
A General Optimization Framework for Smoothing
Language Models on Graph Structures

Qiaozhu Mei
Department of Computer

Science
University of Illinois at
Urbana-Champaign

Urbana,IL 61801

qmei2@uiuc.edu

Duo Zhang
Department of Computer

Science
University of Illinois at
Urbana-Champaign

Urbana,IL 61801

dzhang22@uiuc.edu

ChengXiang Zhai
Department of Computer

Science
University of Illinois at
Urbana-Champaign

Urbana,IL 61801

czhai@uiuc.edu

ABSTRACT
Recent work on language models for information retrieval
has shown that smoothing language models is crucial for
achieving good retrieval performance. Many different effec-
tive smoothing methods have been proposed, which mostly
implement various heuristics to exploit corpus structures. In
this paper, we propose a general and unified optimization
framework for smoothing language models on graph struc-
tures. This framework not only provides a unified formula-
tion of the existing smoothing heuristics, but also serves as
a road map for systematically exploring smoothing methods
for language models. We follow this road map and derive
several different instantiations of the framework. Some of
the instantiations lead to novel smoothing methods. Empiri-
cal results show that all such instantiations are effective with
some outperforming the state of the art smoothing methods.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Retrieval Models

General Terms: Algorithms

Keywords: Language modeling, smoothing, graph struc-
ture, document and word graph

1. INTRODUCTION
Language models have attracted much attention in the in-

formation retrieval community recently due to their success
in a variety of retrieval tasks [17, 5]. Fundamental to all the
language models used for retrieval is the issue of smooth-
ing, which has been shown to affect retrieval performance
significantly [22]. Indeed, in the basic language modeling
approaches [17, 7, 16, 24], the entire retrieval problem is es-
sentially reduced to the problem of estimating a document
language model which can be further reduced to how to
smooth the document language model. In other more so-
phisticated use of language models, such as relevance mod-
els [13] and model-based feedback methods [23], improved

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’08, July 20–24, 2008, Singapore.
Copyright 2008 ACM 978-1-60558-164-4/08/07 ...$5.00.

smoothing of document language models is also shown to
improve performance [14, 20].

Because of the importance of smoothing, it has been at-
tracting attention ever since Ponte and Croft’s pioneering
work on applying language models to retrieval [17]. Since
then many smoothing approaches have been proposed and
tested. In early days, most smoothing methods relied on
using a background language model, which is typically esti-
mated based on the whole document collection, to smooth a
document language model [17, 7, 16, 24]. Recently, corpus
graph structures have been exploited to provide more accu-
rate smoothing of document languages. The basic idea is
to smooth a document language model with the documents
similar to the document under consideration through either
clustering or document expansion [14, 9, 10, 6, 18, 11, 20].
Such a local smoothing strategy can leverage document sim-
ilarity structures to offer “customized” smoothing for each
individual document; this is in contrast to the simple global
smoothing strategy which smoothes all documents with the
same background model.

The local smoothing strategy has been shown to be quite
effective in several recent studies [14, 20, 11] and is the
best smoothing strategy known so far. In virtually all these
local smoothing methods, the smoothing formula eventu-
ally boils down to some form of interpolation of the origi-
nal unsmoothed document language model (i.e., the max-
imum likelihood estimate of the unigram language model)
and some “supporting” language models estimated based on
documents similar to that document. Different smoothing
methods differ in how they assign weights to all these dif-
ferent component language models. It is known that this
weighting of component language models can significantly
affect retrieval performance, and sometimes even a small dif-
ference in weighting can lead to visible difference in perfor-
mance [14]. Unfortunately, none of the existing work offers
a formal framework to optimize these weights; as a result,
there is no guidance on how to further improve these exist-
ing smoothing methods or develop new (potentially better)
smoothing methods. For example, it is unclear whether we
can exploit other structures such as word similarity graphs
to improve smoothing.

In this paper, we propose a general unified optimization
framework for smoothing language models on graph struc-
tures. While not explicitly stressed in the existing work, we
believe that graph structures are fundamental to smoothing;

indeed, we can interpret smoothing intuitively as to make
the language models of those nodes close to each other on
a graph structure similar to each other, so that the surface
representing all the language models would be “smooth.”

Our framework unifies two major heuristic goals in smooth-
ing within a single objective function: (1) “Fidelity”: A
smoothed language model should not deviate too much from
the original non-smoothed language model; (2) “Smooth-
ness”: After smoothing, the nodes that are close to each
other on the graph would have similar (smoothed) language
models; the closer the nodes are, the more similar their lan-
guage models are.

This framework not only provides a principled formula-
tion of the existing smoothing heuristics but also serves as
a road map for systematically exploring smoothing meth-
ods for language models. We follow this road map and
derive several different instantiations of the framework, in-
cluding smoothing on document graphs and smoothing on
word graphs, as well as smoothing document language mod-
els and query language models. Although document graphs
have been used for smoothing in the previous work, to the
best of our knowledge, no previous work has studied how to
smooth language models with a word graph. Moreover, ex-
isting work on smoothing has mostly attempted to smooth
document language models, while we also study how to use
a word graph to smooth a query language model.

These smoothing methods are evaluated using several stan-
dard TREC test collections. The results show that all the
derived smoothing methods can improve over the baseline
global smoothing method significantly, indicating that our
framework is reasonable. The derived smoothing methods
either outperform or perform similarly to the corresponding
state of the art local smoothing methods.

Given the importance of smoothing in the language mod-
eling approach to information retrieval and given the gen-
erality of our framework, we hope that the framework can
open up some promising new directions for finding an opti-
mal way of smoothing language models.

The rest of the paper is organized as follows. In Section 2,
we propose the general optimization framework for smooth-
ing language models with graph structure, and introduce a
unified solution. In Section 3, we follow the framework and
introduce four instantiations of the general framework. We
discuss the properties of those instantiations in Section 4
and evaluate them with empirical experiments in Section 5.
Finally, we discuss related work and conclude in Section 6
and 7, respectively.

2. SMOOTHING LANGUAGE MODELS WITH
GRAPH STRUCTURE

To motivate our framework, we start with a brief discus-
sion of the intuitions behind the major smoothing heuristics.

2.1 Intuitions
Given a non-smoothed document language model PML(w|d)

(i.e., a word distribution), all smoothing methods attempt to
generate a smoothed language model P (w|d) that can bet-
ter represent the topical content of document d. An obvious
improvement over PML(w|d) that almost all the smoothing
methods would do is to avoid assigning zero probabilities
to words that are not seen in d. Indeed, this was a major
motivation for smoothing discussed in [17]. In general, how-

ever, the purpose of smoothing is to improve the accuracy of
the estimated language model, not just avoiding zero prob-
abilities. The most useful resources for smoothing so far
have been documents that are similar to d, and methods
exploiting such document graph structures are among the
best performing methods [20, 9, 14].

The general procedure of all the smoothing methods using
corpus structures is as follows:

1. Construct a graph of documents where documents are
connected with edges weighted according to the simi-
larity between them 1.

2. For every document, estimate a structure-based lan-
guage model based on its nearest neighbors, or a clus-
ter which that the document belongs to.

3. Combine the structure-based language model with the
original unsmoothed document language model.

How are these methods different from traditional global
methods, such as the Jelinek-Mercer(JM) and the Dirichlet
smoothing [24]? Intuitively, they all went beyond the initial
goal of giving non-zero probabilities to unseen words. But
why do they all take such general steps? What are they
essentially trying to optimize? To explain this formally, let
us first look at what each step is trying to achieve.

By constructing a similarity graph of documents, one en-
sures that similar documents are located close to each other.
Using the argument of data manifold in machine learning,
if we project the documents onto a hyperplane, we expect
that documents with the largest similarity have the smallest
distance on the hyperplane [1].

By estimating a document language model based on the
neighbor documents or the closest clusters, one ensures that
the language model representation of a document is not sig-
nificantly different from the documents close to it.

However, with this objective alone, the smoothed lan-
guage model could dramatically deviate from the original
document. Indeed, an easiest solution is making all docu-
ments share the same representation. The combination with
original language model ensures that the smoothed language
model is not far from its original contents.

Thus we see that there are two major intuitive assump-
tions made in all such work: “documents in the same cluster
should have similar representation” [21, 14], and “neighbor
documents should have similar representation” [9, 20]. Such
assumptions also appear in the literature of semi-supervised
learning [25, 27], where the first one is referred as “global
consistency” and the latter as “local consistency”.

Indeed, if we project the graph structure of documents on
a hyperplane, the language model {P (w|d)} can be plotted
as surfaces on top of the hyperplane.

Figure 1 visualizes such an intuitive explanation with syn-
thetic data. The hyperplane shows a manifold structure of
documents and the surface plots P (w|d) for a given word w
over different documents. The left figure shows the maxi-
mum likelihood estimate of P (w|d), which has an unsmoothed
surface; in contrast, the figure on the right side presents
a smoothed surface (i.e., smoothed P (w|d)) with the ba-
sic shape of the surface preserved (i.e., being “loyal” to
PML(w|d)).
1Although the graph structure is not explicitly mentioned
in cluster-based methods [21, 14], this is a reasonable gen-
eralization.

Figure 1: Illustration of smoothing language mod-
els on a graph structure. Left figure: unsmoothed
model; Right figure: smoothed model

We can now see that graph structures are fundamental
to smoothing and a better graph would presumably lead to
better smoothing. For example, the simple smoothing strat-
egy of interpolating with the collection language model can
be regarded as smoothing on a clearly non-optimal graph
where document d is assumed to have equal distance to all
other documents in the collection (i.e., a “star” structure).
Thus it should not be surprising that smoothing on a graph
better reflecting the real semantic similarities between doc-
uments would be better, which has indeed been shown in
the literature [9, 20].

A major challenge in any smoothing method is how to
deal with the tradeoff between ”fidelity” (stay close to the
non-smoothed model) and ”smoothness” (be the same as
neighbors). In general, we have such a surface for each word
w′ (P (w′|d)). Thus conceptually we have as many surfaces
as the number of words in our vocabulary, and optimizing
this tradeoff for all the words can be very difficult without
an explicit objective function.

How can we ensure that the tradeoffs for different nodes
in the graph are all reasonable? In general, how can we
smooth all such surfaces in a principled way and achieve the
smoothing effect in Figure 1? The hyperplane in Figure 1
illustrates a manifold of documents. Does that have to be a
graph of documents? We can imagine that the hyperplane
presents other types of graphs, such as a word graph, and
plot the language models as different surfaces on that hy-
perplane. In the following section, we introduce a general
framework to smooth language models on a general graph
structure.

2.2 A General Framework
From Figure 1, we see that the notion of smoothing dis-

cussed in this paper is different from “assigning non-zero
probabilities to unseen words,” but aims at “achieving con-
sistency on a graph structure.” For continuous functions
like time series, smoothing is usually done with a regularizer
with well-defined derivatives. A graph structure, however,
defines a discrete domain. Discrete regularization has been
cast as an optimization problem in machine learning litera-
ture [26]; we apply it here to define a general optimization
framework for smoothing language models.

Formally, let us introduce the following definitions:

• G = 〈V, E〉: a graph defined in a retrieval problem.
u, v ∈ V are vertices and (u, v) ∈ E is an edge.

• fu: a smoothed value-based representation of vertex u
in the graph G (e.g., P (w|du)).

• f̃u: a non-smoothed (initial) value of u (e.g., PML(w|du)).

• w(u): a weight of the importance of vertex u in G.

• w(u, v): a weight of the importance of edge (u, v).

Note that G can be either directed or undirected. In this
paper, we only focus on the undirected case, and propose
the following general optimization framework for smoothing
language models on the graph structure.

O(C) = (1 − λ)
∑

u∈V

w(u)(fu − f̃u)2

+ λ
∑

(u,v)∈E

w(u, v)(fu − fv)2 (1)

This objective function generalizes the intuitions in Sec-
tion 2.1 well: The first term guarantees that the smoothed
language model does not deviate too much from its origi-
nal value, especially for more important vertices (controlled
by w(u)); the second term, also known as a harmonic func-
tion in semi-supervised learning, guarantees the consistency
of the language model on the graph. The right term can
also be written as λ

∑

u∈V

∑

v∈V w(u, v)(fu − fv)2 where
w(u, v) = 0 when there is no edge between u, v.

This framework is general. Clearly, a different selection
of {G, fu, f̃u, w(u), w(u, v)} leads to a different smoothing
strategy. This flexibility provides us a road map for under-
standing the existing smoothing strategies, as well as explor-
ing novel smoothing methods.

To use such a road map, any reasonable instantiation of
the framework must satisfy the following constraints.

1. fu and fv are comparable, that is, when f is fully
smoothed on G, fu and fv should be the same value.

2. w(u) offers a reasonable weighting that captures the
importance of vertex u in G.

3. w(u, v) offers a reasonable weighting that captures the
importance of edge (u, v) in G.

When we are smoothing language models, we could in-
stantiate fu as the probability of a word given a document,
i.e., P (w|d), and associate u with d, or w, or both. In this
case, there is an additional constraint, i.e.,

∑

w P (w|d) = 1.
What are reasonable instantiations of w(u) and w(u, v)?

Intuitively, w(u, v) could be instantiated as the closeness
of two vertices in the graph, or the similarity of u and v.
Using the similarity of two vertices to weight an edge has
been commonly adopted in existing literature ([9, 20]). How
about w(u)? There are also many studies in the context of
link analysis to model the importance of a vertex on a graph,
e.g., in-degree, PageRank [2], and HITS [8]. In this paper,
we use the degree of vertex u as the importance weight of u:

w(u) = Deg(u) =
∑

v∈V

w(u, v) (2)

Minimizing O(C) in Equation 1 will achieve the smooth-
ness of the surface in Figure 1. For instance, if we se-
lect {G = D, fu = P (w|du), f̃u = PML(w|du), w(u, v) =
Cosine(du, dv)}, the smoothing framework boils down to

smoothing language models with document similarity graph,
where edges are weighted with cosine similarity. To smooth
the language models {P (w|d)}d∈C , one needs to find a solu-
tion of {P (w|du)}du∈C = arg min{fu}u∈V

∑

w Ow(C), sub-
ject to the constraint

∑

w P (w|d) = 1, which achieves the
smoothness of multiple surfaces.

2.3 The Smoothing Procedure
Generally, to minimize O(C) in Equation 1, we can com-

pute the first-order partial derivatives of O(C), that is,

∂O(C)

∂fu

= 2(1 − λ)Deg(u)(fu − f̃u) + 2λ
∑

v∈V

w(u, v)(fu − fv)

Let ∂O(C)
∂fu

= 0 and plug in Equation 2, we have

fu = (1 − λ)f̃u + λ
∑

v∈V

w(u, v)

Deg(u)
fv (3)

Clearly, a solution of Equation 3 could minimize O(C) in
Equation 1. To get such a solution, we can start with fu =
f̃u and execute Equation 3 until converging. In practice,
we do not need to wait until complete convergence; a few
iterations of Equation 3 can already give an improved O(C).
We further discuss leave convergence in Section 4.

3. INSTANTIATIONS ON DOCUMENT AND
TERM GRAPHS

In Section 2, we have shown that smoothing document
language models with a document graph [14, 9, 20] is an
instantiation of the general framework. It is by no means the
only one. Indeed, any reasonable instantiation of {G, fu, f̃u,
w(u), w(u, v)} which satisfies the predefined constraints will
lead to a variant strategy of smoothing. In this section, we
explore different instantiations of the framework.

3.1 Smoothing with a Document Graph
The most common instantiation is smoothing with docu-

ment graphs (i.e., V = D). Although not in a unified way,
many heuristics have been proposed to smooth using docu-
ment graphs. Document language models are adjusted by
receiving weights from the cluster it belongs to [21, 14], or
by propagating weights from the nearest neighbors [9, 18,
20, 19]. A commonly used instantiation of w(u, v) is the co-
sine similarity of two documents. As shown in Section 2.2,
a reasonable instantiation of fu and f̃u is fu = P (w|du) and

f̃u = PML(w|du). Plugging these in Equation 3, we have
Smooth Document Language Models (fu = P (w|du)):

P (w|du) = (1 − λ)PML(w|du) + λ
∑

v∈V

w(u, v)

Deg(u)
P (w|dv) (4)

One may notice that we did not utilize the constraint
∑

w P (w|d) = 1. As a matter of fact, when we start with
P (w|du) = PML(w|du), this constraint is naturally satisfied
after every iteration of Equation 4.

Another interesting instantiation of fu is simply the rele-
vance score of a document du for a query q.

Smooth Relevance Scores (fu = s(q, du)):

s(q, du) = (1 − λ)s̃(q, du) + λ
∑

v∈V

w(u, v)

Deg(u)
s(q, dv) (5)

This process bypasses language models, but smoothes the
relevance score directly. Similar heuristics appear in existing
work where corpus structure is utilized to rerank documents
with score propagation and regularization [10, 6, 18, 11]. In
our experiments, we will show that this instantiation is not
as effective as smoothing document language models.

3.2 Smoothing with a Word Graph
Recent work in natural language processing has intro-

duced new ways to represent documents with graph struc-
tures of words [15]. Indeed, in many scenarios we are acces-
sible to a graph of terms (e.g., a word similarity graph, an
entity-relation graph, or an ontology graph). Although most
existing work smoothes language models with a document
graph, we show that the general smoothing framework can
also be instantiated with word graphs, which leads to novel
smoothing procedures.

In such smoothing procedures, G is now a word graph
(i.e., V = W). w(u, v) can be instantiated with either co-
occurrence or mutual information of two words. We intro-
duce the following novel instantiations:

Smooth Document Language Models (fu = P (wu|d)
Deg(u)

):

P (wu|d) = (1 − λ)PML(wu|d) + λ
∑

v∈V

w(u, v)

Deg(v)
P (wv|d) (6)

Note that unlike a document graph where all documents
are treated equally, there is significant prior knowledge of
using different words. Some words tend to be used more
than others even if they are highly related (e.g., car v.s.
vehicle). Some words are more important than others and
thus should be assigned a larger value. In this instantia-

tion, we use fu = P (wu|d)
Deg(u)

rather than P (wu|d) to make fu

and fv comparable. Please note that Deg(u) is just one
choice of denominator which captures the importance of a
word (which is proportional to the pagerank value on G).
One could use other choices such as idf . This results in
a different denominator from the one used in Equation 4
and Equation 6 (Deg(u) v.s. Deg(v)).

∑

w P (w|d) = 1 is
now naturally satisfied after any iteration of Equation 6.
This smoothing strategy is not well studied in existing IR
literature. Interestingly, if we use a similar instantiation,
fu = P (du|w)/Deg(u) on a document graph based on doc-
ument similarity, we would be able to derive the term count
propagation smoothing method proposed in [19].

The instantiations discussed so far aim at smoothing doc-
ument language models, where fu ∝ P (wu|d). When sys-
tematically examining variations of the framework, one may
naturally ask whether this is the only way to instantiate fu.
In language modeling retrieval models, the query language
model is also an important component. Can we also lever-
age the framework to smooth query language models? The

answer is yes. Let fu = P (wu|q)
Deg(u)

, we have

Smooth Query Language Models (fu = P (wu|q)
Deg(u)

):

P (wu|q) = (1 − λ)PML(wu|q) + λ
∑

v∈V

w(u, v)

Deg(v)
P (wv|q) (7)

This smoothing method is related to query expansion (i.e.,
to add new terms to the query and adjust the weights of
query words). In model-based feedback [23], where a new
query model is estimated from feedback documents, we ex-
pect that this novel smoothing strategy can also be applied.

4. DISCUSSION OF THE FRAMEWORK
The objective function of smoothing in Equation 1 is re-

lated to existing work of discrete regularization in semi-
supervised learning and manifold learning [27, 1, 25, 26].
Many different regularizers and objective functions have been
proposed in that context. We use Equation 1 instead of oth-
ers because it is general, has many nice properties, and has
natural connections to many existing concepts and models.
Some recent work [6] also used one of them for the problem
of retrieval score regularization.

4.1 Connection with Existing Models
Equation 6 and Equation 7 look similar to the updating

formula of PageRank [2], except that PML(w|d) is used in-
stead of the uniformed jumping probability 1/N . Indeed,
Equation 6 can be rewritten as

P (wu|d) =
∑

v∈V

((1−λ)PML(wu|d)+λ
w(u, v)

Deg(v)
)P (wv|d), (8)

which is essentially computing a stationary distribution of a
positive-recurrent Markov chain, where

p(v → u) = (1 − λ)PML(wu|d) + λ
w(u, v)

Deg(v)
,

which is guaranteed to converge. Note that the initial value
of u would not be forgotten like in PageRank, because PML(wu|d)
has been embedded into transition probabilities. Intuitively,
we can imagine that when an author is composing a docu-
ment, he would randomly walk along such a Markov chain
of words, and write down a word whenever he passes it.

PageRank-like propagation has been used in [10, 18] to
rerank top retrieved documents, combined with other fea-
tures in a heuristic way.

What about Equation 4 and 5 for the document graph,
or more generally Equation 3? They are not like PageRank
now because a different denominator Deg(u) is used instead
of Deg(v). What is this essentially modeling? In fact, when
we transform the graph in a certain way (by adding nodes
and reassigning transition probabilities), one could see that
Equation 4 is actually computing the “absorption proba-
bility” – the probability of each node to be absorbed to a
termination state in such a transformed Markov chain. This
is also guaranteed to converge.

Note that if we only apply Equation 4 once, the smoothing
procedure is very similar to the method proposed in [20].
The difference is that they are using fu = c(w, du), which
we have shown to be not as reasonable as P (w|du).

How about language model smoothing with collection dis-
tribution (e.g., Jelinek-Mercer smoothing) and cluster struc-
tures [14, 11]? Intuitively, these models are smoothing doc-
ument language models with global structures (e.g., collec-
tion, clusters), so that the estimated language models could
satisfy global consistency (i.e., documents in the same global
structure has similar representation). [20, 9] explored near-
est neighbors, which guarantees local consistency of lan-
guage models. A regularization framework like Equation 1,
as shown in [25], satisfies both local and global consistency
on a manifold structure.

4.2 Selection of Graphs
The smoothing framework we proposed is general and or-

thogonal to the selection of graphs. As long as the graph
is constructed in a reasonable way (two related vertices are

connected with a higher weighted edge, and are expected
to have similar representations), the objective function in
Equation 1 can be applied.

Thus either a fully connected graph (with well scaled edge
weights) [25, 26], or a k-nearest-neighbor (kNN) graph [9,
10, 20] can be used for smoothing. We show our experi-
mental results with kNN graphs. On the other hand, any
reasonable distance/similarity measure could be applied to
compute w(u, v).

In scenarios that the number of documents/terms is too
large, as in the case of a commercial search engine, one may
think of using smaller subgraphs. Our proposed framework
can be easily adapted to subgraphs. Of course, we need to
ensure that the smoothed value of vertices in the subgraph
are comparable with the values of the unsmoothed vertices
(i.e., vertices not in the subgraph). The representations of
both smoothed documents and unsmoothed documents with
Equation 4 are all language models, which do not have a
scaling problem. As for term graphs (e.g., Equation 6), it is
easy to prove that

∑

u

P (wu|d) =
∑

u

PML(wu|d).

This formula indicates that the probability of smoothed
terms would not affect the probability mass of unsmoothed
terms.

5. EXPERIMENTS
In Section 2.2 and Section 3, we proposed a general frame-

work of smoothing language models and introduced various
instantiations with document graph and word graph, result-
ing in several different smoothing strategies. In this sec-
tion, we evaluate the effectiveness of these strategies empir-
ically. Experiment results show that all the instantiations
of the smoothing framework outperform the non-structural
smoothing methods. Two instantiated approaches also out-
perform the state-of-the-art graph-based smoothing meth-
ods.

5.1 Experiment Setup
We use four representative TREC data sets: AP88-90,

LA (LA Times), SJMN (San Jose Mercury News 1991), and
TREC8. They are identical to the data sets used in [20],
with the same source, query, and preprocessing procedure.
The first three data sets are also identical to the data sets
used in [14]. The basic statistics of the data sets are pre-
sented in Table 1. We used the title field of a query/topic
description to simulate short keyword queries in our exper-
iments.

#documents avg dl queries #total qrel
AP88-90 243k 273 51-150 21819

LA 132k 290 301-400 2350
SJMN 90k 266 51-150 4881
TREC8 528k 477 401-450 4728

Table 1: Basic information of data sets

For every data set, we construct a k-Nearest-Neighbor
(kNN) graph of all documents, as well as a kNN graph of
words. The edge weight of two documents is measured with
the cosine similarity, formally

sim(d1, d2) =

∑

w c(w, d1) × c(w, d2)
√

∑

w c(w, d1)2 ×
∑

w c(w, d2)2

.
The edge weight of two words is set to their mutual in-

formation [4]. We do not include the most frequent terms
(which appear in > 50% documents) or the most infrequent
terms (which appear in < 15 documents in TREC8, or < 7
documents in other data sets). This provides us with a word
graph of 40k ∼ 60k vertices. We control the density of the
graph by adjusting the number of nearest neighbors. To en-
sure that the graph is undirected, we add an edge between u
and v if either u is in v’s k-nearest neighbors, or the converse.

After we smooth all the document language models and
obtain the smoothed P ′(w|d) and possibly also a smoothed
query language model P (w|q), we use further smooth P ′(w|d)
using Dirichlet prior [22] and obtain

P ′′(w|d) =
|d|

|d| + µ
P ′(w|d) +

µ

|d| + µ
P (w|C)

We then use the KL-divergence retrieval model to rank docu-
ments, where each document is scored based on the negative
KL-divergence of the query language model and P ′′(w|d)
[12].

The additional Dirichlet smoothing is to model noise in
the query and has been used in most existing work on smooth-
ing language models with corpus structure [14, 9, 20]. When
P ′(w|d) is unsmoothed (i.e., the maximum likelihood esti-
mate), it boils down to the Dirichlet prior model, which is
used as our baseline.

5.2 Basic Results
In Section 3, we introduced four different instantiations of

smoothing, namely: smoothing document language model
with document graph (DMDG); smoothing relevance score
with document graph (DSDG); smoothing document lan-
guage model with word graph (DMWG); and smoothing
query language model with word graph (QMWG).

We compare these four methods in Table 2 along with
the best results of the Dirichlet smoothing. In all our ex-
periments, the cutoff of relevant documents is set as 1000.
We see that all the four smoothing instantiations outperform
the non-structural smoothing baseline. DMDG and DMWG
outperform Dirichlet prior consistently and significantly.

Among the four proposed methods, we see that smooth-
ing document language model tends to achieve better per-
formance than smoothing query language model or the rel-
evance score. One possible explanation is that smoothing
document models is superior to smoothing query language
models, since that the short keyword query only conveys
very sparse information about the user’s information need.
Expanding a query in a wrong direction could hurt the re-
trieval performance.

Regularizing relevance scores has been discussed in exist-
ing literature [6], where a similar approach to DSDG is used.
Clearly, we see that smoothing relevance scores alone is not
as effective as smoothing the document language models. In-
deed, by dealing with the richer representation of document
language models, one has more flexibility in controlling the
core retrieval modules to achieve better performance.

Using a document graph vs. a query graph to smooth
document language models perform similarly, which is ap-
pealing since smoothing with word graph has not been well
explored in the existing literature, suggesting potential room
for further leveraging a word graph for smoothing.

5.3 Tuning Parameters
The selection of smoothing strategies would introduce a

different set of new parameters. Generally, when a kNN
graph is used, the size of the graph could be controlled by
tuning the parameter k. In Equation 1, we introduced a pa-
rameter λ to balance the consistency of the language models
on the graph, and the fidelity to the maximum likelihood
estimates. Figure 2 presents the sensitivity of the retrieval
performance to these introduced parameters.

From the left plot, we see that the performance is rela-
tively stable over different k, even if a document only has a
few (e.g., 10) neighbors. This is different from the observa-
tion made in [20], where smoothing with a larger number (
≥ 100) of neighbors significantly outperforms a small num-
ber (≤ 50) of neighbors. This is because when propagations
are processed iteratively, a few closest neighbors could well
capture the local consistency.

Similar patterns are observed from other data sets and
smoothing methods. We set the number of neighbors to
100 for a document graph and 50 for a word graph, unless
specifically noted.

From the plot in the middle of Figure 2, we see that when
λ is larger, the estimated language models would achieve
more consistency on the surface at the expense of deviating
more from the original estimates. When λ is set smaller, less
smoothing effect is added to the language models. Setting
λ in the range of 0.3 ∼ 0.7 usually yields good retrieval
performance.

Finally, how many iterations do we have to run for the
equations proposed in Section 3? In fact, we could even
find a closed form solution for such a regularizer [25, 6].
However, its computation is time consuming. Intuitively,
most smoothing effect occurs in the first a few iterations,
which is indeed confirmed in the right plot of Figure 2, where
we see that the performance becomes quite stable after a few
iterations. Thus we may just run the algorithm for a few
iterations in practice.

5.4 Comparison with existing methods
We now compare our methods with some state of the art

smoothing methods.

CBDM DELM DMDG DMDG (1 iter.)
AP88-89 0.233 0.250 0.254 0.252

LA 0.259 0.265 0.260 0.258
SJMN 0.217 0.227 0.235 0.229
TREC N/A 0.267 0.271 0.270

Table 3: Performance (MAP) comparison with ex-
isting smoothing methods

Liu and Croft [14] proposed a method (denoted as CBDM)
to smooth document language models with cluster language
models. [20] also proposed a smoothing strategy (denoted
as DELM) to expand a document with its nearest neigh-
bors. Both methods utilized the document similarity and
are related to the DMDG instantiation we proposed. As
we use the identical data sets and preprocessing procedures
with their work, we compare the performance of our DMDG
method with the best results reported in their papers.

We see that DMDG consistently outperforms CBDM. It
also outperforms DELM on three data sets except for LA,
but with a smaller improvement. This is not surprising, be-
cause the DELM method is very similar to our DMDG in-

Data Dirichlet DMDG DMWG† DSDG QMWG
AP88-90 MAP 0.217 0.254 (+17.1%***) 0.252 (+16.1%***) 0.239 (+10.1%***) 0.239 (+10.1%)

pr@10 0.432 0.447 (+3.5%*) 0.461 (+6.7%***) 0.453 (+4.9%**) 0.451 (+4.4%)
LA MAP 0.247 0.258 (+4.5%**) 0.257 (+4.0%**) 0.251 (+1.6%**) 0.247 (0.0%*)

pr@10 0.287 0.290 (+1.0%) 0.301 (+4.8%*) 0.285 (-0.7%) 0.287 (0.0%)
SJMN MAP 0.204 0.231 (+13.2%***) 0.229 (+12.3%***) 0.225 (+10.3%***) 0.219 (+7.4%)

pr@10 0.298 0.320 (+7.4%***) 0.326 (+9.3%***) 0.329 (+10.4%***) 0.326 (+9.4%)
TREC MAP 0.257 0.271 (+5.4%***) 0.271 (+5.4%**) 0.261 (+1.6%) 0.260 (+1.2%)

pr@10 0.450 0.468 (+4.0%*) 0.466 (+3.6%*) 0.464 (+3.1%) 0.474 (+5.3%**)

Table 2: Basic Results: Graph-based smoothing outperforms non-structural smoothing
†For efficiency reason, we conduct the DMWG smoothing by reranking the top 3000 results returned by Dirichlet method. All other

methods are applied on the complete set of documents. We measure the statistical significance of the improvement using Wilcoxon test.
*,**,*** means that the improvement hypothesis is accepted at significance level 0.1, 0.05, 0.01 respectively.

5 10 20 50 70 100 150 200

0.245

0.25

0.255

0.26

0.265

0.27

Number of Neighbors

M
A

P

TREC
AP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Lambda

M
A

P

TREC
AP
LA
SJMN

1 3 5 10 15 20

0.22

0.23

0.24

0.25

0.26

0.27

Number of Iteration

M
A

P

TREC
AP
LA
SJMN

Figure 2: The sensitivity of parameters (k, λ, and iteration)
All results are obtained by DMDG. k = 100, iteration = 10 unless specified. Similar patterns are observed from other methods.

stantiation if only one iteration of Equation 4 is processed.
The difference is that DELM also expands the document
length besides smoothing the language models. The per-
formance of DMDG with only 1 iteration is also presented
in Table 3, from which we see that running more iterations
improves retrieval performance. Similar improvements are
achieved with the DMWG method. This comparison shows
that the optimization framework of smoothing performs bet-
ter than exploring either local or global consistency alone.

5.5 Combination with Pseudo-feedback
Pseudo feedback has been proved to be effective to update

the query model using collection information [23]. It is inter-
esting to see whether pseudo feedback could bring additional
improvements to the graph-based smoothing methods, and
whether it could benefit from a graph structure.

[20] has already proved that combining pseudo feedback
and document graph achieves better results than both the
feedback model and the smoothing model alone. In this
work, we intend to explore whether combining the feedback
model and the word graph would improve performance, be-
cause smoothing with a word graph is our novel exploration.
Model-based feedback [23] combines the original query lan-
guage model with a feedback model estimated from the top
ranked documents. One natural thought is to smooth the
feedback model with a word graph and Equation 7. An al-
ternative way is to use the updated query model to retrieve
the smoothed documents (i.e., with DMWG method) while
the document language models are smoothed. We explored
both strategies, and summarize the results in Table 4.

We use the model-based method in [23] to estimate a
feedback model from the top 5 retrieved documents. In this
process, we fix the noise parameter to be 0.9. We tune the
combination parameter α (as in [23]) to get the optimal
performance of pseudo-feedback. From Table 4, we see that
both ways of combination improved performance. Combin-

FB FB+QMWG DMWG FB† FB+DMWG
AP 0.271 0.273 0.252 0.266 0.271 **
LA 0.258 0.267 0.257 0.257 0.267 **

SJMN 0.245 0.246 0.229 0.241 0.249 **
TREC 0.278 0.280 0.271 0.278 0.292 ***

Table 4: Performance (MAP) of combination of
word graph and pseudo feedback
†to be consistent with DMWG, we use the same setup feedback
(rerank the top 3000 docs and output 1000). This usually yields
to a reduced performance than ranking all the documents.

ing pseudo feedback and DMWG significantly improves both
DMWG and pseudo feedback. For the FB+DMWG model,
we simply reuse the optimal parameters for Feedback and
DMWG individually, without further tuning.

6. RELATED WORK
Most of the related work has already been discussed in

the previous sections of the paper. Here we give a brief
summary of all the related work.

Smoothing language models [3] for information retrieval
has been a fundamental and challenge problem in IR re-
search. Traditional smoothing methods explore the collec-
tion information in an unstructured way [17, 3, 24]. Our
work lies in the context of language model smoothing, but
we utilize the graph structures from the collection to smooth
document and query language models.

Recent research has explored document similarity graphs
to smooth language models [21, 14, 9, 18, 20]. Cluster struc-
tures [21, 14], nearest neighbors [9, 20], and propagation-
based methods [18, 11] have been proposed with various
heuristic solutions. Our proposed optimization framework
is a reasonable generalization of all such approaches, which
provides a unified solution to this problem, as well as a road
map for exploring novel smoothing approaches.

One of the concrete instantiations of our proposed frame-
work, smoothing relevance scores with document graph, is
related to score reranking work, such as [10, 6, 11]. [6]
explores a regularization approach which is related to the
objective function we introduced. However, they focus on
regularizing the relevance scores, while we explore the gen-
eral problem of smoothing language models. Experimental
results show that smoothing relevance score alone is not as
effective as smoothing document language models.

The proposed optimization framework is also related to
the graph-based learning theme in machine learning. Similar
objective functions have been explored in [27, 25, 26]. Their
main focuses are machine learning problems such as semi-
supervised learning and spectral clustering, while we explore
graph structures to smooth language models for retrieval.

7. CONCLUSIONS
In this paper, we proposed a general optimization frame-

work for smoothing language models with graph structures.
The proposed framework not only gives a principled justifi-
cation for many of the heuristics and a unified solution to
smoothing language models with graphs, but also provides
a road map for the exploration of novel smoothing methods.
Following such a road map, we introduced four instantia-
tions of smoothing methods, including two novel methods of
smoothing document and query models with a word graph.
Empirical results show that all proposed instantiations sig-
nificantly improve over the unstructured smoothing meth-
ods. The two methods of smoothing document language
models outperform the state of the art smoothing methods.

The proposed framework opens up many interesting ques-
tions for future research: Can we combine a document graph
and a word graph to enhance the performance? Can we ex-
plore other types of graphs, like a query-dependent graph?
How can we explore traditional IR heuristics in this unified
framework? All these questions should be further studied.

Acknowledgments
We thank the anonymous reviewers for their useful com-
ments. This work is in part supported by the National
Science Foundation under award numbers IIS-0347933, IIS-
0713571, and IIS-0713581. The first author is supported by
a Yahoo! PhD Fellowship.

8. REFERENCES
[1] M. Belkin and P. Niyogi. Laplacian eigenmaps for

dimensionality reduction and data representation.
Neural Comput., 15(6):1373–1396, 2003.

[2] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Comput. Netw. ISDN
Syst., 30(1-7):107–117, 1998.

[3] S. F. Chen and J. Goodman. An empirical study of
smoothing techniques for language modeling.
Technical Report TR-10-98, Harvard University, 1998.

[4] K. W. Church and P. Hanks. Word association norms,
mutual information, and lexicography. Comput.
Linguist., 16(1):22–29, 1990.

[5] W. B. Croft and J. Lafferty, editors. Language
Modeling and Information Retrieval. Kluwer Academic
Publishers, 2003.

[6] F. Diaz. Regularizing ad hoc retrieval scores. In
Proceedings of CIKM’ 05, pages 672–679, 2005.

[7] D. Hiemstra and W. Kraaij. Twenty-one at TREC-7:
Ad-hoc and cross-language track. In Proceedings of
TREC 7, pages 227–238, 1998.

[8] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. J. ACM, 46(5):604–632.

[9] O. Kurland and L. Lee. Corpus structure, language
models, and ad hoc information retrieval. In
Proceedings of SIGIR’ 04, pages 194–201.

[10] O. Kurland and L. Lee. Pagerank without hyperlinks:
structural re-ranking using links induced by language
models. In Proceedings of SIGIR ’05, pages 306–313.

[11] O. Kurland and L. Lee. Respect my authority!: Hits
without hyperlinks, utilizing cluster-based language
models. In Proceedings of SIGIR ’06, pages 83–90.

[12] J. Lafferty and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In Proceedings of SIGIR’01, pages 111–119.

[13] V. Lavrenko and B. Croft. Relevance-based language
models. In Proceedings of SIGIR’01, pages 120–127.

[14] X. Liu and W. B. Croft. Cluster-based retrieval using
language models. In Proceedings of SIGIR’ 04.

[15] R. Mihalcea and D. R. Radev, editors. Textgraphs:
Graph-based methods for NLP, 2006.

[16] D. H. Miller, T. Leek, and R. Schwartz. A hidden
Markov model information retrieval system. In
Proceedings of SIGIR 1999, pages 214–221, 1999.

[17] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of
SIGIR 1998, pages 275–281, 1998.

[18] T. Qin, T.-Y. Liu, X.-D. Zhang, Z. Chen, and W.-Y.
Ma. A study of relevance propagation for web search.
In Proceedings of SIGIR 2005, pages 408–415, 2005.

[19] A. Shakery and C. Zhai. Smoothing document
language models with probabilistic term count
propagation. Information Retrieval, 11(2):139–164,
2008.

[20] T. Tao, X. Wang, Q. Mei, and C. Zhai. Language
model information retrieval with document expansion.
In Proceedings of HLT/NAACL 2006, pages 407–414.

[21] J. Xu and W. B. Croft. Cluster-based language
models for distributed retrieval. In Proceedings of
SIGIR’ 99, pages 254–261, 1999.

[22] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Transactions on Information Systems.

[23] C. Zhai and J. Lafferty. Model-based feedback in the
language modeling approach to information retrieval.
In Proceedings of CIKM’ 01, pages 403–410, 2001.

[24] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In Proceedings of ACM
SIGIR’01, pages 334–342, Sept 2001.

[25] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and
B. Schölkopf. Learning with local and global
consistency. In NIPS, 2004.

[26] D. Zhou and B. Schölkopf. Discrete regularization.
Semi-supervised learning, pages 221–232, 2006.

[27] X. Zhu, Z. Ghahramani, and J. D. Lafferty.
Semi-supervised learning using gaussian fields and
harmonic functions. In ICML, pages 912–919, 2003.

