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ABSTRACT
How many pages are there on the Web? 5B? 20B? More?
Less? Big bets on clusters in the clouds could be wiped out
if a small cache of a few million urls could capture much
of the value. Language modeling techniques are applied to
MSN’s search logs to estimate entropy. The perplexity is
surprisingly small: millions, not billions.

Entropy is a powerful tool for sizing challenges and op-
portunities. How hard is search? How hard are query sug-
gestion mechanisms like auto-complete? How much does
personalization help? All these difficult questions can be
answered by estimation of entropy from search logs.

What is the potential opportunity for personalization? In
this paper, we propose a new way to personalize search,
personalization with backoff. If we have relevant data for a
particular user, we should use it. But if we don’t, back off
to larger and larger classes of similar users. As a proof of
concept, we use the first few bytes of the IP address to define
classes. The coefficients of each backoff class are estimated
with an EM algorithm. Ideally, classes would be defined
by market segments, demographics and surrogate variables
such as time and geography.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Text Mining

General Terms: Measurements

Keywords: entropy, search log, search difficulty, personal-
ization with backoff, demographics

1. INTRODUCTION
How many pages are there on the Web? 5B? 20B? More?

Less? How hard is search? How much does personaliza-
tion help? All are difficult but crucial questions to search
business.

Scale is hard. The bigger the web, the harder the search.
Search engines make large investments in expensive com-
puter centers in the cloud to index billions of pages. Could
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these large investments be wiped out if a small cache of a
few million pages could capture much of the value? What
if someone found a way to squeeze much of the value of the
cluster into a desktop or a mobile device? Is search more
like an Everest expedition (clusters in the clouds) or a walk
in the park (a little flash memory on a mobile device)?

Related questions come up in language. How big is En-
glish? One can find simple answers on the covers of many
dictionaries, but we would feel more comfortable with an-
swers from a more authoritative source than a marketing de-
partment. Many academics have contributed to this discus-
sion from many perspectives: Education, Psychology, Statis-
tics, Linguistics, and Engineering. Chomsky and Shannon
proposed two different ways to think about such questions:

• Chomsky: language is infinite [4]

• Shannon: 1.3 bits per character [24]

These two answers are very different. Chomsky’s answer
is about the total number of words; and Shannon’s answer is
about the perplexity, or the difficulty of using a language. A
dictionary could cover a lot of words, but not all of them are
actively used. Using a Chomskian argument, we could argue
that there are infinitely many urls. For example, one could
write a spider trap such as successor.aspx?x=0 which links
to successor.aspx?x=1 which links to successor.aspx?x=2.
In addition to intentionally malicious spider traps, there are
perfectly benign examples such as calendars1, where there
are infinitely many pages, one for each month, with links
from each month to the next. It is all too easy to build a web
crawler that finds itself attempting to materialize an infinite
set with finite resources. The crawler can easily consume all
available time and space.

Shannon offers a more practical answer. Although there
are a lot of pages out there, there are not that many pages
that people actually go to. This paper will estimate entropy
of urls (and queries and IP addresses) based on logs from
Microsoft’s www.live.com. We find that it takes just 22 bits
to guess the next url (or the next query or the next IP
address). That is a walk in the park (millions, not billions).
With all the talk about the long tail, one would think that
the web was astronomical. But the logs are tiny, far less
than Carl Sagan’s billions and billions [22].

As we will see, entropy is a powerful tool for sizing chal-
lenges and opportunities. How hard is search? How much
does personalization help?

1http://www.timeanddate.com/calendar/monthly.html?
year=2005&month=12&country=11



1.1 Personalization
Personalization is a hot topic, with a large body of work,

not only in the scientific literature, but also in commercial
practice. Many people use personalized search products ev-
ery day. A query for “personalized search” returns millions
of page hits. The first few pages of results are dominated
by the commercial practice. If you want to find the scien-
tific literature such as [29], you’ll have to refine the query
considerably by adding a keyword like “SIGIR.”

Why does personalization help? It is useful to know your
audience. Consider the ambiguous query: “MSG”. Depend-
ing on the user, this query could be looking for the sports
arena (Madison Square Garden) or the food additive (Mono-
sodium Glutamate). The search engine could do a better
job answering ambiguous queries like this if it had access to
demographic data and/or log data such as click logs.

Many acronyms are ambiguous. ACS can refer to the
“American Chemical Society,” the “American Cancer Soci-
ety,” the “American College of Surgeons” and more. Acronyms
take on special meanings inside many large organizations
and private enterprises. For example, for most people, MSR
means “Mountain Safety Research,” but inside Microsoft,
it means “Microsoft Research.” And of course, it means
other things to other people including: “Montessori School
of Raleigh,” “Mom Service Representative” and “My Sports
Radio.” PSS is a stock ticker for “Payless Shoes,” as well
an abbreviation of several different companies: “Physicians
Sales and Service,” “Phoenix Simulation Software,” “Per-
sonal Search Syndication,” “Professional Sound System,”
etc. But inside Microsoft, PSS refers to “Product Support
Services.” It helps to know your audience in order to know:

• what the terminology means

• which questions are likely to come up, and

• which answers are likely to be appreciated.

If we have the relevant data (such as click logs) for a
particular user, we should use it.

1.2 Personalization With Backoff
But what if we do not have data for a particular user (or

we cannot use it because of privacy concerns)? This paper
takes a backoff approach to personalization [17]. If we do
not have data for a particular user, back off to larger and
larger groups of similar users. As a proof of concept, users
are grouped into equivalence classes based on the most sig-
nificant bytes of their IP address. Personalization is then
conducted by combining estimates based on all four bytes
of the IP address, the first three bytes, the first two, and
so on. It would be even better to group customers by mar-
ket segments and/or collaborative filtering (users who ask
similar questions and click on similar urls). We leave these
suggestions for future work.

Segmentation is a traditional goal in marketing. Cus-
tomers are assigned to equivalence classes based on profile
features such as age, income, occupation, etc. It is useful
for an advertiser to know who it is talking to so that it can
target the message appropriately to the audience. An adver-
tiser such as Ford, for example, has a wide range of products.
Some products are more attractive to some customers, and
other products are more attractive to other customers. For
example, the firm may wish to target small trucks to a ru-
ral audience and hybrids to a green audience. Companies

would like to know if they are talking to college students,
teenagers, parents with young children, etc. It is useful to
know the class of your audience.

We find that a little bit of personalization is better than
too much or too little. Specifically, personalization with
backoff to higher bytes of IP addresses (especially the sec-
ond and third bytes) is better than 100% personalization
or no personalization. Too little personalization misses the
opportunity and too much runs into sparse data (and pri-
vacy). It isn’t feasible to know everything about everyone
(and they might not like it, if we knew too much).

Instead of assigning each customer to his own class (i.e.,
100% personalization), it is common to assign customers
to market segments. Market segments are typically defined
in terms of surrogate variables such as geography (e.g., zip
code), and time of day and day of week. These surrogate
variables are easy to work with, and hopefully, they are
well correlated with the more sensitive demographic vari-
ables such as those mentioned above.

2. ENTROPY ESTIMATION
How big is the web? How hard is search? How much does

personalization help?
To answer these questions and more, we collected a sam-

ple of logs from the Live search engine of about 1.5 year
up to July 2007. This 1.5 year data, denoted as the “big-
ger” dataset, contains 193 million unique IP addresses, 637
million unique queries, and 585 million unique urls. The
sample contains about 10 million 〈Q,URL, IP 〉 triples per
day. Each triple corresponds to a click from a particular IP
address on a particular url for a particular query.

We separated the logs between 1/1/2006 and 2/6/2006
specifically for personalization experiments. The January
data (the “smaller” data) was used for training the model
of personalization and the February data was used for val-
idation and testing. This one month training set contains
26 million unique IP addresses, 36 million unique queries,
and 63 million unique urls. Entropy was estimated based on
both the smaller data and the bigger data.

We assume that these sets are reasonably representative
of the tasks of interest, though of course, such assumptions
can be highly problematic. It is possible, for example, that
users could share the same IP address, and a user would
click on different urls under different conditions.

2.1 Notation

• U: a user

• IP: an IP address. IP will be used as a convenient
surrogate for U, though of course, it is possible for
multiple users to share the same IP address.

• C: a class of users. Users are grouped into equivalence
classes based on variables such as IP prefixes, time and
location. These variables are treated as convenient sur-
rogates for variables of interest such as demographics,
market segments, etc.

• URL: Uniform Resource Locator, the name of a web
document.

• 〈Q,URL, IP 〉: a triple from the search logs, indicating
that there was a click on a particular URL in response
to a particular query Q from a particular IP address.



2.2 Entropy (H)
Entropy2 is commonly used in information theory to char-

acterize the size of the search space. The larger the entropy
of a distribution is, the harder it is to predict the next event
[23]. In [24], Shannon used entropy to measure the diffi-
culty of predicting the next character of English. Shannon’s
entropy provides bounds, but does not say how to achieve
these bounds.

Similarly, we introduce entropy to measure the difficulty
faced by a search engine. Note that entropy measures the
size of the search space of the web, but not the number of
particular urls. This is practical since what a search business
cares about is the difficulty of search. How many bits does
it take to guess the next url that will be clicked on?

H(URL) = −
∑

URL

p(URL) log p(URL)

Conditional entropy measures the remaining entropy of
the target random variable given the value of another re-
lated random variable. We can thus use conditional entropy
to measure the difficulty of web search, when we know the
query, the user, etc. The search task, of course, is much
easier, because we are given the query, which is a huge hint.

H(URL|Q) = H(URL,Q) − H(Q)

How much does personalization help? That is, suppose
we give the search engine not only the query, but also the
IP address. How much does the IP address help?

H(URL|Q, IP ) = H(URL, Q, IP ) − H(Q, IP )

These quantities and more can be estimated from the
training data, a sequence of triples: 〈Q, URL, IP 〉. We will
present estimates of the entropy of urls, queries and IP ad-
dresses, taken one at a time. In addition, we will present
estimates of the joint entropies of all pairs of these quanti-
ties, as well as the three-way joint. From these quantities,
we can easily derive estimates of conditional entropies of any
combination of these variables (X) given any other combi-
nation of these variables (Y ) using the rule3

H(Y |X) = H(X, Y ) − H(X)

2.3 Cross Entropy
It is common practice to split the data into two pieces, one

for training and the other for validation. Entropy estima-
tion is fundamentally a prediction task. The task is to use
historical logs to estimate search experiences in the future.
Splitting up the data into separate training and validation
sets tend to produce larger (and more credible) estimates
of entropy. Cross entropy4 can be applied to measure the
average number of bits needed to guess the next url in new
logs (validation), given the distribution estimated from the
historical logs (training).

For example, the cross entropy of url given the query and
IP address is Hc(URL|Q, IP )

= −
∑

URL,IP,Q

pv(URL, IP,Q) log pt(URL|IP, Q)

where pt(URL|IP, Q) is estimated from the training set (his-
torical log data) and pv(URL, IP, Q) is estimated from the

2http://en.wikipedia.org/wiki/Information entropy
3http://en.wikipedia.org/wiki/Conditional entropy
4http://en.wikipedia.org/wiki/Cross entropy

validation set (new log data). Please note that minimizing
this cross entropy is equivalent to maximizing the likelihood
of the new log data, given the estimates from the history.

Based on these evaluation measures, we present a series
of experimental results which answers the questions in Sec-
tion 1. How big is the web? How hard is search? How much
does personalization help?

3. HOW LARGE IS THE WEB?
Entropy estimates for Q (query), URL and IP addresses

are shown in Table 1. The entropy estimates are surprisingly
small; 22 bits is millions, not billions. A cache of a few
million pages will cover much of the demand.

Combination One Month 1.5 Year
H(Q) 21.14 (25.1) 22.94 (29.2)

H(URL) 22.06 (25.9) 22.44 (29.1)
H(IP) 22.09 (24.6) 22.64 (27.5)

Table 1: The search space of the web is surprisingly
small; 22 bits of entropy corresponds to a perplexity
of millions, not billions.

The numbers in brackets correspond to the entropy if the
data is uniformly distributed, or the maximum entropy. The
actual estimates are significantly smaller than these upper-
bounds, and change very slowly with the increase of data.
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Figure 1: Entropy of logs grows much more slowly
than its upperbound

Figure 1 shows a clearer trend. With the bigger dataset,
the maximum entropies (upperbounds) increase significantly
( > 3 bits, 1 bit corresponds to a twice larger search space).
The actual entropies, however, stay around 22 to 23.

3.1 The Population Bound
How large could the web become? Chris Anderson points

out in “The Long Tail” (www.thelongtail.com) that online
distribution channels are making it possible for NetFlix,
Amazon and others to sell less of more [1]. But there are
limits to this process. NetFlix offers just 70,000 products5

and Amazon has just 8 million. That’s millions, not billions.
How about vanity searches? Even if everyone looks for

their home page, how many pages is that? Right now, there
are home pages for famous people and academics, but not
ordinary people like our neighbors. There aren’t that many

5http://www.netflix.com/BrowseSelection?lnkctr=nmhbs



famous people and academics: perhaps millions, but cer-
tainly not billions.

The telephone business is a mature business that has sat-
urated the market with universal service. Most people (and
most businesses) are listed in the white pages and/or yellow
pages (unless they opt out). Our neighbors are likely to be
in the phonebook, but they don’t have a home page on the
web.

Phonebooks are limited by the population. According to
the FCC,6 there are about 173 million telephone lines in the
US, or less than one per person.

Eventually, when billions of people have universal web
service and everyone has their own home page, the web will
be bounded by the population, billions of pages worldwide.
But, for the foreseeable future (a decade), the web will be a
growth market, far from saturation. Millions (not billions)
will be good enough until the market saturates.

3.2 Equilibrium: Supply = Demand
In addition to supply side accounting, we can also use a

demand side argument to justify the population bound.
Users have only so much time to surf the web. Suppose

that each user is willing to spend a few hours per day on the
web, assuming that they value the web about as much as
telephone (1 hour of usage per day per telephone number)7

and television (8 hours of usage per day per household)8.
Assume further that users can only visit so many pages,
given these time constraints. Thus, when the web eventually
saturates the market, the total number of page hits will be
constrained by the size of the population: O(population).

Let’s assume there is an equilibrium constraint between
suppliers and consumers. Consumers have limited time.
They can visit only so many pages within that time limit.
Suppliers will compete for these hits. Excluding illegitimate
suppliers (spam), reasonable suppliers depend on these hits
for their livelihood. Reasonable suppliers will post as many
pages as consumers can consume (and no more). Thus, if
there is a population bound on hits, then there will also be
a population bound on the supply of reasonable pages (that
people will look for and click on and value).

3.3 How Hard is Search?

Combination One Month 1.5 Year
H(Q) 21.14 22.94

H(URL) 22.06 22.44
H(IP) 22.09 22.64

H(Q,URL) 23.88 26.41
H(Q,IP) 26.00 30.41

H(IP,URL) 27.06 31.16
H(Q,URL,IP) 27.17 31.67

Table 2: Entropy estimates of all combinations of Q
(query), URL and IP addresses.

Table 2 is like Table 1, but adds joint entropies for all
combinations of Q (query), URL and IP address. The size

6See Table 7.3 of http://www.fcc.gov/Bureaus/Common
Carrier/Reports/FCC-State Link/IAD/trend605.pdf.

7Table 10.2 of http://www.fcc.gov/Bureaus/Common Carrier/
Reports/FCC-State Link/IAD/trend803.pdf reports that
the average telephone line is used for 71 minutes per day.

8http://www.nielsenmedia.com/newsreleases/2005/
AvgHoursMinutes92905.pdf

of the search space for search can be estimated from Table 2.
The search task is to guess the URL that the user is looking
for from a Query Q. Based on the one month data, that is,

H(URL|Q) = H(Q,URL) − H(Q)

= 23.9 − 21.1 = 2.8

This number becomes 3.5 with the bigger data. In other
words, search is doable. A user can often find the url he is
looking for somewhere in the top 10 search results. That is
reassuring, though not surprising.

We would expect an upper bound around log210 ≈ 3.3
bits, given the source of the data (click logs). Users tend to
click somewhere on the first page of results, or not at all.

3.4 How much does Personalization Help?
Suppose we give the search engine not only the query, but

also the IP address. How much does that help? Using the
one month estimates in Table 2 above,

H(URL|Q, IP ) = H(Q,URL, IP ) − H(Q, IP )

= 27.2 − 26.0 = 1.2

In other words, personalization cuts the search space in half.
That is a huge opportunity. This entropy becomes 1.3 with
the bigger data. Please note that although the joint entropy
of the three variables increases a lot, this conditional entropy
remains very small.

Why does personalization help? Consider the ambiguous
query: MSG. Some users, especially those near New York
City, are looking for the sports arena (Madison Square Gar-
den), whereas other users are looking for the food additive
(Mono-sodium Glutamate). The search engine should use
the user’s history of queries and clicks (when possible) to
disambiguate.

3.5 How Hard are Query Suggestions?
There are a number of applications that search the space

of queries as opposed to the space of answers. For example, a
number of query suggestion mechanisms have been proposed
suggest as Google Suggests9 and The Wild Thing [7]. How
hard is it to guess the next question, as opposed to guessing
the next answer? H(Q) = 21.1 bits (22.9 from 1.5 year).

How much does personalization help?

H(Q|IP ) = H(Q, IP ) − H(IP )

= 26 − 22 = 4

This number becomes 7.8 with the bigger data. In other
words, personalization cuts the search space in more than a
half. This is a really huge opportunity.

The entropy estimates in this section assume that the
search log data is seen, and thus correspond to the lower
bounds of search difficulty. In reality, when a search engine
tries to predict unseen data, the actual entropies (cross en-
tropies) would be higher. Smoothing methods have to be
applied on the personalization language models. We will
introduce one possible choice in the following section.

4. PERSONALIZATION WITH BACKOFF
The entropy numbers are really exciting. They make

a strong case for plausibility, but there are many remain-
ing challenges that need to be addressed including privacy

9http://labs.google.com/suggests



and data sparsity. In fact, Shannon’s entropy gives a lower
bound of the search difficulty, but does not provide an op-
erational procedure to achieve it. Personalization is very
attractive when we have plenty of data, but what if we do
not have enough data, or we cannot use much of the data
that we have because of privacy concerns? In this section, we
introduce one possible operational procedure of approaching
this lower bound: personalization with backoff.

4.1 User Modeling with Backoff
If we don’t have enough data for a particular user, or

we can’t use the data we have, we recommend backing off
to classes of users. As a proof of concept, this paper will
form classes of users based on the first few bytes of the IP
address. Even better is to back off based on market segments
and collaborative filtering (other users who click similarly).
Time and geography can be viewed as surrogate variables
for demographics in market segmentation analysis.

The model assumes that users in a class share similar
interests. For example, users from the same company are
likely to ask similar questions and click on similar answers.
Consequently, if we lack adequate historical data for a par-
ticular user, we can backoff to a larger class of similar users.

Formally, assume a query Q, a user U, and a web docu-
ment URL. Let Γ = {C0, C1, ..., Cn−1} be a set of n classes
of users. Under personalization with backoff, the probability
p(URL|Q, U) is estimated as a simple linear combination of
the class models, for each class that the user is a member
of. The weights, λ, can be fit with EM [9]. That is,

p(URL|Q,U) =
∑

Ci∈Γ

λU,ip(URL|Q,Ci)

where
∑

i
λU,i = 1, and λU,i = 0 if U 6∈ Ci.

Note that the classes need not form a partition. In par-
ticular, we will place IP addresses into a nested hierarchy.
Each IP address can be a member of multiple nested classes.
Certainly, IP hierarchy is not the only possible choice of the
user classes, and perhaps not the best choice either.

This model allows for a wide range of personalization.
Two extreme special cases are 0% personalization and 100%
personalization. We will refer to 0% personalization as non-
personalized, and 100% personalization as complete person-
alization.

Non-personalization (or 0% personalization) is the spe-
cial case where n = 1. There is just one super-class of users:
Γ = {C0}. All users are members of this single super-class.
In this special case, the model becomes p(URL|Q,U) =
p(URL|Q, C0), where C0 can be dropped.

At the other extreme, 100% personalization, n = |U |. Ev-
ery class contains exactly one user, and every user belongs
to exactly one class. In this special case, the model becomes
p(URL|Q, U) = p(URL|Q,Cu), where Cu = {U}.

Between these two extreme cases, there is plenty of mid-
dle ground, where users are grouped into more than one
class, but less than |U |. Class assignments are typically
determined by variables such as IP addresses, time and ge-
ography, and combinations thereof. These variables can be
treated as surrogates for demographic variables.

4.2 Nested Classes Based on IP Addresses
Users are assigned to 5 nested classes based on their IP

address. It is assumed that the prefix of an IP address is
a convenient surrogate for some more meaningful variables

such as geography. An IP address consists of four sections,
each of which is typically encoded with a byte. This repre-
sentation suggests the following 5 classes:

• IP4: Users are assigned to classes based on all 4 bytes
of the IP address.

• IP3: Users are assigned to classes based on the 3 most
significant bytes of the IP address.

• IP2: Users are assigned to classes based on the 2 most
significant bytes of the IP address.

• IP1: Users are assigned to classes based on the most
significant byte of the IP address.

• IP0: All users are assigned to a single super-class.

With this construction, every user is assigned to exactly
5 classes. IP4 and IP0 are the two extreme cases mentioned
above: 100% personalization and 0% personalization, re-
spectively.

We further simplify the model to use just 5 λ’s. That is,

p(URL|Q, IP ) = λ0p(URL|Q, CIP,0) +

λ1p(URL|Q, CIP,1) +

λ2p(URL|Q, CIP,2) +

λ3p(URL|Q, CIP,3) +

λ4p(URL|Q, CIP,4)

where CIP,k is the class of IP addresses that share the most
significant k bytes.

For for example, the IP address, 156.111.188.243, belongs
to 5 nested classes, namely:

CIP,4 = {156.111.188.243}

CIP,3 = {156.111.188.∗}

CIP,2 = {156.111. ∗ .∗}

CIP,1 = {156. ∗ . ∗ .∗}

CIP,0 = {∗. ∗ . ∗ .∗}

There are many ways to fit the λ’s. We used the stan-
dard Expectation-Maximization(EM) algorithm [9], an iter-
ative procedure which estimates the parameters of the model
from the training set, and also finds the λ’s that maximize

the validation set V given the model. On each iteration, we
perform both an estimation (E) step as well as a maximiza-
tion (M) step with the following two updating formulae:

z
(n+1)
〈Q,URL,IP 〉,i =

λ
(n)
i p(URL|Q, CIP,i)

∑4
k=0 λ

(n)
k p(URL|Q,CIP,k)

λ
(n+1)
i =

∑
〈Q,URL,IP 〉∈V

z
(n+1)
〈Q,URL,IP 〉,iC(〈Q, URL, IP 〉, V )

∑
〈Q,URL,IP 〉∈V

C(〈Q,URL, IP 〉, V )

where p(URL|Q, CIP,k) denotes probability estimates based
on the training set, and C(〈Q,URL, IP 〉, V ) denotes counts
of triples based on the validation set.

Figure 2 shows the resulting estimates of λ. The training
set is a month of logs (January 2006). The validation set is
a single day of logs (February 1st).



Figure 2 shows that a little bit of personalization is better
than too much or too little. Note that λ3 and λ2 are consid-
erably larger than λ4, λ1 and λ0. Too much personalization
suffers from sparse data whereas too little personalization
misses the opportunity of personalization.

Interestingly, we also see that λ0 is larger than λ1 and
λ4. We see this because the validation set contains many IP
addresses that do not appear in the training set.

Lambda

0.00
0.05
0.10
0.15
0.20
0.25
0.30

̄4 ̄3 ̄2 ̄1 ̄0

Figure 2: A little bit of personalization is better
than too much or too little. Note that λ2 and λ3

are larger than the other λ’s. Too much personal-
ization (λ4) runs into sparse data, whereas too little
(λ0 and λ1) misses the opportunity. The EM algo-
rithm assigns more weight to classes of users that
share a few bytes of their IP address than to classes
that share more (100% personalization) or less (0%
personalization).

4.3 Evaluation of the Backoff Model
How well does this model of personalization perform on

future queries? With appropriate smoothing (backoff), per-
sonalization should do no harm. Hopefully, personalization
improves (reduces) entropy by enough to justify the effort.
But no matter what, it should never hurt.

To evaluate the model, we used the logs between Febru-
ary 2, 2006 and February 6, 2006 as a test set, T . We
constructed 5 properly nested subsets:

T4 ⊆ T3 ⊆ T2 ⊆ T1 ⊆ T0 ⊆ T

The 5 subsets exclude queries that were not seen in the train-
ing set because they could not benefit from this model of
personalization. The remainder of the 〈Q, URL, IP 〉 triples
in T were assigned to T0, T1, T2, T3, T4 based on the most
significant k bytes of the IP address. The smallest subset,
T4, contains the triples where all 4 bytes of the IP address
were observed in the training set. This set is properly nested
within T3, which contains triples where the first 3 bytes of
the of the IP address were observed in training. And so on.
Figure 3 shows that T0, T1, T2, T3, T4 cover between 8.8%
and 51.0% of the triples in T .

Figure 3 shows that our proposal, personalization with
backoff (dashed lines), does not harm, as we would hope.
That is, the dashed line improves (lowers) cross entropy over
the “no personalization” baseline, across all 5 test subsets.

In addition, personalization with backoff beats the “com-
plete personalization” baseline in 4 of the 5 subsets. Ob-
viously, backoff can’t beat 100% personalization when you
have the relevant data (T4), but even in that case, backoff
isn’t much worse.

This section proposed a novel backoff approach to per-
sonalization. Backoff is a classic smoothing technique bor-

Personalization with Backoff: Tested
on Incoming Data

0

0.5

1

1.5

2

2.5

3

4 
(8
.8
%
)

3 
(1
1.
7%

)

2 
(2
0.
7%

)

1 
(3
5.
7%

)

0 
(5
1.
0%

)

Test Set

S
ea

rc
h
 D

if
fi
cu

lt
y 

H
c(

U
R

L
|Q

, I
P
)

No
Personalization
Personalization
with Backoff
Complete
Personalization

Figure 3: In 4 of the 5 test subsets, our proposal,
personalization with backoff (dashed lines), has bet-
ter (lower) cross entropy, Hc(URL|IP, Q), than two
baselines: too much personalization (triangles) and
too little personalization (solid lines with squares).

rowed from language modeling. We show the effectiveness
of personalization with backoff using IP addresses. Users
are assigned to nested classes, based on the most significant
bytes of their IP address. This approach is just one possible
way to approach the lower bound of search difficulty esti-
mated with Shannon’s entropy. To build a real personalized
search engine, this log-based backoff model has to be com-
bined with other features associated with search engines,
such as static rank and content relevance. IP address is by
no means the only possible surrogate variable for assigning
users to classes. The next section will explore some other
possibilities.

5. SEGMENTATION VARIABLES
In addition to IP addresses, there are many other variables

that could be used for backing off. The next two subsections
will explore day of week and time of day, two variables that
have been used to segment telephone traffic into businesses
and consumers [8]. Consumers and businesses issue different
queries at different times. Different market segments have
different needs, and ask different questions at different times.

5.1 Day of Week
In well-understood mature businesses like telephony, it

is common to observe large and important dependencies on
day-of-week. Volumes are typically higher on weekdays than
weekends. Volumes are especially high on Mondays. Friday
afternoon is almost a weekend. The Monday after a long
weekend is even bigger than a typical Monday. There are
strong interactions between these trends and market seg-
ments. Businesses tend to do most of their work on busi-
ness days, whereas consumers tend to be more active during
Prime Time television hours.

Figure 4 shows that there are similar day-of-week patterns
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Figure 4: Day-of-week patterns could be used to
segment the search market into businesses and con-
sumers. Note that click volumes are out of phase
with click entropies.

in the search logs of the first 24 days of January 2006 (where
1/1/06 was a Sunday). As expected, volumes follow the
standard pattern, higher during the week than on weekends.
Figure 4 also shows entropy by day of week, which is more
surprising. The queries on business days are easier than on
weekends.

This time structure is very repeatable and robust. Fig-
ure 5 reports cross entropy of personalized search. Each of
the first 24 days of January 2006 was used as a training set,
and each of the first 6 days in February 2006 was used as a
test set. All pairs of a testing and a training set are scored
by cross entropy: Hc(URL|IP, Q). Some of the pairs used
a weekend in training and some didn’t. Similarly, some of
the pairs used a weekend in testing and some didn’t.

Weekdays Better Predict Future Weekdays
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Figure 5: Weekends are harder (more entropy) than
business days. Cross entropy peaks both when the
weekend is used for training and/or testing.

Weekends are harder (larger entropy) than weekdays. Fig-
ure 5 shows six lines, one for each of the 6 test days. Note
that the solid lines (business days) are consistently below
the dashed lines (weekends). There are 24 points along the
x-axis in Figure 5, one for each of the 24 training days. All
curves peak on weekends. Weekends are harder, both when
used for training as well as testing. From the solid lines, we
also learn that future weekdays are better predicted using
previous weekdays than using previous weekends.

This analysis suggests that it is potentially beneficial to in-
clude the market segmentation of weekdays/weekends along

with IP addresses in personalized search, and treat them
accordingly.

5.2 Time of Day
Figure 6 shows query volumes and entropies, H(Q|IP ) by

hour for the first 15 days of January 2006. There are clear
hour of day effects, especially on weekdays.

Day time: More & Diversified Queries
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Figure 6: Query volumes and entropies show a clear
dependence on hour of day, at least for weekdays.

Volumes follow the expected pattern, with more queries
during the day and fewer at night. Yet again, entropy is
a surprise. Recall that volumes and entropies were out of
phase with one another in Figure 4. This time, they are in
phase with one another. It appears that queries are different
from clicks.

Search is hard at TV time
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Figure 7: Search is simpler at work hours and more
difficult at television hours

Figure 7 shows entropies of clicks, H(URL|IP,Q), by hour
from January 7, 2006 to January 16, 2006. There is a strong
hourly time structure. Entropy peaks during prime time TV
hours. The valleys are very early in the morning.

The dashed line highlights the hourly time structure. The
dash line is the solid line shifted right by 24 hours. An auto-
correlation analysis would compare these two lines, showing
that there is a strong periodicity with a lag of 24 hours, not
surprisingly. The plot makes it clear that the daily period-
icity is stronger on weekdays than weekends, which again,
is not unexpected.

To test whether a market segmentation with time of day
could help the personalization of future search activity, we
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Figure 8: Cross validation of the predictive ability
of hours in a day

cross validate the search difficulty with logs during different
hours of day as training and testing datasets. Specifically,
we partition the search logs in January 2006 into 24 train-
ing sets, each corresponding to one hour in the day, and
select six hours’ search logs on February 1, 2006 as testing
sets. The results of Hc(URL|IP, Q) are plotted in Figure 8.
From the plots, we see that the search history during dif-
ferent hours of a day shows different predictive ability over
a testing set of different hours. From the two dashed lines,
it is easy to see that search in the day time can be better
predicted by history of the day time, and nights are better
predicted by nights. When the time of the training set is
closer to the time of the testing set, the cross entropy be-
comes lower. When the time of the training set departs from
the time of the testing set, Hc(URL|IP, Q) becomes larger.
This suggests that the best training data set to personalize
future search activity at a given time of day is the search
history at the closest time period of a day.

In this analysis, it is clear that segmenting the search
business with the time of day is potentially beneficial on
top of IP address and day of week.

5.3 Query Types

Business Query: Weekday > Weekends
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Figure 9: Business queries are issued on business
days.

We already presented that market segmentation with ge-
ographic variables such as IP addresses, and time variables
such as day/week and hour/day are beneficial for personal-

ization. All these variables are metadata variables in search.
How about those core variables in search? Is it also benefi-
cial to differentiate the core variable in search, the query?

Figure 9 and Figure 10 present the day-of-week frequency
patterns for two groups of queries. The first group includes
three query strings “yahoo,” “mapquest,” and “cnn,” and
the second group includes “sex,” “mp3,” and “movies.” From
Figure 9, we see that the frequency of the first group of
queries, which we shall call business queries, has clear day-
of-week patterns. There are significantly more business queries
on weekdays than weekends. The second group of queries,
which we shall call consumer queries, however, does not show
clear day-week patterns. As in Figure 10, the frequency
of consumer queries on weekends is comparable, sometimes
even higher than their frequency on weekdays. It is interest-
ing (but not unexpected), that the query “movies” is asked
most frequently on Fridays.

Consumer Query: Weekends > Weekday

0

0.01

0.02

0.03

0.04

0.05

0.06

1 3 5 7 9 11 13 15 17 19 21 23
Jan 2006 (Sundays: 1, 8, 15 & 22)

Q
u

e
ry

 F
re

q
u

e
n

cy
(o

ve
r 

2
4

 d
a

ys
)

"sex"

"movies"

"mp3"

Figure 10: Unlike business queries, consumer
queries do not select for business days.

Figure 11 presents the comparison of the time-of-day pat-
terns of the frequency of two queries, “yahoo” and “sex”.
It is clear that both queries have clear time-of-day patterns.
However, the frequency of these two queries gets highest and
lowest at different hours.

This analysis shows that besides metadata variables such
as geography and time, the search business can also poten-
tially benefit from segmenting the search space with the type
of core search variables, such as the queries.

Hour-of-day Pattern of Different Queries
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Figure 11: Different types of queries have different
hour-day patterns

In general, users ask more questions and simpler questions
during business days and business hours. It isn’t clear why



this is so, but we might hypothesize that businesses are more
business-like, more likely to ask direct questions that have
direct answers, like navigational queries. “cnn” is an exam-
ple of a navigational query. The answer to the “cnn” query
is simply: “www.cnn.com.” In contrast, consumers ask less
direct questions. They may be seeking employment, health,
wealth, happiness, entertainment, etc. They may be shop-
ping or just browsing, with no particular place to go, and
lots of time on their hands. In extreme cases, one can even
find Eliza-like10 queries in the logs.

6. RELATED WORK
This paper draws connections across a wide range of fields

including: Information Theory, backoff smoothing of lan-
guage models, query suggestions, personalization and mar-
keting. There is a huge body of work in each of these areas,
though relatively little work that connects all of them (or
even many of the pairs).

Entropy has a long history dating back to Shannon, and
perhaps, earlier. See [11] for an excellent retrospective on
Shannon’s life, work and impact. Entropy has been applied
to many data sources, though there is still plenty of room
for novel applications such as web logs.

There is a considerable body of work on estimating the
size of the web including: [18, 2, 19, 20, 10, 12]. These
references attempt to estimate supply (the size of the reach-
ability graph of links from one url to the next), as opposed
to demand (clicks). By taking demand into account, we can
come up with much more feasible estimates, millions not
billions, suggesting that a small cache of a few million pages
could capture much of the value.

Entropy analysis is once again well accepted in Computa-
tional Linguistics. Back in the late 1940s and early 1950s,
Shannon’s Information Theory was having a dramatic im-
pact on a wide range of fields from Engineering to Psychol-
ogy and more. Shannon published his remarkable estimate
of the size of English language in 1951 [24]. Chomsky’s
Syntactic Structures [4] came out shortly thereafter in 1957,
arguing that language was unbounded (infinite) and that
ngram approximations (such as Shannon’s) do not come
closer and closer to the truth. Chomsky’s work dominated
much of the thinking in Computational Linguistics over the
next few decades, but Information Theory regained popu-
larity in Computational Linguistics in the 1990s with the
successes of trigram language models in speech recognition
[6]. The speech application motivated researchers to think
about smoothing methods such as backoff: [17, 5, 3, 31].

Query suggestions [7, 15, 16, 30] and personalization [14,
13, 27, 29, 25, 26] are somewhat related topics, though the
connection between those two topics and backoff smooth-
ing of language models is novel. Many personalized search
techniques have been proposed, both server-side [29]11 and
client-side [26, 28], as well as with long term query history
[29, 28] and short term implicit feedback [25, 21]. Much of
this work takes advantage of search engine query logs. This
work tends to be focused more on methods of improving user
experience, and less on sizing challenges and opportunities.

Market segmentation (and demographics) come from a
completely different tradition than Language Modeling and
backoff. Marketing is relatively more central to this con-

10http://en.wikipedia.org/wiki/ELIZA
11See also www.google.com/psearch.

ference than Information Theory and Language Modeling.
Pregibon and Cortes [8], for example, were concerned with
marketing applications in telephony. Marketing was eager to
find ways to segment customers based on usage (demand).
Pregibon and Cortes found that businesses and consumers
make calls at different times for different purposes. Mar-
keting could take advantage of such insights to target of-
fers more appropriately since businesses and consumers re-
spond differently to different offers such as various pricing
plans and discounts. The connection between, marketing, a
well-established KDD application, and Language Modeling
is novel.

7. CONCLUSIONS
In this paper, we showed how entropy can be used to ad-

dress a number of fundamental questions in web search. En-
tropy was estimated from search logs, a sequence of triples:
〈Q, URL, IP 〉, indicating that a click was observed from a
particular URL and a particular IP address in response to
a particular query Q.

How big is the web? Answer: millions, not billions.
When the web eventually saturates the market, then the

number of home pages, businesses and products will be bounded
by O(population). However, unlike telephony, the web is a
growth business, far from saturation. For the foreseeable
future, we will be able to find millions of famous people and
academics, but not everyone (not billions of ordinary people
like our neighbors).

Large investments in clusters in the cloud could be wiped
out if someone found a way to capture much of the value of
billions with a small cache of millions.

While there are lots of pages out there (infinitely many,
in a Chomskian sense), there are not that many pages that
people actually go to. Shannon’s entropy (H) is a powerful
tool for sizing challenges and opportunities.

How hard is search? It takes around 22 bits to guess the
next url (or the next query or the next user). 22 bits is
millions, not billions. When we give the search engine the
query, we cut the 22 bits down to around 3 bits.

What is the opportunity for personalization? Personaliza-
tion cuts the search space in half (from 3 down to less than
1.5 bits). That is a huge opportunity. A personalized cache
is an even bigger threat to the cluster in the cloud than a
cache without personalization.

Shannon’s entropy provides a novel way to think about
sizing challenge and opportunity in search business. It gives
the lower bound of the difficulty of personalized search but
not an operational procedure to approach this lower bound.
In reality, when we do not have data for a particular user,
a smoothed version of the language model P (URL|Q,U)
has to be applied. While different smoothing methods lead
to different personalization approaches, we introduce one of
those choices: personalization with backoff.

Personalization with backoff is more effective than per-
sonalization without backoff. As a proof of concept, we dis-
cussed backing off to classes of users based on IP addresses.
A little bit of personalization was found to be better than
too much or too little.

Rather than backing off based on prefixes of IP addresses,
it would be better to back off based on market segmen-
tation (demographics) and/or collaborative filtering (other
users who click like you). Different segments have differ-
ent needs (ask different questions at different times) and



different values (willingness to pay and advertising opportu-
nities). Businesses and consumers ask different questions at
different times. We showed that query volumes and search
difficulty (entropy) vary by time of day and day of week.
Variables such as IP addresses and time and geography can
be viewed as convenient surrogates for more sensitive market
segmentation variables.

There are many possible future extensions to this work. It
is interesting to introduce alternative principled smoothing
methods, probably with backing off based on combinations
of demographic variables. We are particularly excited by
the possibility of backing off based on collaborative filtering
(other users with similar search interests). It is interest-
ing to combine the language model of personalization with
backoff with other well known features in search, build a real
personalized search engine, and evaluate the effectiveness of
personalization with real user experiments.
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