
Personalized Tag Recommendation Using Graph-based
Ranking on Multi-type Interrelated Objects

Ziyu Guan1, Jiajun Bu1
∗

, Qiaozhu Mei2, Chun Chen1, Can Wang1

1Zhejiang Key Laboratory of Service Robot 2Department of Computer Science
College of Computer Science, Zhejiang University University of Illinois at Urbana-Champaign

Hangzhou, China, 310027 Urbana, IL 61801

{guanzh, bjj, chenc, wcan}@zju.edu.cn qmei2@uiuc.edu

ABSTRACT

Social tagging is becoming increasingly popular in many Web 2.0
applications where users can annotate resources (e.g. Web pages)
with arbitrary keywords (i.e. tags). A tag recommendation module
can assist users in tagging process by suggesting relevant tags to
them. It can also be directly used to expand the set of tags annotat-
ing a resource. The benefits are twofold: improving user experience
and enriching the index of resources. However, the former one is
not emphasized in previous studies, though a lot of work has re-
ported that different users may describe the same concept in differ-
ent ways. We address the problem of personalized tag recommen-
dation for text documents. In particular, we model personalized tag
recommendation as a “query and ranking” problem and propose
a novel graph-based ranking algorithm for interrelated multi-type
objects. When a user issues a tagging request, both the document
and the user are treated as a part of the query. Tags are then ranked
by our graph-based ranking algorithm which takes into consider-
ation both relevance to the document and preference of the user.
Finally, the top ranked tags are presented to the user as sugges-
tions. Experiments on a large-scale tagging data set collected from
Del.icio.us have demonstrated that our proposed algorithm signif-
icantly outperforms algorithms which fail to consider the diversity
of different users’ interests.
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Figure 1: Tag recommendation in Del.icio.us.

1. INTRODUCTION
Tagging refers to the behavior of bookmarking resources with

keywords (tags). In recent years, social tagging is becoming more
and more popular in many Web 2.0 applications where users can
freely annotate various resources, such as Web pages [7], academic
publications [6], and multimedia objects [8]. Tag recommendation,
an actively pursued research topic in tagging [22, 18, 19], is con-
cerned with suggesting relevant tags to the users, which they could
potentially use to bookmark the Web resources they visited. The
motivation of tag recommendation is twofold. From the system’s
perspective, it aims at expanding the set of tags annotating a re-
source [18], thus enriches the index of resources. From the user’s
perspective, like all other recommendation systems, the target is to
improve the experience of the user in her tagging process. In exist-
ing work, however, the latter perspective is not emphasized. Fig-
ure 1 shows the recommendation system provided by Del.icio.us
[7]. When a user issues a URL, the system shows both popular and
recommended tags for the URL.

Using a simple strategy, the popular tags are those frequently
used by other users to annotate this URL, while the recommended
tags are the intersection of this user’s tag vocabulary and all the tags
annotated to this URL. Such a strategy resembles collaborative fil-
tering [1] in that it exploits collaborative knowledge and does not
require the content of documents. However, the tag recommenda-
tion problem in reality is far more challenging. On one hand, since
the popularity distribution of URLs in a social tagging system like
Del.icio.us follows the power law [15], which indicates that most
URLs are only bookmarked once or twice, it is very likely that a



user issues a URL that few users, or even no user has ever book-
marked. In that case, the aforementioned strategy can hardly work.
There is a need to further explore the interrelation of the Web doc-
uments (e.g., URLs) as well as the tags used to bookmark them.

On the other hand, different users may have very different pref-
erences on the tags they would select to bookmark a document.
Previous work shows that people trying to convey the same idea
often disagree on how to describe it [17], due to different personal
habits and different levels of expertise in related domains (the no-
tion of basic levels [10]). For example, a mobile phone also can be
called cell phone, cellular phone or cellular telephone. The ESP
Game [21] demonstrates how difficult it is for two people to agree
on even simple descriptive words for a picture. Therefore, it is de-
sirable to develop personalized recommendation systems for social
tagging, which could improve user experience and encourage users
to annotate more resources.

1.1 General Idea
Neither of the two challenges is well addressed in literature. This

paper addresses the problem of personalized tag recommendation
for text documents. We model personalized tag recommendation as
a “query and ranking” problem and propose a novel algorithm for
Graph-based Ranking of Multi-type interrelated Objects (GRoMO)
for this purpose. Specifically, we construct an affinity graph on the
documents and a bipartite graph between documents and tags by
using the annotation relationships. When a user issues a tagging
request, both the document and the user are treated as query inputs.
The tags are then ranked by the proposed graph-based ranking al-
gorithm which considers both relevance to the document and pref-
erence of the user. Finally, the top ranked tags are presented to the
user for selection.

1.2 Connection to Personalized Search
As one may see, the problem here bears some similarities with

other paradigms of personalization, such as personalized search
[20, 16]. Indeed, the goal here is to recommend a personalized list
of tags given a user and a document, and personalized search can
be viewed as recommending a personalized list of documents given
a user and a query. However, there are fundamental differences
between these two problems, which makes existing techniques of
personalized search incapable to be applied to personalized tag-
ging: 1) the “queries” (i.e., documents to be bookmarked) in tag-
ging are much more informative than the queries in search, which
makes it easy to compute the interrelation (e.g., similarity) between
“queries.” This brings in a new opportunity to explore the underly-
ing structure of the “queries” in tagging, which is hard to achieve
in search. Meanwhile, the “documents” (i.e., candidate tags) in
tagging are far less informative than documents in search. This
prevents us from exploring the well studied content-based methods
in personalized search, such as feedback. 2) Techniques of person-
alized search usually rely on the initial set of relevant documents
returned by the search engine. Indeed, most personalized search
systems are developed by reranking the top documents in the list.
In the tagging context, however, the “documents” (tags) are an open
set. There is no “search engine” to obtain an initial list of relevant
documents (tags) for a query (document), especially for a previ-
ously unseen query (document). The relevance of a tag can be only
judged by the particular user, who could well tag a document with
an acronym only used by herself.

All these typical characteristics of tagging have brought in new
challenges as well as opportunities to its personalization problem.
Our algorithm can naturally address these problems by leverag-
ing the underlying structure of documents and the annotation rela-

tionships between documents and tags collectively contributed by
users.

The rest of the paper is organized as follows: the next section
outlines related work. Formal definition of the problem and our
novel graph-based ranking algorithm GRoMO are presented in sec-
tion 3. In section 4 we show how to use this algorithm to achieve
personalized tag recommendation. Experiments are described in
section 5, and finally, Section 6 concludes our work.

2. RELATED WORK
In this section we briefly review previous work related to ours:

automatic tag recommendation and graph-based ranking algorithms.

2.1 Tag Recommendation
Xu et al. exploit collaborative tagging information to recom-

mend tags [22]. Their recommendation algorithm favors tags used
by a large number of people on the target document (high author-
ity) and attempts to minimize the overlap of concepts among the
recommended tags to allow for high coverage of multiple facets.
This algorithm is similar to the recommendation strategy employed
by Del.icio.us, which cannot handle new documents. The P-TAG
algorithm [5] automatically generates personalized tags for Web
pages. The generated tags are relevant to the textual content of
target Web page as well as the documents residing on the surfer’s
Desktop. However, the problem is different from ours in that they
focus on extracting personalized keywords as tags from Web pages
to automate the tagging process while we concern the problem of
personalized tag recommendation using collaborative tagging data.
Sigurbjörnsson and Van Zwol study tag recommendation in Flickr
[18]. When a user submits a photo and enters some tags, an ordered
list of candidate tags is derived for each of those entered tags, based
on tag co-occurrence. These lists of candidate tags are then prop-
erly merged to form the final recommendation list. Their approach
depends on user entered tags and cannot be directly applied to re-
sources. Furthermore, since they only exploit co-occurrence data,
there may exist the problem of topic drift. A personalized, interac-
tive tag recommendation algorithm is introduced in [9], which pro-
vides a special treatment for personal tagging data. It also depends
on tag co-occurrence based on user entered tags. Thus, the afore-
mentioned disadvantages also apply in such an algorithm. Song
et al. developed a clustering-then-classifying framework for tag
recommendation [19]. They explore spectral clustering on bipar-
tite graph to simultaneously group tags, documents and words into
clusters. Then a two-way poisson mixture model is trained on the
obtained clusters. Given a query document, the algorithm computes
its posterior probabilities over those clusters, and then the tags are
ranked by considering both a static score and the corresponding
posterior probability. Their approach could not generate personal-
ized suggestions, and only the top-ranked tags in each cluster could
ever be recommended.

2.2 Graph-based Ranking
Our work is also related to graph based ranking. There have

been several developments in theory and algorithms for learning
on graph data [2, 3, 4, 12, 13, 23]. They are all developed within
the Laplacian-based regularization framework.

Zhou et al. propose a manifold ranking algorithm which ranks
data objects with respect to the intrinsic manifold structure among
the data objects [23]. The ranking function is obtained by preserv-
ing the local structure. In other words, two similar objects should
have similar ranks. A regularization framework is thus established
for this purpose. Agarwal [2] models preference training data as a
(directed) weighted graph and then minimizes the empirical rank-



Figure 2: An illustration of the ranking problem that we con-

sider. The solid lines represent the affinity relationships be-

tween objects in D. The dotted lines denote the relationships

between objects from D and those from T .

ing error regularized by the Laplacian smoothness constraint which
ensures that the ranking scores are similar for closely-connected
objects. For tag recommendation, we need to deal with multi-type
interrelated data objects. Therefore, the existing ranking algorithms
can not be directly applied.

3. GRAPH-BASED RANKING OF MULTI-

TYPE INTERRELATED DATA OBJECTS

3.1 Notation and Problem Definition
We have two types of objects, documents and tags, denoted by

D and T , respectively, an affinity graph GD for D and a bipar-
tite graph HD,T describing annotation relationships between D
and T . Figure 2 illustrates the situation described above. The left
dotted ellipse represents D and the right one represents T . The
solid lines represent the affinity relationships among documents
(e.g. we can use cosine similarity or Gaussian similarity as edge
weights.), and the dotted lines denote the annotation relationships
between documents and tags (e.g. in Fig. 2, if tag t2 is totally
used 3 times to annotate d6, then we can simply set the correspond-
ing edge weight to 3.). The problem is, given query documents
from D and/or query tags from T , to rank documents and tags,
respectively, according to their relevance to the queries. Let W

be a | D | × | D | affinity matrix corresponding to GD and R

be a | D | × | T | affinity matrix corresponding to HD,T . Let
f = [f1, . . . , f|O|]

T and g = [g1, . . . , g|T |]
T denote the ranking

vectors for documents and tags, respectively. We define a query
vector yd = [yd1, . . . , yd|D|]

T in which ydi = 1 if di ∈ D is a
query. yt is defined similarly for T . Then the goal is to infer f and
g from W, R, yd and yt. This definition is quite general, where
given a query of yd and/or yt, we can rank documents and tags
according to f and g, respectively.

3.2 Regularization Framework
We define three diagonal matrices D, Dd and Dt. The size of

D and Dd is | D | × | D |. Dt has size | T | × | T |. The
(i, i)-elements of D, Dd and Dt equal to the sum of the i-th row
of W, the sum of the i-th row of R and the sum of the i-th column
of R, respectively.

f and g should be as consistent as possible with the given infor-
mation, that is, W, R, yd and yt. This leads to the following cost
function associated with f and g:

Q(f ,g) =
1

2
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|D|
∑

i,j=1

Wij

(
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Dii

fi − 1
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Djj
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|T |
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(gi − yti)
2, (1)

where Dii, Dd
ii and Dt

ii are the (i, i)-elements of D, Dd and Dt,
respectively. The first and second terms of the right-hand side in the
cost function are the smoothness constraints. The first term means
that a good ranking of documents should assign similar ranking
scores to similar documents. The second term means if a tag is
strongly associated with a document (e.g. a tag is applied to a doc-
ument many times), then they should have similar ranking scores.
Please note that in the second term the ranking scores of documents

and tags are normalized by
√

Dd
ii and

√

Dt
jj , respectively. In other

words, the scores are normalized by the popularity of correspond-
ing nodes. The explanation is as follows: the documents annotated
by a generally popular tag such as “design” or “2008” may not
share a common topic; the large set of tags annotating a popular
document is likely to contain irrelevant tags or even spam. By nor-
malization, we can to some extent suppress popular documents and
tags from dominating result rankings. The normalization in the first
term is necessary for the optimization problem to be solvable. The
third and fourth terms measure the difference between the obtained
ranking scores and the pre-given labels which needs to be mini-
mized. The trade-off among these terms is controlled by the regu-
larization parameters µ, η and α and β, where 0 < µ, η, α, β < 1
and µ + η + α + β = 1.

We define matrices

SW = D
(−1/2)

WD
(−1/2), (2)

SR = D
(−1/2)
d RD

(−1/2)
t . (3)

With simple algebraic formulations, the first term can be rewritten
as follows:
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= f
T (I − SW )f. (4)



Similarly, the second term can be computed as follows:
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Then we can rewrite Equation (1) in the corresponding matrix-
vector form:

Q(f ,g) = µf
T (I− SW )f + η(fT

f + g
T
g − 2fT

SRg)

+α(f − yd)
T (f − yd) + β(g − yt)

T (g − yt). (6)

Then the optimal rankings are achieved when Q(f ,g) is minimized:

〈f ,g〉 = arg min
f,g

Q(f ,g). (7)

Differentiating Q(f ,g) with respect to f , we have

∂Q

∂f
= [(1 − β)I− µSW ] f − ηSRg − αyd = 0. (8)

Differentiating Q(f ,g) with respect to g:

∂Q

∂g
= (β + η)g − ηST

Rf − βyt = 0. (9)

Substituting equation (9) into equation (8), we obtain the closed
form solution for f∗:

f
∗ =

[

(1 − β)I− µSW − η2

β + η
SRS

T
R

]−1

×
(

αyd +
βη

β + η
SRyt

)

.

(10)

It can be proved that the matrix
[

(1 − β)I − µSW − η2

β+η
SRST

R

]

is invertible. We omit the proof due to space limitation. Once f∗ is
obtained, g∗ can then be computed as

g
∗ =

η

β + η
S

T
Rf

∗ +
β

β + η
yt. (11)

Although the closed form is achieved, in some practical cases, the
iterative form might be preferable. We can devise an iterative algo-
rithm like HITS algorithm [14] from Equation (8) and (9). Without
loss of generality, suppose f(0) = yd and g(0) = yt. In the t-th
iteration, we first use f(t) and g(t) computed in the last iteration to
compute g(t + 1):

g(t + 1) =
η

β + η
S

T
Rf(t) +

β

β + η
yt, (12)

and then f(t + 1) is computed from f(t) and g(t + 1):

f(t+1) =
µ

1 − β
SW f(t)+

η

1 − β
SRg(t+1)+

α

1 − β
yd. (13)

We can see that f(t) and g(t) reinforce each other in each iteration.
Substituting equation (12) into equation (13), we have

f(t + 1) =
1

1 − β

(

µSW +
η2

β + η
SRS

T
R

)

f(t)

+
α

1 − β
yd +

βη

(1 − β)(β + η)
SRyt. (14)

Figure 3: An illustration of the problem of personalized tag

recommendation.
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Figure 4: Frequency of tag usage as a function of the relative

position (descending order by frequency) for five users.

This form of iteration involves f only and is more efficient for com-
putation. By a similar analysis as in [23], it can be shown that f(t)
converges to f∗:

f
∗ = lim

t→∞
f(t). (15)

Once f∗ is obtained, we can then compute g∗ using equation (11).

3.3 Intuitive Interpretation of GRoMO
We can intuitively interpret the GRoMO algorithm as heat diffu-

sion among vertices of the graphs through edges until a stationary
state is established. The stronger the edge is (i.e. Wij and Rij ),
the more heat is transferred between the vertices connected by the
edge. There are two types of diffusion: 1) diffusion among objects
in D (first term of the right-hand side of Equation (1)); 2) diffusion
between D and T (second term); The third and fourth terms assure
that there are heat sources (i.e. queries) on graphs. Parameters µ,
η, α and β control the relative importance of two types of diffusion
and two types of sources. Hence, objects with many strong paths
(paths that have many strong edges, re-weighed by the µ or η) from
important query objects will have high ranking scores.



4. PERSONALIZED TAG RECOMMENDA-

TION
In this section, we propose to solve the problem of personal-

ized tag recommendation using the GRoMO algorithm introduced.
Figure 3 shows a sketch of the problem. We continue to use D
and T to represent the sets of documents and tags, respectively.
We are given n users U = {u1, . . . , un} and their tagging history
B = {(ui, dj , tk)} where (ui, dj , tk) means user ui has used tag
tk to annotate document dj . The task is, given a user-document
pair (u, d), to rank tags considering both relevance to d and tag
preference of u. There are mainly two issues we need to address:
the construction scheme of the affinity graphs and personalization
of the recommended tags. We also summarize the whole algorithm
at the end of this section.

4.1 Affinity Graph Construction
We need to construct matrices W and R. R is constructed as

follows: obtain the users’ tagging history B and set Rij =| {uk |
uk ∈ U and (uk, di, tj) ∈ B} |. W is constructed using similarity
measures between documents. Cosine similarity is used:

sim(di, dj) =
xi · xj

‖xi‖‖xj‖
, (16)

where xi is the feature vector representation of di. W is formed
by setting Wij = sim(di, dj) if i is among the k most similar
documents of j or j is among the k most similar documents of i.
All the other elements of W are set to zero.

4.2 Personalization
The recommended tags should be biased to the user’s tag vocab-

ulary. For example, in Figure 3, both t1 and t2 are used to annotate
d6. Suppose they have similar meaning. We should recommend t1
for u1 and t2 for u3 when d6 is involved. For u2, both t1 and t2
should be recommended since u2 may use synonyms when anno-
tating documents.

To retrieve relevant tags, the query vector yd is set so that only
the entry corresponding to the query document d is 1:

ydi =

{

1 di = d
0 otherwise

. (17)

As a document becomes popular (i.e. annotated many times by
users), the distribution of frequencies of tags annotating it gradually
forms power law [11]. If we use document d alone as a query, the
most frequently used tags may become dominant, which may not
conform to the user’s preference. We propose to utilize the query
vector yt to achieve personalization. By setting tags used by the
user as queries we can promote tags that are not only relevant to
the query document but also preferred by the user. The remaining
question is then how to distribute query weights to each tag used by
the user. We investigate tag usage patterns of users in Del.icio.us
(the dataset is described in section 5), and selectively show the tag
usage patterns of five users in Figure 4 (in log-log scale). The x-
axis represents relative positions, from the most frequent tag to the
least frequent tag, and the y-axis is the corresponding frequency of
the tag. All users are represented by the IDs in our database. “ui,
tv= j, all= l” means user with ID i has a tag vocabulary of size j
and has used them l times in total. We can see that the larger the
all/tv ratio, the better the points fit a power law. This means there
are a small number of tags used frequently by a user, while a large
number of tags are only used once or twice. Therefore, if a user
decides to use previously used tags to annotate a new document,
the frequently used tags should be used rather than those in the
long tail. However, assigning weights to each tag proportional to

Algorithm 1: Personalized Tag Recommendation

Input:
U : the set of all users
D: the set of all documents
T : tag vocabulary
B: the annotation history of all users

Offline Training

1. Construct the affinity matrix W. Set Wij to the cosine similarity between
document i and j (Eq. (16)) if i is among the k most similar documents of j
or j is among the k most similar documents of i. Set all other elements of
W to zero.

2. Construct the affinity matrix R, and set Rij = |{uk|uk ∈ U and
(uk, di, tj) ∈ B}|.

3. Normalize W and R by SW = D(−1/2)WD(−1/2) (Eq. (2)) and

SR = D
(−1/2)
d RD

(−1/2)
t (Eq. (3)), respectively.

4. Compute
[

(1 − β)I − µSW − η2

β+η SRST
R

]−1
(denoted by A−1

hereafter), with µ, η, α and β properly set.

Online Recommendation

5. Suppose user u issues document d. Set yd such that the entry corresponding
to d is 1 and all others equal 0 (eq. (17)). Set yt according to equation (18).

6. Calculate the ranking vector f∗ of documents:

f
∗

= A
−1

×

(

αyd +
βη

β + η
SRyt

)

7. Calculate the ranking vector g∗ of tags:

g
∗ =

η

β + η
S

T
Rf

∗ +
β

β + η
yt.

8. Recommend top ranking tags to u.

the frequency by which it was used by the user tends to bias to the
most frequently used tags. We use log frequencies:

yti =







[log(frequencyu,ti
)+1]

∑

tj∈Tu

[

log(frequencyu,tj
)+1

] ti ∈ Tu

0 otherwise

, (18)

where yti denotes the i-th entry of yt corresponding to ti ∈ T and
frequencyu,ti is the number of times user u has used tag ti. Tu

is the tag vocabulary of user u. We add 1 to the log frequency to
avoid zero weights.

The personalized tag recommendation algorithm is summarized
in Algorithm 1. We employ the closed form of GRoMO in our ex-
periments. In the online recommendation phase, we first use Equa-
tion (10) to compute the ranking vector f∗ of documents. Then the
ranking vector g∗ of tags is computed using Equation (11). Finally,
the top ranked tags are presented to the user.

5. EXPERIMENTS

5.1 Dataset
The dataset used in this paper is crawled from Del.icio.us. We

use a user-centric strategy to collect data. In particular, we sub-
scribed to 20 popular tags and harvested 47,355 distinct users ex-
tracted from the user field of each fetched bookmark, from Nov.
27th, 2008 to Dec. 2nd, 2008. We discarded users whose book-
marks were fewer than 30 or whose average number of tags per
bookmark is less than 3. For the remaining 15,732 users, we crawled
all their bookmarks from Del.icio.us (i.e. snapshots of the users’
tagging data by the time the bookmark pages were crawled). About



8.9 million bookmarks and 4.4 million URLs were obtained. We
then constructed a unweighted bipartite graph in which vertices
were users and URLs and applied HITS algorithm [14] to find au-
thoritative users. We selected 300 the most authoritative users and
12,677 URLs that were saved more than 6 times1 by these users.
The page content of these URLs were crawled. Among the suc-
cessfully downloaded pages, we discarded non-HTML pages and
non-English pages. Texts are extracted from the remaining Web
pages and URLs are represented using normalized word frequency
vectors. Finally, we ended up with a dataset containing 300 users,
11,795 URLs, 17,777 tags and 167,885 bookmarks, averaging 6.11
tags per bookmark.

5.2 Metrics and Compared Algorithms
For comparison, two variations of the Vector Similarity (VS) ap-

proach are employed: Personalized Vector Similarity (PVS) and
Global Vector Similarity (GVS). PVS works as follows: for a query
(u, d), calculate the similarity between d and each training docu-
ment annotated by u using Equation (16), and then the similarity
scores of s most similar documents are accumulated to the corre-
sponding tags used by u to annotate them. The top ranked tags
are recommended to u. GVS works similarly. In GVS, all training
documents, tags and bookmarks are exploited, and when calculat-
ing the ranking score of tag t, the similarity of a related top-s doc-
ument is weighted by the number of times tag t is applied to the
document normalized by the total number of times of all tags ap-
plied to the document. Note that PVS uses completely the personal
data of a query user and concerns only personalization, while GVS
considers the tagging data of all users and returns the same recom-
mendation for a document regardless of the query user. The param-
eter s is set empirically. When constructing W, we empirically set
k = 50. In experiments, we set the number of recommended tags
to 10.

For evaluation, we sort each user’s bookmarks by time and use
the first x% (we test different values of x, from 50 to 90) from each
user to form the training set. The last 10% bookmarks are treated
as test data as well as the ground truth. Since we concern person-
alization, it is reasonable to use the users’ bookmarks as ground
truth. Note that we can still recommend tags to documents only
appearing in the test set since we can recommend tags associated
with similar documents. We use Normalized Discount Cumulative
Gain (NDCG), precision and recall to evaluate recommendation al-
gorithms. Consider a test instance (u, d). NDCG at position n is
defined as

NDCG@n = Zn

n
∑

i=1

(2ri − 1)/ log2(i + 1), (19)

where ri is the rating of tag at rank i. In our case, ri is 1 if u actually
used this tag to annotate d and 0 otherwise. Zn is chosen so that the
perfect ranking has a NDCG value of 1. Precision is defined as the
number of correctly recommended tags divided by the number of
all recommended tags. Recall is defined as the number of correctly
recommended tags divided by the number of all tags u actually
used for d.

5.3 Exploring Parameter Settings in GRoMO
GRoMO has four parameters (three free parameters) which con-

trol the relative importance of different types of score diffusion.
To explore the influence of different parameter settings on the per-
formance of GRoMO, we use the first 90% of each user’s book-

1Bookmarks with zero tags are discarded because they are of no
use to both training and testing.

marks for training and the rest for testing. Due to space limitation,
we show only the results that reveal characteristics of parameters.
From preliminary experiments, we found user used tags can easily
reinforce one another through co-occurrence relationships bridged
by documents. Although the total query weight assigned to user
tags is equal to that of query document, the influence of the re-
inforcement phenomenon can easily dominate the score diffusion
process and consequently user frequently used tags are ranked high
regardless of the query document (i.e. overly biased to the user’s
preference). Therefore, we should keep β small. In particular, we
fix two of {µ, η, α} at 0.3 and vary β against the other one. Fig-
ure 5 shows the results. As we expect, when β varies against α
or µ, the performance first increases then decreases. Since µ and
α represent the influence from documents, Figure 5 illustrates that
we indeed can achieve better performance by trading off between
relevance and personalization. η controls the importance of score
diffusion between documents and tags. Increasing η, however, can
not only increase the score flowing from documents to tags, but also
amplify the reinforcement phenomenon mentioned above. Never-
theless, varying β against η exhibits similar performance curve as
varying β against µ or α. It seems β is more crucial. We select
the best parameter setting for the remaining experiments: µ = 0.3,
η = 0.17, α = 0.5 and β = 0.03.

5.4 Performance Comparison
We compare GRoMO with the other two algorithms with respect

to different amounts of training data. Specifically, we use the first
50%, 60%, 70%, 80% and 90% of each user’s bookmarks as train-
ing data, respectively. At each run, the last 10% of each user’s
bookmarks are used for testing. The results are presented in Fig-
ure 6. GRoMO is clearly the winner. Our algorithm significantly
outperforms both PVS and GVS (by t-test, α = 0.05). GVS per-
forms better than PVS. This can be explained by: 1) users do have
some degree of consensus on which tags to apply (i.e. the power
law distribution of tags annotating a document [11]); 2) consider-
ing the diverse interests of users, it may be difficult to find docu-
ments directly related to the current document from the user’s per-
sonal tagging history. However, by combining both collaborative
and personal data, we can achieve better performance on all evalu-
ation metrics, as shown by the curves of GRoMO. There is a drop
of performance for GRoMO on NDCG@10 when the training data
changes from 80% to 90%, which is unexpected. Though precision
and recall increase (Figure 6(b) and 6(c)), it seems the relevant tags
tends to reside at lower positions within the top 10 tags compared to
the case of 80% training data. We tune the parameters of GRoMO
using 90% data as training data, but it performs even better on
NDCG with less training data. We also report the performance
of the three recommendation algorithms on NDCG@1, NDCG@3
and NDCG@5, as shown in Table 1. By Wilconxon test, in most
cases our proposed algorithm significantly outperforms the other
methods at significance level α = 0.01. The 90% case is again due
to the performance drop of GRoMO on NDCG. In general, we find
that GVS can achieve competitive performance when training data
is abundant. However, such a condition is rarely satisfied in real
world.

Table 2 shows an example demonstrating that our algorithm can
correctly adapt to the users’ personal habits of tag usage. The page
“http://www.brand-name-coupons.com/how-to-search-amazon-for-
deals/” tells people how to find discounted deals in Amazon2. We
show three users’ annotations (the ground truth) in the last 10%
testing data and the corresponding tag lists suggested by GRoMO

2http://www.amazon.com/
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Figure 5: Exploring the influence of different parameter settings on the performance of GRoMO. 90% of each user’s data is used for

training. We fix two of {µ, η, α} at 0.3 and vary β against the other one. The figures show performance measured by (a) NDCG@10,

(b) Precision and (c) Recall.
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Figure 6: Comparison of recommendation algorithms in terms of (a) NDCG@10 (b) Precision and (c) Recall. Different percentages

of training data are considered. We use the last 10% bookmarks of each user for testing. The performance are averaged over all the

test instances.

(trained on 90% data). In our dataset, we find that the majority
of users annotating this URL use bargains, discount and coupons.
Only a few users use cheap to express the same meaning. From
Table 2 we can see that our algorithm correctly adapts to u37982’s
preference. We also find that in our dataset u37982 had already used
cheap several times before he/she annotated this URL. The same
analysis can be derived for u5472 with respect to tips. Note that
in the recommended list for u5472 there are some irrelevant tags.
They are mainly the user’s most frequently used tags.

6. CONCLUSIONS
We address the problem of personalized tag recommendation in

social tagging systems. We model it as a “query and ranking” prob-
lem and propose a novel graph-based ranking algorithm of Multi-
type interrelated objects (GRoMO). When a user issues a tagging
request, both the document and the user are treated as queries, ac-
counting for relevance and personalization, respectively. After ap-
plying GRoMO, the top ranked tags are presented to the user. Al-
though we consider text data in this paper, our algorithm is gen-
eral and can be applied to any social tagging systems as long as
a notion of similarity between resources is defined. We compare
GRoMO with Personalized Vector Similarity and Global Vector
Similarity on a dataset crawled from Del.icio.us. The results show
that GRoMO is effective and outperforms the other algorithms. For
future work, we would like to examine the efficiency issue of our
algorithm. It would be also interesting to apply GRoMO to other
types of tagging systems and other recommendation problems.
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