Random Field Given a graphG = {V, E}, a family
of random variabled” = {F;}Y, is said to be a Gibbs Random
Field w.r.t. G if and only if its configuration,f, follows a Gibbs
distribution that takes the form

P(f)=2"" x o 3 U@
whereZ = 3. . P(f) is a normalizing constant called tipar-

tition function Ar is a constant called th&emperatureand the
energy functiorl/ (f) = . V.(f) is a sum ofclique potentials

when we findv; writes more about the event, we can assume she is v/ ( #) over all possible cliques

more interested in the event.
We expect these intuitions and observations be helpfulsigde

ing the probabilistic model.
3.2 The General Model

Now, at timet,, we already know the network streaf .
(short for{G1, G2, - ,Gx}) and document strea®; . ; (short

In our model, the interest statug;, is a family of random vari-
ables defined on grapfi;., and we give a configuration d@f,, that
follows a Gibbs distribution:

P(Hi|Gr, Hy 1) = 2~ x e~ 3 V00

For the energy functiotv (Hy), we specifically define two kinds



of cligue potential functions, while set all other poteltit 0,i.e.,

UH) = Y Vi) + V(@) (=) @

In Equation 2,—i refers to the set of all vertices except Note
hi(3) itself is a size-1 clique i, and{hy (i), hi.(—i)} simply
equals toG, which is also a clique. Hence, Equation 2 is a valid
Gibbs Random Field.

We then defind/; (hi (7)) as the transition energy of nodérom
its last statusi;—1 (¢) to current statugy (¢):

Vi(hi (i) = (hi (i) — hi—1(3))?, Vi € [1..N] 3)

This definition is mainly motivated by our Observation 2: by
minimizing this transition cost we would like the interesiwes to
be generally consistent over time.

The other potential functiol (hy (i), hi.(—1)) gives penalty for
the difference between the interesti@nd its expected value:

Vi (e (), i (1)) = Aei(hi(6) — i (2)))*, Vi € [1.N] (4)
hy, (i) is the expectation ofy, (i) estimated froni's neighborsn(i):

> jenciy 96 (0 5) - e—1(j)

hi (i) = —
£ Z]’En(i) i (i, 7)

®)

We can see that the design of this cost function is motivayed b
our Observation 1, which well captures the intuitions iromfa-
tion diffusion: #’s current interest is influenced li{s connections,
and a stronger tie.e., highergy (i, 7)) brings a larger impact.

Moreover, in Equation 4} ; is a weight that represents overall
how much we trust the “influence from friends”, that is,

Jjen(i)

where) 4 is a constant and(¢) is the harmonic function [31] de-
fined on the neighbor graph af

o Z y gi(G1,d2) - (hk—1(j1) = hi—1(j2))*
f(z) _ J1,J2€n(4),51#72 Z

J1,52€n(4),51#752

g (J1, ja) )

The definition of) ; well captures another intuition in our Ob-
servation 1: when’s neighbors have a higher agreement on the
interest value, the harmonic function becomes smalles tasults
in larger\, ;. For special conditions, (i) when}_ ¢« (,7) =0,

jen(i)
we can simply seh;, (i) to an arbitrary value and sai; ; to zero;
and (ii) when > gk (j1,72) = 0, we seté(4) t0 0.5.
J1,d2€n(i),j1#52

To sum up, the posterior of interest statdéH|Gx, Hr—1) is
modelled as a Gibbs Random Field on the netw@ik Several
potential functions are designed in order to let the intevatue
of each individual be close to the past status and the “agrrm
of the neighbors. The weighting scheme is well motivatedHhey t
observations from the real world networks.

3.4 The Topic Model

Now we consider the topic compone®(©|Hy, Dy), in Equa-
tion 1. In our model, we consider each documéni in the collec-
tion Dy, is generated from a mixture of two multinomial component
models. One component model is a background méfieind the
other is the latent event topic mod#f that we want to estimate,

iie, ©r = {0F,0F}. The idea is to model the common (non-
discriminative) words inD;, with 82 so that the event topic model
6F would attract more discriminative and meaningful wordst tha
describe the target event.

The generation process is as follows: to write a word in docu-
mentd; x, one first choose between the event topic mads %)
and the background modelé., 67), with probability p(6F |dy ;)
andp(62|dy. ;), respectively. We have(0F |dx.;) + p(6F |dx.;) =
1. Once the topic is selected, one samples a word from eitleer th
event topic model or background model. Different from thee tr
ditional mixture language models [12, 27], where the topstrd
bution of each document is either predefined or solely esticha
from the text data, in our model we use the interest valug), a
real value in[0, 1], as the probability of choosing the event topic
at nodei, i.e., p(0F|dy,;) = hx(i). This is reasonable according
to our Observation 3: a higher interestwfin the event should
result in a higher proportion of the event covered imnby More-
over, as explained in the interest modkl,(¢) could capture the
historical interest status and relationships on the né¢wahich
implicitly influence the topic model. And modeling the joufitri-
bution with both components would allow the topics and paptyt
of the events to mutually influence each other over time.

Formally, the probability of generating wotdin dy, ; is:

p(wldyi) = hi(@Op(wl6) + (1 — hi(i))p(w]6)  (8)

Then the likelihood of the document collecti@n, is given as:

N
P(Dy|Hy, O) H H p(wldk’i)c(dk,ivw)
i=1lwew

9)

wherec(dx,;, w) is the number of occurrences ofin dx ;.

We further define a conjugate Dirichlet prior of the eventicop
0F: Dir({1 + pusp(w|0F)}wew), to incorporate the primitive
event topic, which servers as the prior knowledge of the te\igy
doing this, we regularize the topics so that they do not stofn
the event. g is the weight indicating how much we rely on the
prior. Formally,

P(Or|Hy) = P(OF) o [] plwlof) &)

weWw

(10

We assumep(w|67) does not change over time, which can be
simply estimated by the maximum likelihood estimator usiing
entire document stream.

With the prior defined, the posterior of topi€k; is given as:

3.5 Parameter Estimation

Given our model defined in Equation 1, we can fit the model to
the data and estimate the parameters using a Maximum A Roster
estimator. That is:

A" = argmax p(C|A)p(A) (12)

A
where A has the interest valued,; and word distribution in the
topic models©,. The hidden variable in our model is;, ; .,
indicating which topic ie., 6Z or 67) is selected to generate word
w in documentdy, ;.

The Expectation Maximization (EM) algorithm [18] can be ap-
plied to estimate the parameters efficiently. In the E-stegom-
putes the expectation of the hidden variables; and in thedyd:
updates parametensto maximize the object function given above.



Specifically, in the E-step we have:

" iy 0 = 0F) = (13)
A (@)p ) (wl0F)

A ()pr=D (w]0F) + (1 — A (0))pn—1) (w|0B)

p

In the M-step, given the expectation of the hidden varightes
object function we want to maximize 1S, (» 1) {log p(C|A)p(A)},
whose concrete form is put in Appendix A.

By integrating a few Lagrange multipliers [18], we can get:

P (w6 = (14)
N
(die,is w)p™ (24 ;0 = OF) + pep(w|6)
i=1
N
> cldr,i, w)p™ (2ay o = 0F) + p
w/ EWi=1 !
The inference ofi () boils down to solve:
ahg (i) — B — —L—O (15)
. he(i)  he(i)—1
where
2
= 2 (1+ M),
o= 31+ Aks)
2 . .
B = (i () + Ak,ihi (4)),
T

v="Y_ cldrs,w)p™ (zay 0 = OF),
weWw

6 = Z C(dk,i, w)p(n)(zdk,i,w = akB)

weW
(i) when > ¢(dg,, w) = 0, i.e., the documentl; is empty at
weW

time pointt*. Theny = 0 andd = 0, so thath (i) only depends
on the information from the past status and neighbors:

B hi—1(3) + Ae,ihi (4)
a 14 Aiyi

h (Z) = (16)

(i) when >~ c¢(dk,:, w) > 0, Equation 15 is equivalent to:
weWw

ahy(i)® — (a+ B)he(i)? + (B —v — O)hi(i)) +v=0 (17)

Any efficient root searching approaches for cubic functif2y
can be applied to find the feasiblg (i) that satisfies Equation 17.
Denote the left of the equation g$h(i)). Thenf(—oo) = —oo,
f(+00) = 400, f(0) = v > 0, f(1) = =5 < 0. Itis easy to
show there exists exact one roof(ii 1), and therefore the solution
for hy(7) is guaranteed to be found.

4. DISCUSSIONS

We have presented the model and the inference of PET. Althoug
it is a novel probabilistic model, it is well connected to stiig
models in literature. In this section, we describe two famex-
isting models of word burstiness and network diffusion, ahdw
that both of them are special cases of PET under certairtisitsa
when the network effect in PET is omitted, it is well connekcte
the first model (Sec. 4.1); on the other hand, when the toféctef
of PET is omitted, it is well connected to the second modet(Se
4.2). Finally, we analyze the time complexity of PET in Se@&.4

4.1 The State Automation Model

The first is a state automation model proposed by Kleinbetrg,
al. in [14] in the context of detecting bursting activities in@amail
stream. It is an HMM-like model which assumes the intervals b
tween messages depend on the hidden “bursty” states. Weatook
a variation of this model which matches our counting data.

Taking a sequence of counting of messages- {z1, x2, - - - ,
27} as the observation, we define a state automation model based
on HMM. Instead of the exponential density function in [14k
define the emission probability by a Poisson distributiam;esPois-
son is much more natural to model word counts [,

/\ike*M

where), is the expected number of messages at fimehich also
stands for the hidden state at timtye The transition probability
from any state to another is defined as a constant relateceto th
number of states. The maximum likelihood estimator gives\th
based on:

Aj = argmax ApFe Mk
Ak

Now we show this is a special case of PET by setting several
constraints and assumptions: (i) we assume all individuale the
same interest levél;, at timek; (ii) we setAr = oo in Equation 2,
i.e., we ignore the network structures; (iii) we assume there are
only two pseudo words in the vocabulary, eventword w; and
a background wordvz, and setur = 0 so thatP(0x|Hy) = 1,
i.e., the influence of the primitive topic disappears. Thus weshav
p(w1]0F) = 1, andp(w2|0F) = 1for anyk. Then our topic model
is transformed to a binomial distribution:

P(©k|Hk, Di,) = P(Dy|Hg, Or)

o hkquzl c(dp,i>wi) ~ (1 o hk)zivjl c(d,,w2)

We know that a Poisson distribution can be described as a lim-
iting case of a binomial distribution. Specifically whenaiohum-
ber of wordsn = 3 i SN | c(dy,i, w) is sufficiently large,
the Poisson distribution in the State Automation model jsray-
imately equivalent to the binomial distribution in our tophodel,
and we have:

This well connects PET with the state automation model. Tée d
tailed deduction is omitted due to space limitation.

4.2 The Contagion Model

Let us look at another classic model in the context of infdrama
diffusion, i.e., the contagion model introduced in [21]. The general
idea is that a person becomes infected (corresponding toathe
that a person is interested in an event) if the number of fected
friends in the last time point is above a threshold. Let ugptin
PET as follows: (i}(dk,:, w) = 0 for any node and wordw, i.e,,
the influence of the text information is ignored; @) (¢, 7) = 1 if
v; is influenced byv; and otherwis@; and (jiii) A\a = oo (so that
Ak,i = 00), I.e, the influence of neighbors becomes dominative,
and the history of is ignored.

According to Equation 16, we have

hi—1(8) + Ae,ihip (1) _

hi (i) = arg max =
£ A,i—mo 14 Mgy

hi(4),

whereh) (i) equals to the ratio of infected friends ot the last
time point. If we sethy (i) to 1 only whenh;, (i) is larger than
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Figure 1: The Popularity Trend Analysis: PET generates the nost consistent trends to the gold standard.

a threshold, otherwiséy (i) remains 0, this is equivalent to the
contagion model.

4.3 Complexity Analysis

Probabilistic Latent Semantic Analysis (PLSA) [12] is a el
known statistical topic model, which and whose varianceritigms
are being widely used in practice. Let us analyze the timeptexa
ity of PET by comparing it with PLSA.

For a collectionC of N documents that involvestopics and a
fixed vocabulary/” consisted of\/ words, the log likelihood to be
generated with PLSA is given as follows:

L(C) = Z Z c(w, d) log

deCweWw

Zp(9j|d)l>(w|9j)

Estimating the parameters in the above log-likelihood leyER-
pectation Maximization (EM) algorithm [18] involves thermpu-
tation for N¢ hidden variables an@V + M)t parameters for each
EM-iteration. If we expect such EM procedure, in averagente
nates aftemn iterations, it is easy to conclude that the time com-
plexity of PLSAisO((N + M)mt).

Similarly, carrying out a Maximum A Posterior estimator ¢Se
3.5), PET need®(N M) times computations for both of each E-
step and M-step, if the cubic function (Equ. 15) is considéosbe
solved in constant time [22]. Based on the same assumptain th
the EM algorithm ends up after. rounds, PET ha® (N MmT)
run-time complexity forl" time points as a whole. Empirically, a
popular event in social communities is only able to attractsid-
erable public attention for a short periade(, a small value ofl"),
e.g, the discussion of a movie event on Twitter usually becomes
trivial after the90'" days of the movie release. Hence, comparing
to PLSA, it shows that the time complexity of PET is reasoeabl
and thus affordable in practice.

5. EXPERIMENTS

We have introduced PET, a novel statistical model for Papula
Event Tracking in social communities, and discussed it1eon
tions with two classic models [14, 21]. In this section, wewh

the effectiveness of our model with experiments on two dife:
genres of datalwitterandDBLP.

5.1 Popular Events Analysis on Twitter

5.1.1 Data Collection

Twitter® is a free social networking and microblogging service
that enables its users to send and read messages knadweets
Tweets are text-based posts of up to 140 characters disptaye
the author’s profile page and delivered to the authfmfewers In
this experiment, we create our testing data set (Twitter3ddgct-
ing 5, 000 users with follower-followee relationships and crawling
down1, 438, 826 tweets displayed by these users during the period
from Oct. 2009 to early Jan. 2010. We consider each day asea tim
point: for each time point,, (i) the documenti; ; is obtained by
concatenating tweets displayed by user day k; and (ii) g (7, 7)
equals to the number of tweets displayed by usky following
usery during the period fronty_so to .

Some simple statistics are presented as follows: (i) foh elay,
there are only average 37% users who display tweets; (ii¢ thee
12% days when less than 20% users display tweets; (iii) there
58% tweets which have at least one followee; (iv) each useata
erage 10.2 followees. These statistics confirm our hypatisésted
in this paper:the information of an individual user sometimes is
sparse, but individuals are strongly connected by networks

5.1.2 Baseline and Gold Standard

JonK. The first baseline is the state automation model stated at
Section 4.1, which is a variation of the Kleinberg’'s moded][1
Concretely, the observatian, is the total frequency of event-related
words in tweets posted by all users, and the hidden 3tais se-
lected from a limited set of discrete interest levélsi-n}i%.

We believe this is a good representative of event trackinthous
that do not consider the network effect.

Cont. The second baseline is the contagion model [21] intro-

duced in Section 4.2. Concretely, two users are neighbotisein

Swww.twitter.com



contagion network at timg, if they have the follower-followee re-
lationship in the past 30 days. A user becomes newly infatthd
number of infected users among her friends in last day is ithare
a pre-defined threshold. This is a representative of netlvaded
diffusion models that do not consider textual documents.

PET- To evaluate the effort from network structures in our
model, we implement a special version of PET by removing net-
work structuresi.e., we keep every partin the PET model the same.
but setg (7, j) = 0.

BOM. For a movie-related event, the box office earning is a
trustworthy criterion to reflect the movie’s popularity. hte, we
extract the daily box office at Mojé to be the gold standard for
movie-related events.

Gint. For a news-related event, the popularity can be obtained
through analysis on the query log of search engines, sucbegl&

8. Therefore, we use the interest index supplied by Googlghis
9 as the gold standard for news-related events. Moreovet,i&i
baseline for movie related events.

5.1.3 Analysis on Popularity Trend

Experiment Setup. The model PET involves three parameters
Ar, Aa andpug. Ar and A4 in the interest model determine the
weights for historical and structural information, apg in the
topic model is the weight of Dirichlet prior. In our implentan
tion, we set up the parameters empirically\as= 1, A\ = 3 and
ur = 1. Furthermore, the primitive topié? is given as the input
for each event, and Hy is simply set to all zeros.

1.

Empirical Evaluation. On the testing dataset Twitter, we track
the interest levels of events by using PET, PET-, JonK, GOM
(if available) and Glint, respectively. Four popular evesmts se-
lected for analysis: two movie related everits, ‘Avatar’ and ‘the
Twilight Saga: New Moon’, and two news related events, Tiger
Woods Affair’ and ‘Copenhagen Climate Conference’. Wecteld
these four events because their life cycle well overlapis thie time
period of our Twitter data. We've also done a larger scaleadyan
sis over 20 events and report the aggregated performandeeof t
models. Furthermore, we select ab80% users and average their
interest levels as the overall popularity index, which isved in
Figure 1(a), 1(c), 1(e) and 1(qg) for the four events, respelgt To
make clearer comparisons, the curves in the same figure are no
malized to the same scale [0,1] and are shifted vertically \&i
certain distance. These modifications do not harm to ourrexpe
ments, since the trend of each curve is completely reserBsd.
visual comparisons, in all figures, the curve PET is morelaimd
the one of the gold standard.

Quantitative Evaluation. We leverage cross-correlation score 3,
to quantitatively measure the consistence of the trendsetgold
standard. The cross-correlation score is a measure ofasityil
of two time series as a function of a time-lag between time&ser
[6]. The cross-covariance function between two time sexies
{z;}i=, andy = {y; };—, associated with an eveft is defined as

exy (k)

S|

n—=k
S @i = p00) s = puy) k=0 m— 1

S|

(k) (s — () (s — ply)) k= —1--

—k

1—mn,

-

i=

wherep(-) is the mean. The cross-correlation is the cross-covariance

"http://boxofficemojo.com/movies

scaled by the variances of the two series:

cxy (k)

rE k) = ——0 %)
/) ox(0) - cyy(0)

Figure 1(b), 1(d), 1(f) and 1(h) draw the cross-correlatomnves
between each method and the gold standard for the four events
spectively'®. Furthermore, Figure 2 reports the aggregated perfor-
mancer ., on a set of twenty events®; }22 | by definingr, (k) =

1 20 | E;

20 2im1 Tzy (K)-

Figure 2: The aggregated performance over 20 events: PET is
most consistent with the golden standard

Result Analysis We can observe several facts:

PET always has the best performance.(the highest cross-
correlation score), because it estimates the popularitydoy-
prehensively considering historic, textual and struaturdor-
mation in a unified way.

. Cont always has the worst performance among all compara-

ble methods, since it aims to answer the question in a differ-
ent scenario: when can a local behavior spread to the whole
network? As a contagion model, the behavior of one user can
infect another on the network via a long chain and by taking
a long transfer time when local interaction is sufficient tise
popularity estimated by Cont at a certain time point could be
the mixture of current user behaviors and the ones happened
long time ago. However, such ‘long chain’ rule does not ap-
ply to popular events in online social communities. For exam
ple, the popularity index of Cont dec 24in Figure 1(a) is
unfavourably higher than the gold standard, because Cat mi
takenly transferred some popularity frobec 20 Also, Cont
shows a smoother ‘valley’ @ec 5in Figure 1(e) than the gold
standard, because the steep downward slope is neutraljzed b
the ‘peak’ atNov 30

JonK generally performs well, but is still less accurasntPET

at most time points. There are at least two underlying reason
First, JonK is not able to detect coherent terms that areinehg
as event-related terms, so JonK may underestimate thegrepul
ity due to missed coherent terms. For instance, the populari
index of JonK aDec 28in Figure 1(a) is much lower than the
gold standard because people at that time talked abougtavat
more on ‘James Cameron’, ‘film technology’, ‘box officetg
rather than directly using the key words ‘avatar’. Also,sua-
derestimation happened@éc 9in Figure 1(g), since the event-
related terms ‘Copenhagen’ and 'climate’ are insufficiende-
scribe more details of the conference such as 'China’, @lob
and 'warming’. Second, similar to many other methods, JonK
takes a sequence of aggregated counting @atg the total fre-
quency of terms) as its observation. However, such aggrdgat

8http://www.google.com
®http://www.google.com/insights/search

\We assume that the popularity of a movie at #agay be reflected
on Twitter at day(k + 1).



Dec 14 Dec 18 Dec 26 Nov 18 Nov 20 Dec 22
trailer 0.21 | avatar 0.30| avatar 0.13 moon 0.06| moon 0.17| moon 0.11
avatar 0.10| imax 0.06 | imax 0.04 twilight 0.04 | twilight 0.10 | twilight 0.04
cameron 0.04{ trailer 0.05| trailer 0.04 trailer 0.03| oprah 0.04| fantasy 0.02
james 0.02| cameron 0.04] technology 0.03 chris 0.02| trailer 0.03| chris 0.02
sam 0.01| james 0.04| sam 0.02 stewart 0.01| vampire 0.03| saga 0.01]
director 0.01| alien 0.01| film 0.02 premiere 0.01] fantasy 0.02| women 0.01
titanic 0.01] titanic 0.01| james 0.02 taylar 0.01| midnight 0.01( milion 0.01

Table 1: The Content Evolution of ‘avatar’ Table 2: The Content Evolution of ‘twilight’

Nov 25 Nov 27 Dec 10 Dec 07 Dec 15 Dec 18
rhapsody 0.07| tiger 0.11 | tiger 0.10 climate 0.02| oral 0.02 | climate 0.04
muppets 0.06] woods 0.09| woods 0.06 copenhagen 0.01 council 0.02| copenhagen 0.03
bohemian 0.06| injure 0.04 | brown 0.02 conference 0.01 climate 0.01| conference 0.02
lambert 0.01| car 0.03| mistress 0.01 china 0.01| trade 0.01| reach 0.01
tiger 0.01| accident 0.03| golf 0.01 committee 0.01| copenhagen 0.01 summit 0.01
woods 0.01| championship 0.01 shame 0.01 global 0.01| health 0.01| failure 0.01
playlist 0.01| hospital 0.01| divorce 0.01 warming 0.01] bhill 0.01 | agreement 0.01

Table 3: The Content Evolution of ‘tiger woods’

data could not precisely stand for the popularity over thie ne

work. For example, ten users claiming the same conclusion is

definitely more trustworthy than one user repeating thelcenc
sion by ten times. However, JonK treats the two situations in
distinguishably.

4. To demonstrate the different performances with and witho
network structures, we select abdlit% users, among which

Table 4: The Content Evolution of ‘Copenhagen’

) $9
(a) PET: View |

there are strong connections. Compared to PET, PET- shows
two weaknesses due to the lack of network structures. On one
hand, PET- can not reponse sufficiently to sudden changesnWh

there is no textual information about a particular user aneni

time point, PET— will set the new status of the user the same

as the previous one, but PET can evaluate the new status more @4 ¢
. A ; ) : S 19
precisely by borrowing information from the user’s neigrdo
For example, the box office drops a lotNdv 21in Figure 1(c). (d) PET-: View | (e) PET-: View Il

(f) PET-: View llI
However, PET- did not recognize such changes NV 23 e, s
On the other hand, PET- is more fragile to reflect local noises
For example, one tweet followed by ten users will be more in-
fluential than the same tweet with no follower. However, PET-

treats the two situations equivalently, so that the infleeat
‘isolated’ tweets is unfavorably enlarged.g, there is an ab-
normal vibration aDec 27in Figure 1(a).

5.1.4 Analysis on Network Diffusion
In this experiment, we study how events diffuse over network

(g) Cont: View |

(h) Cont: View I

(i) Cont: View IlI

Figure 3: The Network Diffusion Analysis: PET generates the

There is a burstiness from Dec 16 to Dec 18 in Figure 1(a) since smoothest diffusion.

Dec 18 is the release date of ‘avatar’ in North America. Fegair

draws the networks on selected 100 users for PET, PET—anil Con

where the color of a vertex represents the interest levedetor-
responding user, and an edge stands for the follower-fekorela-
tionship between its two ending vertices. View I, Il and ltree-
spond to Dec 16, 17 and 18, respectively. For better visuapeo-
isons, View Il uses a smaller scale of colors than View | dndd
as to avoid paleness of View | and II.

We can catch several observations: (i) Cont can not tell ilhe d
ference between interest levels of infected users; (ify BRET and
PET- are able to catch the rising trend of popularity, butiees in
PET are smoothed via edges in the network, which accordsrbett
with the situation in real world:people’s interests are inevitably
influenced by their friends

5.1.5 Analysis on Content Evolution

Table 1-4 shows the topics extracted by PET that evolve along
time. These results are interesting and reasonable. Fanpbea
in Table 1, users began to talk about ‘avatar’ by introdudimg
movie’s title, the actor ‘Sam Worthington’ and the directdames
Cameron’ who was also the director of the movie ‘Titanic'tle
release day of Dec 18, new terms appeared such as ‘aliens’ and
‘imax’, and the term rank of ‘trailer’ dropped; when this niev
became more and more famous, people extended their digngssi
to the movie’s historic significance,e, its 3D film technology.
Also, Table 3 shows the evolution of gossip on the golf stager
Woods'’: before Nov 27, the information about Tiger Woods was



limited and inaccuracy; in Nov 27, the car accident was regbr
and people worried about his injury condition and golf cotipe
tions; after his affair was brought to light, people useddgaelated
to the ‘scandal’ such as ‘brown’ and ‘mistress’, blamed leisusl
abuse, and felt curious about the possible ‘divorce’. Aglynob-
serving Table 4, we can easily find that people kept greattattes

There have been extensive studies on detecting and traekémgs,
e.g., [14, 15, 7, 24, 26, 13, 32, 2, 29], which facilitate asvidnge
of tasks such as search [15], clustering [23], classifiodti0], etc
Event DetectionThis line of work has a different goal from our
paper: they detect events and our paper aims to track evgnts b
observing their popularity and content evolutions. Oumneveack-

on the ‘Copenhagen Climate Conference’ when it was opened ating models can be integrated with any existing detectioarétyns

Dec 07, but thought it was a ‘failure’ when the conference was

that can automatically discover the primitive event topanf dif-

closed at Dec 18. In Table 2, the contents do not change much fo ferent sources. These methods typically treat the texecidn

the movie ‘twilight’, which reflects the limit aspects of disssions
that could be an evidence to explain why its box office eaming
kept dropping after its release date.

5.2 Popular Events Analysis on DBLP

Data Collection. The Digital Bibliography and Library Project
(DBLP) is a database which contains the basic bibliograpiic
formation of computer science publicatiols In this experiment,
we create our testing data set DBLP by selecting 12,949 eitho
who published at least 10 papers in conferences of data ghamd
database, and crawling down 500,417 papers published by the
thors during the period from 1990 to 2008. Concretely, wester
one year as a time point, and titles and author lists arearttdo
form the documents and the co-author networks.

0.9
0.8
0.7
0.6 ——topic 1
0.5 —=—topic 2
8; topic 3
02 Tt ——topic4

@,

1992 1996 2000 2004 2008

Figure 4: The Popularity Evolution of DBLP Topics.

Result Analysis We select four research topics (i) ‘frequent’,
‘itemset’, ‘mining’, ‘association’, ‘rule’, (ii) ‘data’,/cube’, ‘OLAP’,
‘aggregation’, ‘materialization’, (iii) ‘web’, ‘mining, ‘social’, ‘net-
work’, ‘community’, and (iv) ‘topic’, ‘modeling’, ‘PLSA, ‘LDA,
‘latent’. We then track the popularity evolutions on therftapics.

As shown in Figure 4, (i) topic 1 was popular in last decade but
was fading out recently; (i) topic 2 has a burstiness whemGQray
first introduced ‘data cube’ in 1996; (iii) topic 3 monotoally in-
creases; and (iv) topic 4 has two rise-ups when PLSA and LD& wa
introduced in 1999 and 2002, respective.

To sum up, by comprehensively considering historic, tebdad
structured information into a unified model, PET generatesem
accurate trends, smoother diffusion, and meaningful comeolu-
tion for popular events in social communities.

6. RELATED WORK

PET is a novel model for tracking popular events in social-com
munities. It provides a unified probabilistic model that siolers
1) the burstiness of user interest; 2) the evolution of netwa)
the network effect in information diffusion; and 4) the awidn of
textual topics. To the best of our knowledge, there is notiexs
model that considers all these four factors in a unified waer@
are, however, several lines of related work.

Hhttp://www.informatik.uni-trier.detley/db

alone and do not consider the network effect in a social commu
nity.

Event Tracking A state automation model was proposed by
Kleinberg, et al. [14] to detect bursty activities from an email ar-
rival stream, by assuming the rates of messages are detztioyn
underlying hidden states. [13] models the sequence of oaunt
data by combining two Poisson distributions - one for themair
periodic count data and the other for the rare events. [Alpates
network diffusion models by considering the question thaewa
local behavior can spread to the whole population. Thesaadst
take either sequences of statistical datay(word frequencies) or
interaction systems as the input, but do not simultaneausigider
network structures and textual topics in the data strearighndre
shown by our study as quite effective in tracking populamevén
social communities.

Topic Modeling Topic modeling approaches [12] [4] have been
developed to mine variations of topics in different consej28],
evolution of topics [20], and correlated patterns in mugtipext
streams [26]. These methods generally do not consider therie
structures. Recently, incorporating network regulaitrain topic
modeling has been proposed [25] [19]. [19] uses a harmomic-fu
tion to enforce the constraint that topic distribution oighéoring
nodes should be similar, and [25] defines a Markov Randond Fiel
on the graph to model the influence between nodes in a gereerati
way. However, these methods typically do not consider thistbu
ness of interests and the evolution of network structuressThey
can not be directly applied in our problem in order to tracko
ular events. The Gibbs Random Field in our model gives much
more flexibility to incorporate various factors so that we able to
model the diffusion of interest and evolution of topics tibgge.

Information Diffusion Information diffusion is a classic topic in
social network analysis, which models the cascade of betson
a network structure (e.g., [21, 16, 3, 11]). Some of the gaiken
functions in the Gibbs Random Filed in PET are motivated from
the findings in the literature of information diffusion. BHine of
work, however, do not consider textual topics, and usuadlynadt
consider the evolution of ties. It is thus hard to be appleettack
popular events.

The most relevant work may be [30], which models the social
interactions and topic evolutions in an academic networlkwH
ever, they treat the social interactions and the evolutiotopics
in separate procedures, and do not consider the change iaf soc
interactions over time.

7. CONCLUSION

In this work, we propose the novel problem of popular events
tracking in a social community. Given a stream of networkcstr
tures, an associated stream of text documents, and thetigemi
form of events, we could track the popularity of the eventshen
network and content revolution of the events over time. W&ama
several key observations about how the interest, topiceiatvdork
structures mutually influence each other, and propose d stae
tistical model that can handle all the constraints. The psed
model, PET, not only provides a unified probabilistic framekto



model different factors in modeling the evolution of inteieand
contents, but also covers classical models as special.c&s#s-
prehensive experimental studies on two real-world datasiedw
that our approach outperforms existing ones, and two of tamm
actually special cases of our model in certain circumstan@ur
approach can potentially enable many more informativeyaisl
of certain topics on specific networks, and interesting-veaid
applications.

One interesting future direction is to apply our model toedet
and track the evolution of ideas, gossips, and scientifiovations.
Another interesting future work is to consider the mixtuferul-
tiple events in PET. One may envision a real-time event besys-
tem which finds and summarizes events in social communities.
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APPENDIX
A. MODEL INFERENCE

E -1 {log p(C|A)p(A)} o

“log Z — % D () = o1 0)? + A (i) = B (0)°)
2 D ellhi )™ (a0 = 0F) log(n ()p(w]6F)

+ 30> elda, w)p™ (a0 = 0F) log((1 = hi(8))p(w]6i))

i=1 weW

+ > uep(w|0F) log(p(wl0)
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