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ABSTRACT
User generated information in online communities has been char-
acterized with the mixture of a text stream and a network structure
both changing over time. A good example is a web-blogging com-
munity with the daily blog posts and a social network of bloggers.

An important task of analyzing an online community is to ob-
serve and track the popular events, or topics that evolve over time
in the community. Existing approaches usually focus on either the
burstiness of topics or the evolution of networks, but ignoring the
interplay between textual topics and network structures.

In this paper, we formally define the problem of popular event
tracking (PET) in online communities, focusing on the interplay
between textual content and social networks. We propose a novel
statistical method that models the popularity of events over time,
taking into consideration the burstiness of user interest,informa-
tion diffusion in the network structure, and the evolution of textual
topics. Specifically, a Gibbs Random Field is defined to modelthe
influence of historical status of actors in the network and the de-
pendency relationships among them; thereafter a topic model gen-
erates the words in text content of the event, regularized bythe
Gibbs Random Field. We prove that two classical models of infor-
mation diffusion and text burstiness are special cases of our model
under certain conditions. Empirical experiments with two different
communities and datasets (i.e., Twitter and DBLP) show that our
approach is effective and outperforms existing methods.

∗This work was supported in part by NASA grant NNX08AC35A,
the U.S. NSF grant IIS-09-05215, an HP Research grant, and by
the Army Research Laboratory accomplished under Cooperative
Agreement Number W911NF-09-2-0053. The first author was sup-
ported by the Microsoft Women’s Scholarship. The views and con-
clusions contained in this document are those of the authorsand
should not be interpreted as representing the official policies of the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation here on.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-110/07 ...$10.00.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Algorithms

Keywords
PET, popular events tracking, social communities, topic modeling

1. INTRODUCTION
The prevailing of Web 2.0 techniques has led to the boom of var-

ious online communities. Good examples are social communities
such as Facebook1, Blogger2 and Twitter3, which successfully fa-
cilitate the information creation, sharing, and diffusionamong the
web users. As a result, a popular topic or event can spread much
faster than in the Web 1.0 age. Indeed, when searching for a re-
cent popular event (e.g., “Toyota recall”) on Twitter, all the results
returned on the first page were all created within the past fivemin-
utes.

In many scenarios, it is appealing to have a system that tracks
the diffusion and evolution of a popular event in a social commu-
nity. Who are still interested in watching Avatar 50 days after its
release date? What do people say about Tiger Woods before and
after the scandal? Hot topics emerge, prevail and die. It is desir-
able to monitor whether people like, what they like, and how their
interests change over time.

Tracking the evolution of a popular topic is challenging. The dif-
fusion of an event is vague. You don’t know whether I am interest
in an event; and even if you do, from whom did I get this interest?

Fortunately, a large volume of text data is generated from the so-
cial communities. Besides communicating with friends, a web user
also constantly generates text contents such as blogs, tweets, and
comments. Both the communications and the contents are chang-
ing along time, resulting in a network structure and a text collec-
tion which evolve simultaneously and interrelatedly. Whenwe read
what you’ve written, we can infer your interest in an event; and
when we glimpse your communications, we can guess where the
interest came from. When we track the communications and con-
tents over time, we can find out the burstiness, the evolution, and
the spread of an event in the community.

1http://www.facebook.com
2http://www.blogger.com
3http://www.twitter.com



As another example, researchers regularly publish papers and
also collaborate with other researchers. By analyzing the evolu-
tion of publications and collaborations, we can track how a research
topic initializes, evolves, and diffuses over the researchcommunity,
in terms of both content and impact. In all these scenarios, there is
an urgent need for a principled method that couples a stream of text
and a stream of networks in order to track popular events.

In this paper, we propose a novel and principled probabilistic
model (called PET) for tracking popular events in a time-variant
social community that consists of both a stream of text information
and a stream of network structures. Specifically, PET leverages
a Gibbs Random Field to model the interest of users, depending
on their historical status as well as the influence from theirsocial
connections. A topic model is designed to explain the generation
of text data given the interest of a user in an event. The Gibbs
Random Field and the topic model thus interplay by regularizing
each other. The tasks of tracking popular events are thus cast as an
optimization problem aiming at the inference of a joint distribution
that consolidates all of historical, textual, and structural features.

We show that PET is motivated by and well reflects the existing
observations and findings about information diffusion in social net-
works and the topic burstiness in text. PET is well connectedto two
classical models [14, 21], which are proven to be special cases of
PET under certain conditions. Empirical experiments on twodif-
ferent online communities show that our approach is effective and
outperforms various baselines.

The rest of this paper is organized as follows. Section 2 formally
defines the problem of PET, as the solution of which a unified prob-
abilistic model is proposed in Section 3. Section 4 discusses the
connection of PET to two classic models in literature. We present
experiments and results in Section 5, discuss the related work in
Section 4, and conclude in Section 7.

2. PROBLEM FORMULATION
In this section, we formally define the related concepts and the

task of popular event tracking in social communities. Let usbegin
with defining a few key concepts as follows.

Definition2.1. Network Stream. LetG = {G1, G2, · · · , GT }
be a stream of network structures, whereGk is a snapshot of a
general networkG at timetk, (k ∈ [1...T ]). AndGk = {Vk, Ek},
whereVk is a set of vertices andEk is a set of edges. In a social
network, a vertex corresponds to a person. An edgee = (i, j) ∈
Ek stands for a connection (or a tie) between verticesi andj. We
definegk(i, j) as the strength of the tie(i, j) at timetk. W.l.o.g,
we defineGk as a complete graph but allowgk(i, j) to be any non-
negative real value,i.e., gk(i, j) = 0 if there is no tie between
verticesi andj. NoteGk can be either undirected or directed.

Definition2.2. Document Stream. LetD = {D1,D2,...,DT } be
a stream of document collections, whereDk is the set of documents
published between timetk−1 and tk. We further denoteDk =
{dk,1, dk,2, · · · , dk,N}, wheredk,i is the text document(s) associ-
ated with the nodevk,i in Gk. Documentdk,i is represented by a
bag of words from a fixed vocabularyW = {w1, w2, · · · , wM}.
That is,dk,i = {c(dk,i, w1), c(dk,i, w2), · · · , c(dk,i, wM )}, where
c(dk,i, w) denotes the number of occurrences of wordw in dk,i.

Definition2.3. Topic. We present a semantically coherent topic
θ as a multinomial distribution of words{p(w|θ)}w∈W with the
constraint

∑

w∈W p(w|θ) = 1. We allow a topic to have dif-
ferent versions over time, denoting the version at timetk as θk
(k ∈ [1...T ]).

Definition 2.4. Event. We define a general event as a stream
of topicsΘE = {θE0 , θE1 , θE2 , · · · , θET }. We callθE0 the primitive
topic of the event, which is independent of the network.θE0 can ei-
ther be specified by the users or be automatically discoveredby an
event detection algorithm [10].θEk corresponds to the version ofθE0
at timetk. θEk is dependent of the network, which indicates the ma-
jor aspects of the event in networkGk. AltogetherΘE represents
the origin and evolution of the contents of the event over time. We
useΘ, θ0, θk to denoteΘE , θE0 , θEk when there is no ambiguity.

Definition 2.5. Interest. For a particular event, at each time
point tk, we assume each nodevi in Gk has a certain level of in-
terest in the event. We model such level of interest as a real value
hk(i) ∈ [0, 1], and denote the set of interest values for all vertices
in Gk asHk, i.e., Hk = {hk(1), hk(2), · · · , hk(N)}. Note that
one can also definehk(i) with a set of discrete levels.

Based on the definitions above, we can define theevent-related
information in a social community as 1) anobservedstream of
network structures; 2) anobservedstream of text documents; 3) a
latent stream of topics about the event; and 4) alatent stream of
interests. We illustrate these concepts with two real worldsocial
communities: Twitter and DBLP.

Example 2.1. For Twitter4 (a micro-blogging network), we extract
a collection ofN users and all posts published by these users in a
range ofT days. A time pointtk is defined as thekth day in the
time range. dk,i is the document obtained by concatenating all
tweets published by useri on dayk. The edge weightgk(i, j) is an
estimation of how much useri is influenced by userj on dayk, e.g.,
gk(i, j) could be defined as the number ofi’s tweets that followj
in the past 30 days before dayk. Here,Gk is a directed graph.

Example 2.2. For DBLP 5 (a bibliographic network), we retrieve
N authors and all publications of these authors inT years. A
time pointtk corresponds to thekth year. dk,i is the concatena-
tion of titles of authori’s papers in yeark. The networkGk is
created among these authors according to their co-author relation-
ship. gk(i, j) is defined as the number of papers co-authored by
authori andj in yeark, so hereGk is an undirected graph.

With the definitions of related concepts, we can now formally
define the major tasks in the problem ofpopular event tracking
on networks. Given the input of network streamG, document
streamD and the primitive topic of an event,θ0, the tasks include:

Task 1: Popularity Tracking . Formally, we want to infer the
latent stream of interests,i.e., Hk at each time pointtk during the
tracking period. TheHk values can not only indicate the overall
popularity trend of the event, but also provide much richer infor-
mation about how the interest develops, evolves, and spreads on
the network.

Task 2: Topic Tracking. Formally, we want to infer the latent
stream of topics about the eventΘE over time. An event starts
from its primitive formθE0 , and while it is developing, the major
aspects of the event may shift substantially over time. By inferring
the stream of topics, we expect to keep track of the new devel-
opment about the event, understand its evolution, and identify the
most attentive aspect of the event to the community over time, etc.

Tracking the popular events in a social community is important
and challenging in many ways. To track the popularity of events
on the network, we should figure out how the interest of each in-
dividual is influenced by its social connections, and then develop

4http://www.twitter.com
5http://www.informatik.uni-trier.de/∼ley/db/



reasonable models to simulate the formulation and diffusion of the
interest on the networks. To track the content evolution of the event,
we should make sure the topics we track should be always relevant
to the event, and more importantly, reflect the current interest of
individuals on the network. This requires us to propose a unified
model that takes interest diffusion, network structure andtextual
contents into consideration at the same time.

It is also worth mentioning that in this work we focus on event
tracking, not detection, since the primitive event topicθE0 is con-
sidered as input to our system. We have observed that in general an
event could be well described by a small number of keywords,e.g.,
“avata”, “tiger woods affair”, so it is feasible for users toprovide
the primitive event topic. Indeed, our approach could be combined
with any existing event detection algorithms that can automatically
discover the bursty keywords or topics either from the same net-
work or other sources,e.g., news articles or the web, then our sys-
tem will track the events on the focused network.

In next section, we present a novel probabilistic model to achieve
the tasks of popular event tracking.

3. EVENT TRACKING MODELS
In this section, we present a novel probabilistic model,PET, for

tracking popular events in social communities. By considering both
the evolution of textual documents and the evolution of network
structures, our model can capture the popularity and topic evolution
of events in a unified process.

3.1 Intuitions
As discussed in Section 2, a reasonable model of popular events

in a social community should not only capture the diffusion of
information on the network, but also the burstiness of interests
and the generation of contents. What factors should PET con-
sider? What existing observations in social networks and text min-
ing could PET utilize? Before formally introducing the model, we
first explain several key observations that motivate the model:

Observation1. Interest and Connections.It has been shown in
the study ofsocial influence[9] that the behavior of a social actor,
e.g., vi, is usually influenced by its friends [16], especially friends
that have stronger ties withvi [5]. We may expect that the cascade
behavior also applies to the interest in an event. On the other hand,
the study ofhomophilyhas shown that people with similar inter-
ests are more likely to become connected [1]. Moreover, thev′is

connections have an even stronger influence on the interest of vi’s
if vi’s friends have similar interests orvi’s friends with the same
interest are strongly connected [3].

Observation2. Interest and History. The behavior of each in-
dividual should be generally consistent over time, thus present a
strong “personalized” pattern. This also means interest towards
certain events should not change dramatically within a short time.
When there is a bursting pattern of the interest at timetk, it’s more
likely to remain at a high level at timetk+1 [14].

Observation3. Content and Interest. When an individualvi
has a higher level of interest in an event, the content she generates
should be more likely to be related to the event. On the other hand,
when we findvi writes more about the event, we can assume she is
more interested in the event.

We expect these intuitions and observations be helpful in design-
ing the probabilistic model.

3.2 The General Model
Now, at timetk, we already know the network streamG1...k

(short for{G1, G2, · · · , Gk}) and document streamD1...k (short

for {D1, D2, · · · , Dk}). Let us assume that we’ve also known the
previous interest valuesH1...(k−1). We want to infer the current
interest valueHk and topicsΘk on the network. We may fur-
ther make an Markovian simplification that the current interest sta-
tus only depends on the previous status,i.e., Hk−1. So formally,
the task is cast as the inference of the posterior ofHk andΘk:
P (Hk,Θk|Gk, Dk, Hk−1).

Based on the intuitions and observations, we knowHk depends
on the network structureGk (i.e., Observation 1) as well as the
historyHk−1 (i.e., Observation 2). We also know that the current
topicΘk and interest statusHk are mutually dependent (i.e., Ob-
servation 3) . We can then introduce two reasonable independent
assumptions:

(i) Given the current network structureGk and the previous in-
terest statusHk−1, the current interest statusHk is independent of
the document collectionDk. The intuition is that people first be-
come interested in the event and therefore generate discussions on
it, i.e., Dk should be a result rather than a cause ofHk. Moreover,
the interest of an individual is directly determined by her historical
status and influential neighbors. Note that the historical documents
may still have an impact onHk, but in an indirect way through
Hk−1.

(ii) Given the current interest statusHk and the document collec-
tion Dk, the current topic modelθk is independent of the network
structureGk and the previous interest statusHk−1. The intuition
is that once the authorvi has developed an interest in the event,
the contents she writes will only depend on the event itself and the
level of the interest.

With the above two assumptions, our object becomes to infer:

P (Hk,Θk|Gk, Dk,Hk−1) = (1)

P (Hk|Gk, Hk−1) · P (Θk|Hk, Dk)

We denote the first component in Equation 1,P (Hk|Gk,Hk−1),
as the interest model and the second component,P (Θk|Hk, Dk),
as the topic model. In the interest model, we propose a multivariate
Gibbs Random Field [17] to model the dependency among indi-
viduals and the influence of past status (Section 3.3); in thetopic
model, a mixture model [27] is designed to extract the topic snap-
shot of the event (Section 3.4). Finally, the inference of the com-
bined model is discussed in Section 3.5.

3.3 The Interest Model
Let us first briefly introduce the Gibbs Random Field [17].

Gibbs Random Field. Given a graphG = {V, E}, a family
of random variablesF = {Fi}

N
i=1 is said to be a Gibbs Random

Field w.r.t. G if and only if its configuration,f , follows a Gibbs
distribution that takes the form

P (f) = Z
−1 × e

− 1
λT

U(f)

whereZ =
∑

f∈F P (f) is a normalizing constant called thepar-
tition function, λT is a constant called thetemperature, and the
energy functionU(f) =

∑

c Vc(f) is a sum ofclique potentials
Vc(f) over all possible cliquesc.

In our model, the interest statusHk is a family of random vari-
ables defined on graphGk, and we give a configuration ofHk that
follows a Gibbs distribution:

P (Hk|Gk,Hk−1) = Z
−1 × e

− 1
λT

U(Hk)

For the energy functionU(Hk), we specifically define two kinds



of clique potential functions, while set all other potentials to 0,i.e.,

U(Hk) =
N
∑

i=1

Vi(hk(i)) +
N
∑

i=1

V
′
i (hk(i), hk(−i)) (2)

In Equation 2,−i refers to the set of all vertices excepti. Note
hk(i) itself is a size-1 clique inGk, and{hk(i), hk(−i)} simply
equals toGk, which is also a clique. Hence, Equation 2 is a valid
Gibbs Random Field.

We then defineVi(hk(i)) as the transition energy of nodei from
its last statushk−1(i) to current statushk(i):

Vi(hk(i)) = (hk(i)− hk−1(i))
2
,∀i ∈ [1..N ] (3)

This definition is mainly motivated by our Observation 2: by
minimizing this transition cost we would like the interest values to
be generally consistent over time.

The other potential functionV ′
i (hk(i), hk(−i)) gives penalty for

the difference between the interest ofi and its expected value:

V
′
i (hk(i), hk(−i)) = λk,i(hk(i)− h

′
k(i)))

2
,∀i ∈ [1..N ] (4)

h′
k(i) is the expectation ofhk(i) estimated fromi’s neighborsn(i):

h
′
k(i) =

∑

j∈n(i) gk(i, j) · hk−1(j)
∑

j∈n(i) gk(i, j)
(5)

We can see that the design of this cost function is motivated by
our Observation 1, which well captures the intuitions in informa-
tion diffusion: i’s current interest is influenced byi’s connections,
and a stronger tie (i.e., highergk(i, j)) brings a larger impact.

Moreover, in Equation 4,λk,i is a weight that represents overall
how much we trust the “influence from friends”, that is,

λk,i = λA ·





∑

j∈n(i)

gk(i, j)



 · (1− ξ(i)) , (6)

whereλA is a constant andξ(i) is the harmonic function [31] de-
fined on the neighbor graph ofi:

ξ(i) =

∑

j1,j2∈n(i),j1 6=j2

gk(j1, j2) · (hk−1(j1)− hk−1(j2))
2

∑

j1,j2∈n(i),j1 6=j2

gk(j1, j2)
(7)

The definition ofλk,i well captures another intuition in our Ob-
servation 1: wheni’s neighbors have a higher agreement on the
interest value, the harmonic function becomes smaller, thus results
in largerλk,i. For special conditions, (i) when

∑

j∈n(i)

gk(i, j) = 0,

we can simply seth′
k(i) to an arbitrary value and setλk,i to zero;

and (ii) when
∑

j1,j2∈n(i),j1 6=j2

gk(j1, j2) = 0, we setξ(i) to 0.5.

To sum up, the posterior of interest statusP (Hk|Gk,Hk−1) is
modelled as a Gibbs Random Field on the networkGk. Several
potential functions are designed in order to let the interest value
of each individual be close to the past status and the “agreement”
of the neighbors. The weighting scheme is well motivated by the
observations from the real world networks.

3.4 The Topic Model
Now we consider the topic component,P (Θk|Hk, Dk), in Equa-

tion 1. In our model, we consider each documentdi,k in the collec-
tionDk is generated from a mixture of two multinomial component
models. One component model is a background modelθBk and the
other is the latent event topic modelθEk that we want to estimate,

i.e., Θk = {θBk , θEk }. The idea is to model the common (non-
discriminative) words inDk with θBk so that the event topic model
θEk would attract more discriminative and meaningful words that
describe the target event.

The generation process is as follows: to write a word in docu-
mentdi,k, one first choose between the event topic mode (i.e., θEk )
and the background model (i.e., θBk ), with probabilityp(θEk |dk,i)
andp(θBk |dk,i), respectively. We havep(θEk |dk,i) + p(θBk |dk,i) =
1. Once the topic is selected, one samples a word from either the
event topic model or background model. Different from the tra-
ditional mixture language models [12, 27], where the topic distri-
bution of each document is either predefined or solely estimated
from the text data, in our model we use the interest valuehk(i), a
real value in[0, 1], as the probability of choosing the event topic
at nodei, i.e., p(θEk |dk,i) = hk(i). This is reasonable according
to our Observation 3: a higher interest ofvi in the event should
result in a higher proportion of the event covered in byvi. More-
over, as explained in the interest model,hk(i) could capture the
historical interest status and relationships on the network, which
implicitly influence the topic model. And modeling the jointdistri-
bution with both components would allow the topics and popularity
of the events to mutually influence each other over time.

Formally, the probability of generating wordw in dk,i is:

p(w|dk,i) = hk(i)p(w|θEk ) + (1− hk(i))p(w|θBk ) (8)

Then the likelihood of the document collectionDk is given as:

P (Dk|Hk,Θk) ∝
N
∏

i=1

∏

w∈W

p(w|dk,i)
c(dk,i,w) (9)

wherec(dk,i, w) is the number of occurrences ofw in dk,i.
We further define a conjugate Dirichlet prior of the event topic

θEk : Dir({1 + µEp(w|θE0 )}w∈W ), to incorporate the primitive
event topic, which servers as the prior knowledge of the event. By
doing this, we regularize the topics so that they do not shiftfrom
the event.µE is the weight indicating how much we rely on the
prior. Formally,

P (Θk|Hk) = P (θEk ) ∝
∏

w∈W

p(w|θEk )µEp(w|θE0 ) (10)

We assumep(w|θBk ) does not change over time, which can be
simply estimated by the maximum likelihood estimator usingthe
entire document stream.

With the prior defined, the posterior of topicsΘk is given as:

P (Θk|Hk, Dk) ∝ P (Dk|Hk,Θk)P (Θk|Hk) (11)

3.5 Parameter Estimation
Given our model defined in Equation 1, we can fit the model to

the data and estimate the parameters using a Maximum A Posterior
estimator. That is:

Λ∗ = argmax
Λ

p(C|Λ)p(Λ) (12)

whereΛ has the interest valuesHk and word distribution in the
topic modelsΘk. The hidden variable in our model iszdk,i,w,
indicating which topic (i.e., θEk or θBk ) is selected to generate word
w in documentdk,i.

The Expectation Maximization (EM) algorithm [18] can be ap-
plied to estimate the parameters efficiently. In the E-step,it com-
putes the expectation of the hidden variables; and in the M-step, it
updates parametersΛ to maximize the object function given above.



Specifically, in the E-step we have:

p
(n)(zdk,i,w = θ

E
k ) = (13)

h
(n−1)
k (i)p(n−1)(w|θEk )

h
(n−1)
k (i)p(n−1)(w|θEk ) + (1− h

(n−1)
k (i))p(n−1)(w|θBk )

In the M-step, given the expectation of the hidden variables, the
object function we want to maximize isEΛ(n−1){log p(C|Λ)p(Λ)},
whose concrete form is put in Appendix A.

By integrating a few Lagrange multipliers [18], we can get:

p
(n)(w|θEk ) = (14)
N
∑

i=1

c(dk,i, w)p(n)(zdk,i,w = θEk ) + µEp(w|θE0 )

∑

w′∈W

N
∑

i=1

c(dk,i, w′)p(n)(zdk,i,w
′ = θEk ) + µE

The inference ofhk(i) boils down to solve:

αhk(i)− β −
γ

hk(i)
−

δ

hk(i)− 1
= 0 (15)

where

α =
2

λT

(1 + λk,i),

β =
2

λT

(hk−1(i) + λk,ih
′
k(i)),

γ =
∑

w∈W

c(dk,i, w)p(n)(zdk,i,w = θ
E
k ),

δ =
∑

w∈W

c(dk,i, w)p(n)(zdk,i,w = θ
B
k ).

(i) when
∑

w∈W

c(dk,i, w) = 0, i.e., the documentdi is empty at

time pointtk. Thenγ = 0 andδ = 0, so thathk(i) only depends
on the information from the past status and neighbors:

hk(i) =
β

α
=

hk−1(i) + λk,ih
′
k(i)

1 + λk,i

(16)

(ii) when
∑

w∈W

c(dk,i, w) > 0, Equation 15 is equivalent to:

αhk(i)
3 − (α+ β)hk(i)

2 + (β − γ − δ)hk(i) + γ = 0 (17)

Any efficient root searching approaches for cubic functions[22]
can be applied to find the feasiblehk(i) that satisfies Equation 17.
Denote the left of the equation asf(hk(i)). Thenf(−∞) = −∞,
f(+∞) = +∞, f(0) = γ > 0, f(1) = −δ < 0. It is easy to
show there exists exact one root in(0, 1), and therefore the solution
for hk(i) is guaranteed to be found.

4. DISCUSSIONS
We have presented the model and the inference of PET. Although

it is a novel probabilistic model, it is well connected to existing
models in literature. In this section, we describe two famous ex-
isting models of word burstiness and network diffusion, andshow
that both of them are special cases of PET under certain situations:
when the network effect in PET is omitted, it is well connected to
the first model (Sec. 4.1); on the other hand, when the topic effect
of PET is omitted, it is well connected to the second model (Sec.
4.2). Finally, we analyze the time complexity of PET in Sec. 4.3.

4.1 The State Automation Model
The first is a state automation model proposed by Kleinberg,et

al. in [14] in the context of detecting bursting activities in anemail
stream. It is an HMM-like model which assumes the intervals be-
tween messages depend on the hidden “bursty” states. We lookat
a variation of this model which matches our counting data.

Taking a sequence of counting of messagesX = {x1, x2, · · · ,
xT } as the observation, we define a state automation model based
on HMM. Instead of the exponential density function in [14],we
define the emission probability by a Poisson distribution, since Pois-
son is much more natural to model word counts [8],i.e.,

P (xk|λk) =
λ
xk

k e−λk

xk!
,

whereλk is the expected number of messages at timek, which also
stands for the hidden state at timetk. The transition probability
from any state to another is defined as a constant related to the
number of states. The maximum likelihood estimator gives theλk

based on:

λ
∗
k = argmax

λk

λ
xk

k e
−λk

Now we show this is a special case of PET by setting several
constraints and assumptions: (i) we assume all individualshave the
same interest levelhk at timek; (ii) we setλT = ∞ in Equation 2,
i.e., we ignore the network structures; (iii) we assume there are
only two pseudo words in the vocabulary, aneventword w1 and
a background wordw2, and setµE = 0 so thatP (Θk|Hk) = 1,
i.e., the influence of the primitive topic disappears. Thus we have
p(w1|θ

E
k ) = 1, andp(w2|θ

B
k ) = 1 for anyk. Then our topic model

is transformed to a binomial distribution:

P (Θk|Hk, Dk) = P (Dk|Hk,Θk)

∝ h
∑N

i=1 c(dk,i,w1)

k × (1− hk)
∑N

i=1 c(dk,i,w2)

We know that a Poisson distribution can be described as a lim-
iting case of a binomial distribution. Specifically when total num-
ber of wordsn =

∑

w∈W

∑N

i=1 c(dk,i, w) is sufficiently large,
the Poisson distribution in the State Automation model is approx-
imately equivalent to the binomial distribution in our topic model,
and we have:

λk ≈ n · hk

This well connects PET with the state automation model. The de-
tailed deduction is omitted due to space limitation.

4.2 The Contagion Model
Let us look at another classic model in the context of information

diffusion, i.e., the contagion model introduced in [21]. The general
idea is that a person becomes infected (corresponding to thecase
that a person is interested in an event) if the number of its infected
friends in the last time point is above a threshold. Let us simplify
PET as follows: (i)c(dk,i, w) = 0 for any nodei and wordw, i.e.,
the influence of the text information is ignored; (ii)gk(i, j) = 1 if
vi is influenced byvj and otherwise0; and (iii) λA = ∞ (so that
λk,i = ∞), i.e., the influence of neighbors becomes dominative,
and the history ofi is ignored.

According to Equation 16, we have

hk(i) = argmax
λk,i→∞

hk−1(i) + λk,ih
′
k(i)

1 + λk,i

= h
′
k(i),

whereh′
k(i) equals to the ratio of infected friends ofi at the last

time point. If we sethk(i) to 1 only whenh′
k(i) is larger than
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Figure 1: The Popularity Trend Analysis: PET generates the most consistent trends to the gold standard.

a threshold, otherwisehk(i) remains 0, this is equivalent to the
contagion model.

4.3 Complexity Analysis
Probabilistic Latent Semantic Analysis (PLSA) [12] is a well-

known statistical topic model, which and whose variance algorithms
are being widely used in practice. Let us analyze the time complex-
ity of PET by comparing it with PLSA.

For a collectionC of N documents that involvest topics and a
fixed vocabularyW consisted ofM words, the log likelihood to be
generated with PLSA is given as follows:

L(C) =
∑

d∈C

∑

w∈W

c(w, d) log

t
∑

j=1

p(θj|d)p(w|θj)

Estimating the parameters in the above log-likelihood by the Ex-
pectation Maximization (EM) algorithm [18] involves the compu-
tation forNt hidden variables and(N +M)t parameters for each
EM-iteration. If we expect such EM procedure, in average, termi-
nates afterm iterations, it is easy to conclude that the time com-
plexity of PLSA isO((N +M)mt).

Similarly, carrying out a Maximum A Posterior estimator (Sec.
3.5), PET needsO(NM) times computations for both of each E-
step and M-step, if the cubic function (Equ. 15) is considered to be
solved in constant time [22]. Based on the same assumption that
the EM algorithm ends up afterm rounds, PET hasO(NMmT )
run-time complexity forT time points as a whole. Empirically, a
popular event in social communities is only able to attract consid-
erable public attention for a short period (i.e., a small value ofT ),
e.g., the discussion of a movie event on Twitter usually becomes
trivial after the90th days of the movie release. Hence, comparing
to PLSA, it shows that the time complexity of PET is reasonable
and thus affordable in practice.

5. EXPERIMENTS
We have introduced PET, a novel statistical model for Popular

Event Tracking in social communities, and discussed its connec-
tions with two classic models [14, 21]. In this section, we show

the effectiveness of our model with experiments on two different
genres of data,TwitterandDBLP.

5.1 Popular Events Analysis on Twitter

5.1.1 Data Collection
Twitter6 is a free social networking and microblogging service

that enables its users to send and read messages known astweets.
Tweets are text-based posts of up to 140 characters displayed on
the author’s profile page and delivered to the author’sfollowers. In
this experiment, we create our testing data set (Twitter) byselect-
ing 5, 000 users with follower-followee relationships and crawling
down1, 438, 826 tweets displayed by these users during the period
from Oct. 2009 to early Jan. 2010. We consider each day as a time
point: for each time pointtk, (i) the documentdk,i is obtained by
concatenating tweets displayed by useri in dayk; and (ii)gk(i, j)
equals to the number of tweets displayed by useri by following
userj during the period fromtk−30 to tk.

Some simple statistics are presented as follows: (i) for each day,
there are only average 37% users who display tweets; (ii) there are
12% days when less than 20% users display tweets; (iii) thereare
58% tweets which have at least one followee; (iv) each user has av-
erage 10.2 followees. These statistics confirm our hypothesis stated
in this paper:the information of an individual user sometimes is
sparse, but individuals are strongly connected by networks.

5.1.2 Baseline and Gold Standard
JonK. The first baseline is the state automation model stated at

Section 4.1, which is a variation of the Kleinberg’s model [14].
Concretely, the observationxk is the total frequency of event-related
words in tweets posted by all users, and the hidden stateλk is se-
lected from a limited set of discrete interest levels{ i

10000
n}100i=1.

We believe this is a good representative of event tracking methods
that do not consider the network effect.

Cont. The second baseline is the contagion model [21] intro-
duced in Section 4.2. Concretely, two users are neighbors inthe

6www.twitter.com



contagion network at timetk if they have the follower-followee re-
lationship in the past 30 days. A user becomes newly infectedif the
number of infected users among her friends in last day is morethan
a pre-defined threshold. This is a representative of network-based
diffusion models that do not consider textual documents.

PET–. To evaluate the effort from network structures in our
model, we implement a special version of PET by removing net-
work structures,i.e., we keep every part in the PET model the same.
but setgk(i, j) = 0.

BOM . For a movie-related event, the box office earning is a
trustworthy criterion to reflect the movie’s popularity. Hence, we
extract the daily box office at Mojo7 to be the gold standard for
movie-related events.

GInt . For a news-related event, the popularity can be obtained
through analysis on the query log of search engines, such as Google
8. Therefore, we use the interest index supplied by Google Insight
9 as the gold standard for news-related events. Moreover, GInt is a
baseline for movie related events.

5.1.3 Analysis on Popularity Trend
Experiment Setup. The model PET involves three parameters

λT , λA andµE . λT andλA in the interest model determine the
weights for historical and structural information, andµE in the
topic model is the weight of Dirichlet prior. In our implementa-
tion, we set up the parameters empirically asλT = 1, λA = 3 and
µE = 1. Furthermore, the primitive topicθE0 is given as the input
for each eventE, andH0 is simply set to all zeros.

Empirical Evaluation . On the testing dataset Twitter, we track
the interest levels of events by using PET, PET–, JonK, Cont,BOM
(if available) and GInt, respectively. Four popular eventsare se-
lected for analysis: two movie related events,i.e., ‘Avatar’ and ‘the
Twilight Saga: New Moon’, and two news related events,i.e.,‘Tiger
Woods Affair’ and ‘Copenhagen Climate Conference’. We selected
these four events because their life cycle well overlaps with the time
period of our Twitter data. We’ve also done a larger scaled analy-
sis over 20 events and report the aggregated performance of the
models. Furthermore, we select about30% users and average their
interest levels as the overall popularity index, which is curved in
Figure 1(a), 1(c), 1(e) and 1(g) for the four events, respectively. To
make clearer comparisons, the curves in the same figure are nor-
malized to the same scale [0,1] and are shifted vertically with a
certain distance. These modifications do not harm to our experi-
ments, since the trend of each curve is completely reserved.By
visual comparisons, in all figures, the curve PET is more similar to
the one of the gold standard.

Quantitative Evaluation. We leverage cross-correlation score
to quantitatively measure the consistence of the trends to the gold
standard. The cross-correlation score is a measure of similarity
of two time series as a function of a time-lag between time series
[6]. The cross-covariance function between two time seriesx =
{xi}

n
i=1 andy = {yi}

n
i=1 associated with an eventE is defined as

cxy(k) =
1

n

n−k
∑

i=1

(xi − µ(x))(yi − µ(y)) k = 0 · · ·n− 1

cxy(k) =
1

n

n
∑

i=1−k

(xi − µ(x))(yi − µ(y)) k = −1 · · · 1− n,

whereµ(·) is the mean. The cross-correlation is the cross-covariance

7http://boxofficemojo.com/movies
8http://www.google.com
9http://www.google.com/insights/search

scaled by the variances of the two series:

r
E
xy(k) =

cxy(k)
√

cxx(0) · cyy(0)

Figure 1(b), 1(d), 1(f) and 1(h) draw the cross-correlationcurves
between each method and the gold standard for the four events, re-
spectively10. Furthermore, Figure 2 reports the aggregated perfor-
mancerxy on a set of twenty events{Ei}

20
i=1 by definingrxy(k) =

1
20

∑20
i=1 r

Ei
xy (k).
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Figure 2: The aggregated performance over 20 events: PET is
most consistent with the golden standard

Result Analysis. We can observe several facts:

1. PET always has the best performance (i.e., the highest cross-
correlation score), because it estimates the popularity bycom-
prehensively considering historic, textual and structured infor-
mation in a unified way.

2. Cont always has the worst performance among all compara-
ble methods, since it aims to answer the question in a differ-
ent scenario: when can a local behavior spread to the whole
network? As a contagion model, the behavior of one user can
infect another on the network via a long chain and by taking
a long transfer time when local interaction is sufficient, sothe
popularity estimated by Cont at a certain time point could be
the mixture of current user behaviors and the ones happened
long time ago. However, such ‘long chain’ rule does not ap-
ply to popular events in online social communities. For exam-
ple, the popularity index of Cont atDec 24 in Figure 1(a) is
unfavourably higher than the gold standard, because Cont mis-
takenly transferred some popularity fromDec 20. Also, Cont
shows a smoother ‘valley’ atDec 5in Figure 1(e) than the gold
standard, because the steep downward slope is neutralized by
the ‘peak’ atNov 30.

3. JonK generally performs well, but is still less accurate than PET
at most time points. There are at least two underlying reasons.
First, JonK is not able to detect coherent terms that are not given
as event-related terms, so JonK may underestimate the popular-
ity due to missed coherent terms. For instance, the popularity
index of JonK atDec 28in Figure 1(a) is much lower than the
gold standard because people at that time talked about ‘avatar’
more on ‘James Cameron’, ‘film technology’, ‘box office’,etc,
rather than directly using the key words ‘avatar’. Also, such un-
derestimation happened atDec 9in Figure 1(g), since the event-
related terms ‘Copenhagen’ and ’climate’ are insufficient to de-
scribe more details of the conference such as ’China’, ’global’
and ’warming’. Second, similar to many other methods, JonK
takes a sequence of aggregated counting data (e.g., the total fre-
quency of terms) as its observation. However, such aggregated

10We assume that the popularity of a movie at dayk may be reflected
on Twitter at day(k + 1).



Dec 14 Dec 18 Dec 26

trailer 0.21 avatar 0.30 avatar 0.13
avatar 0.10 imax 0.06 imax 0.04
cameron 0.04 trailer 0.05 trailer 0.04
james 0.02 cameron 0.04 technology 0.03
sam 0.01 james 0.04 sam 0.02
director 0.01 alien 0.01 film 0.02
titanic 0.01 titanic 0.01 james 0.02

Table 1: The Content Evolution of ‘avatar’

Nov 18 Nov 20 Dec 22

moon 0.06 moon 0.17 moon 0.11
twilight 0.04 twilight 0.10 twilight 0.04
trailer 0.03 oprah 0.04 fantasy 0.02
chris 0.02 trailer 0.03 chris 0.02
stewart 0.01 vampire 0.03 saga 0.01
premiere 0.01 fantasy 0.02 women 0.01
taylar 0.01 midnight 0.01 milion 0.01

Table 2: The Content Evolution of ‘twilight’

Nov 25 Nov 27 Dec 10

rhapsody 0.07 tiger 0.11 tiger 0.10
muppets 0.06 woods 0.09 woods 0.06
bohemian 0.06 injure 0.04 brown 0.02
lambert 0.01 car 0.03 mistress 0.01
tiger 0.01 accident 0.03 golf 0.01
woods 0.01 championship 0.01 shame 0.01
playlist 0.01 hospital 0.01 divorce 0.01

Table 3: The Content Evolution of ‘tiger woods’

Dec 07 Dec 15 Dec 18

climate 0.02 oral 0.02 climate 0.04
copenhagen 0.01 council 0.02 copenhagen 0.03
conference 0.01 climate 0.01 conference 0.02
china 0.01 trade 0.01 reach 0.01
committee 0.01 copenhagen 0.01 summit 0.01
global 0.01 health 0.01 failure 0.01
warming 0.01 bill 0.01 agreement 0.01

Table 4: The Content Evolution of ‘Copenhagen’

data could not precisely stand for the popularity over the net-
work. For example, ten users claiming the same conclusion is
definitely more trustworthy than one user repeating the conclu-
sion by ten times. However, JonK treats the two situations in-
distinguishably.

4. To demonstrate the different performances with and without
network structures, we select about30% users, among which
there are strong connections. Compared to PET, PET– shows
two weaknesses due to the lack of network structures. On one
hand, PET– can not reponse sufficiently to sudden changes. When
there is no textual information about a particular user on current
time point, PET– will set the new status of the user the same
as the previous one, but PET can evaluate the new status more
precisely by borrowing information from the user’s neighbors.
For example, the box office drops a lot atNov 21in Figure 1(c).
However, PET– did not recognize such changes untilNov 23.
On the other hand, PET– is more fragile to reflect local noises.
For example, one tweet followed by ten users will be more in-
fluential than the same tweet with no follower. However, PET–
treats the two situations equivalently, so that the influence of
‘isolated’ tweets is unfavorably enlarged,e.g., there is an ab-
normal vibration atDec 27in Figure 1(a).

5.1.4 Analysis on Network Diffusion
In this experiment, we study how events diffuse over networks.

There is a burstiness from Dec 16 to Dec 18 in Figure 1(a) since
Dec 18 is the release date of ‘avatar’ in North America. Figure 3
draws the networks on selected 100 users for PET, PET– and Cont,
where the color of a vertex represents the interest level of the cor-
responding user, and an edge stands for the follower-followee rela-
tionship between its two ending vertices. View I, II and III corre-
spond to Dec 16, 17 and 18, respectively. For better visual compar-
isons, View III uses a smaller scale of colors than View I and II, so
as to avoid paleness of View I and II.

We can catch several observations: (i) Cont can not tell the dif-
ference between interest levels of infected users; (ii) both PET and
PET– are able to catch the rising trend of popularity, but vertices in
PET are smoothed via edges in the network, which accords better
with the situation in real world:people’s interests are inevitably
influenced by their friends.

(a) PET: View I (b) PET: View II (c) PET: View III

(d) PET–: View I (e) PET–: View II (f) PET–: View III

(g) Cont: View I (h) Cont: View II (i) Cont: View III

Figure 3: The Network Diffusion Analysis: PET generates the
smoothest diffusion.

5.1.5 Analysis on Content Evolution
Table 1-4 shows the topics extracted by PET that evolve along

time. These results are interesting and reasonable. For example,
in Table 1, users began to talk about ‘avatar’ by introducingthe
movie’s title, the actor ‘Sam Worthington’ and the director‘James
Cameron’ who was also the director of the movie ‘Titanic’; inthe
release day of Dec 18, new terms appeared such as ‘aliens’ and
‘imax’, and the term rank of ‘trailer’ dropped; when this movie
became more and more famous, people extended their discussions
to the movie’s historic significance,i.e., its 3D film technology.
Also, Table 3 shows the evolution of gossip on the golf star ‘Tiger
Woods’: before Nov 27, the information about Tiger Woods was



limited and inaccuracy; in Nov 27, the car accident was reported
and people worried about his injury condition and golf competi-
tions; after his affair was brought to light, people used words related
to the ‘scandal’ such as ‘brown’ and ‘mistress’, blamed his sexual
abuse, and felt curious about the possible ‘divorce’. Again, by ob-
serving Table 4, we can easily find that people kept great attentions
on the ‘Copenhagen Climate Conference’ when it was opened at
Dec 07, but thought it was a ‘failure’ when the conference was
closed at Dec 18. In Table 2, the contents do not change much for
the movie ‘twilight’, which reflects the limit aspects of discussions
that could be an evidence to explain why its box office earnings
kept dropping after its release date.

5.2 Popular Events Analysis on DBLP
Data Collection. The Digital Bibliography and Library Project

(DBLP) is a database which contains the basic bibliographicin-
formation of computer science publications11. In this experiment,
we create our testing data set DBLP by selecting 12,949 authors
who published at least 10 papers in conferences of data mining and
database, and crawling down 500,417 papers published by these au-
thors during the period from 1990 to 2008. Concretely, we consider
one year as a time point, and titles and author lists are extracted to
form the documents and the co-author networks.
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Figure 4: The Popularity Evolution of DBLP Topics.

Result Analysis. We select four research topics (i) ‘frequent’,
‘itemset’, ‘mining’, ‘association’, ‘rule’, (ii) ‘data’,‘cube’, ‘OLAP’,
‘aggregation’, ‘materialization’, (iii) ‘web’, ‘mining’, ‘social’, ‘net-
work’, ‘community’, and (iv) ‘topic’, ‘modeling’, ‘PLSA’, ‘LDA’,
‘latent’. We then track the popularity evolutions on the four topics.
As shown in Figure 4, (i) topic 1 was popular in last decade but
was fading out recently; (ii) topic 2 has a burstiness when Jim Gray
first introduced ‘data cube’ in 1996; (iii) topic 3 monotonically in-
creases; and (iv) topic 4 has two rise-ups when PLSA and LDA was
introduced in 1999 and 2002, respective.

To sum up, by comprehensively considering historic, textual and
structured information into a unified model, PET generates more
accurate trends, smoother diffusion, and meaningful content evolu-
tion for popular events in social communities.

6. RELATED WORK
PET is a novel model for tracking popular events in social com-

munities. It provides a unified probabilistic model that considers
1) the burstiness of user interest; 2) the evolution of network; 3)
the network effect in information diffusion; and 4) the evolution of
textual topics. To the best of our knowledge, there is no existing
model that considers all these four factors in a unified way. There
are, however, several lines of related work.

11http://www.informatik.uni-trier.de/∼ley/db

There have been extensive studies on detecting and trackingevents,
e.g., [14, 15, 7, 24, 26, 13, 32, 2, 29], which facilitate a wide range
of tasks such as search [15], clustering [23], classification [10], etc.

Event Detection. This line of work has a different goal from our
paper: they detect events and our paper aims to track events by
observing their popularity and content evolutions. Our event track-
ing models can be integrated with any existing detection algorithms
that can automatically discover the primitive event topic from dif-
ferent sources. These methods typically treat the text collection
alone and do not consider the network effect in a social commu-
nity.

Event Tracking. A state automation model was proposed by
Kleinberg,et al. [14] to detect bursty activities from an email ar-
rival stream, by assuming the rates of messages are determined by
underlying hidden states. [13] models the sequence of counting
data by combining two Poisson distributions - one for the normal
periodic count data and the other for the rare events. [21] evaluates
network diffusion models by considering the question that when a
local behavior can spread to the whole population. These methods
take either sequences of statistical data (e.g., word frequencies) or
interaction systems as the input, but do not simultaneouslyconsider
network structures and textual topics in the data stream, which are
shown by our study as quite effective in tracking popular events in
social communities.

Topic Modeling. Topic modeling approaches [12] [4] have been
developed to mine variations of topics in different contexts [28],
evolution of topics [20], and correlated patterns in multiple text
streams [26]. These methods generally do not consider the network
structures. Recently, incorporating network regularization in topic
modeling has been proposed [25] [19]. [19] uses a harmonic func-
tion to enforce the constraint that topic distribution on neighboring
nodes should be similar, and [25] defines a Markov Random Field
on the graph to model the influence between nodes in a generative
way. However, these methods typically do not consider the bursti-
ness of interests and the evolution of network structures. Thus they
can not be directly applied in our problem in order to track pop-
ular events. The Gibbs Random Field in our model gives much
more flexibility to incorporate various factors so that we are able to
model the diffusion of interest and evolution of topics together.

Information Diffusion. Information diffusion is a classic topic in
social network analysis, which models the cascade of behaviors on
a network structure (e.g., [21, 16, 3, 11]). Some of the potential
functions in the Gibbs Random Filed in PET are motivated from
the findings in the literature of information diffusion. This line of
work, however, do not consider textual topics, and usually do not
consider the evolution of ties. It is thus hard to be applied to track
popular events.

The most relevant work may be [30], which models the social
interactions and topic evolutions in an academic network. How-
ever, they treat the social interactions and the evolution of topics
in separate procedures, and do not consider the change of social
interactions over time.

7. CONCLUSION
In this work, we propose the novel problem of popular events

tracking in a social community. Given a stream of network struc-
tures, an associated stream of text documents, and the primitive
form of events, we could track the popularity of the events onthe
network and content revolution of the events over time. We make
several key observations about how the interest, topics andnetwork
structures mutually influence each other, and propose a novel sta-
tistical model that can handle all the constraints. The proposed
model, PET, not only provides a unified probabilistic framework to



model different factors in modeling the evolution of interests and
contents, but also covers classical models as special cases. Com-
prehensive experimental studies on two real-world datasets show
that our approach outperforms existing ones, and two of themare
actually special cases of our model in certain circumstances. Our
approach can potentially enable many more informative analysis
of certain topics on specific networks, and interesting real-world
applications.

One interesting future direction is to apply our model to detect
and track the evolution of ideas, gossips, and scientific innovations.
Another interesting future work is to consider the mixture of mul-
tiple events in PET. One may envision a real-time event search sys-
tem which finds and summarizes events in social communities.
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APPENDIX

A. MODEL INFERENCE

EΛ(n−1){log p(C|Λ)p(Λ)} ∝

− logZ −
1

λT

N
∑

i=1

(

(hk(i)− hk−1(i))
2 + λk,i(hk(i)− h

′
k(i))

2)

+
N
∑

i=1

∑

w∈W

c(dk,i, w)p(n)(zdk,i,w = θ
E
k ) log(hk(i)p(w|θEk ))

+
N
∑

i=1

∑

w∈W

c(dk,i, w)p(n)(zdk,i,w = θ
B
k ) log((1− hk(i))p(w|θBk ))

+
∑

w∈W

µEp(w|θE0 ) log(p(w|θEk ))


