PERSONALIZED TAG RECOMMENDATION

Ziyu Guan[†], Xiaofei He[†], Jiajun Bu[†], Qiaozhu Mei[‡], Chun Chen[†], Can Wang[†]

[†] Zhejiang University, China [‡]Univ. of Illinois/Univ. of Michigan

Del.icio.us (Web page)

Flickr (Photos & Image)

CiteULike (Research publications)

Last.fm (Music)

Compared to Web Search

Tag Recommendation in Real Applications

Artist to annotate

- Last.fm (Music)
 - Suggested tags: tags for the artist, selected by other users
 - Your tags: historical tags of the user
- Delicious (Web page)
 - <u>"Popular" tags</u>: tags selected by other users
 - <u>"Recommended" tags</u>:"Popular" U "Your tags"

Personalization is Important

 Different users' bookmarks for the home page of ESPN: http://www.espn.com

Challenges

- Lots of web objects have few tags;
- Lots of users have few/no tags;
- Hard to combine "popular tags" and "your tags";
- Collaborative, robust recommendation algorithms needed

Our Work v.s. Previous Work

- Most previous work focused on recommending tags for resources, ignoring the user factor.
 - Collaborative filtering based on documents ("users") and tags ("movies");
- Combine with user preference in an ad hoc way.
- We address personalized tag recommendation.
- An optimization framework with a unified objective function.

General idea of Our Approach

Graphbased Ranking of Multi-type interrelated Objects

Ranked list of tags

Representation of Tagging Data

 Tagging data involves three interrelated types of objects: users, docs and tags

Highlights of Our Approach

- "Query" = document + user
- Exploit the affinity relation between documents; annotation relation between documents and tags; preference relation between users and tags.
- Model the problem as a graph-based ranking problem; developed a novel algorithm named Graph-based Ranking of Multi-type interrelated Objects (GRoMO)

Graph-based Regularization

- Given data graph G = (V, E, W), to learn a function $f: V \to \mathbb{R}$ from the data (e.g. for ranking or semi-supervised learning)
- A graph-based regularizer makes f smooth over the graph, i.e. similar data points should have similar function values (Zhou et al. NIPS04):

$$\frac{1}{2} \sum_{i,j} W_{ij} \left(\frac{1}{\sqrt{D_{ii}}} f_i - \frac{1}{\sqrt{D_{jj}}} f_j \right)^2 = \mathbf{f}^T \mathbf{L} \mathbf{f}$$

D: diagonal matrice,
$$D_{ii} = \sum_{j} W_{ij}$$

Problem Formulation (Personalized Tag Recommendation)

Notations

- D the set of documents
- T the set of tags
- □ U the set of users
- G_D affinity graph of \mathcal{D}
- □ $H_{D,T}$ bipartite graph describing □ annotation relationships between \mathcal{D} and \mathcal{T}
- H_{U,T} bipartite graph describing users' historical usage of tags

Emploitcheraffinistion document

Clationshipkingtweenys

documentsancetegag usage history to represent
a user (profile of tag preferences)

Problem Formulation (GRoMO)

Notations

- W adjacency matrix of G_D
- R adjacency matrix of
 $H_{D,T}$
- y_d, y_t query vectors of documents and userpreferred tags
- f, g ranking vectors of documents and tags
- Problem: given W, R, y_d and y_t , to learn f and g

Optimization Framework of GRoMO

$$Q(\mathbf{f}, \mathbf{g}) = \frac{1}{2} \mu \sum_{i,j=1}^{|\mathcal{D}|} W_{ij} \left(\frac{1}{\sqrt{D_{ii}}} f_i - \frac{1}{\sqrt{D_{jj}}} f_j \right)^2$$

Similar documents have similar scores

If a tag is often used for a document, they have similar scores

$$+ \eta \sum_{i=1}^{|\mathcal{D}|} \sum_{j=1}^{|\mathcal{T}|} R_{ij} \left(\frac{1}{\sqrt{D_{ii}^d}} f_i - \frac{1}{\sqrt{D_{jj}^t}} g_j \right)^2$$

$$+\alpha \sum_{i=1}^{|\mathcal{D}|} (f_i - y_{di})^2 + \beta \sum_{i=1}^{|\mathcal{T}|} (g_i - y_{ti})^2, \quad (1)$$

Keep fidelity to the targeted document (s)

Keep fidelity to userpreferred tags

$$\langle \mathbf{f}, \mathbf{g} \rangle = \arg \min_{\mathbf{f}, \mathbf{g}} Q(\mathbf{f}, \mathbf{g}).$$

Matrix-vector Form

Define

$$\mathbf{S}_W = \mathbf{D}^{(-1/2)} \mathbf{W} \mathbf{D}^{(-1/2)}, \qquad \mathbf{S}_R = \mathbf{D}_d^{(-1/2)} \mathbf{R} \mathbf{D}_t^{(-1/2)}.$$

The cost function can be written as

$$Q(\mathbf{f}, \mathbf{g}) = \mu \mathbf{f}^T (\mathbf{I} - \mathbf{S}_W) \mathbf{f} + \eta (\mathbf{f}^T \mathbf{f} + \mathbf{g}^T \mathbf{g} - 2\mathbf{f}^T \mathbf{S}_R \mathbf{g})$$
$$+ \alpha (\mathbf{f} - \mathbf{y}_d)^T (\mathbf{f} - \mathbf{y}_d) + \beta (\mathbf{g} - \mathbf{y}_t)^T (\mathbf{g} - \mathbf{y}_t).$$

Closed-form solution:

$$\mathbf{f}^* = \left[(1 - \beta)\mathbf{I} - \mu \mathbf{S}_W - \frac{\eta^2}{\beta + \eta} \mathbf{S}_R \mathbf{S}_R^T \right]^{-1} \times \left(\alpha \mathbf{y}_d + \frac{\beta \eta}{\beta + \eta} \mathbf{S}_R \mathbf{y}_t \right)$$
$$\mathbf{g}^* = \frac{\eta}{\beta + \eta} \mathbf{S}_R^T \mathbf{f}^* + \frac{\beta}{\beta + \eta} \mathbf{y}_t.$$

Iterative Solution of GRoMO

• Set $\mathbf{f}(0) = \mathbf{y}_d$, $\mathbf{g}(0) = \mathbf{y}_t$. In the *t*-th iteration, first use $\mathbf{f}(t)$ to compute $\mathbf{g}(t+1)$:

$$\mathbf{g}(t+1) = \frac{\eta}{\beta + \eta} \mathbf{S}_R^T \mathbf{f}(t) + \frac{\beta}{\beta + \eta} \mathbf{y}_t,$$

• Then, use g(t+1) and f(t) to compute f(t+1):

$$\mathbf{f}(t+1) = \frac{\mu}{1-\beta} \mathbf{S}_W \mathbf{f}(t) + \frac{\eta}{1-\beta} \mathbf{S}_R \mathbf{g}(t+1) + \frac{\alpha}{1-\beta} \mathbf{y}_d.$$

Another Iterative form involving f only:

$$\mathbf{f}(t+1) = \frac{1}{1-\beta} \left(\mu \mathbf{S}_W + \frac{\eta^2}{\beta + \eta} \mathbf{S}_R \mathbf{S}_R^T \right) \mathbf{f}(t) + \frac{\alpha}{1-\beta} \mathbf{y}_d + \frac{\beta \eta}{(1-\beta)(\beta + \eta)} \mathbf{S}_R \mathbf{y}_t.$$

Graph Construction

- For W we use cosine similarities between documents as edge weights.
- We set W_{ij} (document affinity) as

$$W_{ij} = \begin{cases} cosine(i, j) & \text{if } i \in KNN(j) \text{ or } j \in KNN(i) \\ 0 & otherwise \end{cases}$$

• We set R_{ij} (B is the observed set of tagging data)

$$R_{ij} = |\{u_k \mid u_k \in \mathcal{U} \text{ and } (u_k, d_i, t_j) \in \mathcal{B}\}|$$

Setting Query Vectors

 Query vector y_d is set as follows

$$y_{di} = \begin{cases} 1 & d_i = d \\ 0 & \text{otherwise} \end{cases}.$$

 Tag frequency of a user tends to follow power law, hence y_t is set as

$$y_{ti} = \begin{cases} \frac{\left[\log(frequency_{u,t_i}) + 1\right]}{\sum_{t_j \in \mathcal{T}_u} \left[\log(frequency_{u,t_j}) + 1\right]} & t_i \in \mathcal{T}_u \\ 0 & \text{otherwise} \end{cases}$$

Frequency of tag v.s. relative position

$$t_i \in \mathcal{T}_u$$
 otherwise

Experiments

- Dataset
 - Our dataset contains 167,885 bookmarks.

- Statistics: 300 users, 11,795 Web pages, 17,777 tags
- We use 10% bookmarks as test data
 - Web page + user as "queries"; tags as gold standard.
- Evaluate with NDCG, average precision, average recall.

Baseline

- Global Vector Similarity (GVS): independent to the user, only dependent on the docs & tags.
 - Item-based collaborative filtering using documents and tags;
- Personal Vector Similarity (PVS): recommend the tags used by the user.
 - Using documents (and tags) tagged by the particular user

Experimental Results – Performance Comparison

GRoMO > GVS > PVS

Experimental Results – Performance Comparison

	NDCG@1			NDCG@3			NDCG@5		
Training Data (%)	GRoMO	PVS	GVS	GRoMO	PVS	GVS	GRoMO	PVS	GVS
50	0.5422**	0.4518	0.5136	0.5357**	0.4617	0.5209	0.5863**	0.5127	0.5593
60	0.5434**	0.4645	0.5202	0.5381**	0.4726	0.5122	0.5897**	0.5234	0.5542
70	0.5558**	0.4759	0.5301	0.5474**	0.4825	0.5179	0.5982**	0.5314	0.5593
80	0.5534	0.4873	0.5478	0.5483*	0.4907	0.5322	0.5990**	0.5398	0.5706

NDCG@1, NDCG@3, and NDCG@5.

GRoMO > GVS > PVS

GRoMO works especially better when smaller training data is observed

Experimental Results – Parameter Setting

 β versus each of the other parameters α , μ , η (fix the other two)

Observation: β need to be kept small

Optimal: $\mu = 0.3$; $\eta = 0.17$; $\alpha = 0.5$; $\beta = 0.03$

Experimental Results Tag Recommendation Example

URL: http://www.brand-name-coupons.com/how-to-search-amazon-for-deals/							
UserID	Ground Truth		GRoMO Recommended				
8414	amazon, bargains, Coupons, deals, discour howto, shopping	nt,	amazon, deals, bargains, shopping, discounts, coupons, bargain, s3, search, discount				
37982	amazon, cheap, coupons, sales, shopping		amazon, deals, shopping, bargains, coupons, discounts, s3, search, cheap, discount				
5472	blog, howto, shopping, tips, tools		shopping, tools, free, web, design, reference, software, howto, tips, amazon				

- Three Users' annotations in the last 10% testing data for the URL "http://www.brand-name-coupons.com/how-to-searchamazon-for-deals.html".
- Tags with bold font indicate matches with the tags actually used by the user.

Summary

- Personalized tag recommendation
- Graph-based ranking of multi-type interrelated objects
 - Doc-doc; doc-tag; and user-tag relations
- A solution by optimizing a unified objective function
- Future work
 - Explore doc-user, user-user relations
 - Parameter tuning
 - Efficient (e.g., distributed) solution for large scale data;

Thank You!

Derivation of Optimal Solution

Differentiate Q with respect to f and g, we obtain

$$\frac{\partial Q}{\partial \mathbf{f}} = [(1 - \beta)\mathbf{I} - \mu \mathbf{S}_W] \mathbf{f} - \eta \mathbf{S}_R \mathbf{g} - \alpha \mathbf{y}_d = 0.$$

$$\frac{\partial Q}{\partial \mathbf{g}} = (\beta + \eta)\mathbf{g} - \eta \mathbf{S}_R^T \mathbf{f} - \beta \mathbf{y}_t = 0.$$

$$\mathbf{f}^* = \left[(1 - \beta)\mathbf{I} - \mu \mathbf{S}_W - \frac{\eta^2}{\beta + \eta} \mathbf{S}_R \mathbf{S}_R^T \right]^{-1} \times \left(\alpha \mathbf{y}_d + \frac{\beta \eta}{\beta + \eta} \mathbf{S}_R \mathbf{y}_t \right)$$

$$\mathbf{g}^* = \frac{\eta}{\beta + \eta} \mathbf{S}_R^T \mathbf{f}^* + \frac{\beta}{\beta + \eta} \mathbf{y}_t.$$