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Abstract— Shipboard integrated power systems, the key
enablers of ship electrification, call for effective power manage-
ment control (PMC) to achieve optimal and reliable operation
in dynamic environments under hardware limitations and
operational constraints. The design of PMC can be treated
naturally in a model predictive control (MPC) framework, where
a cost function is minimized over a prediction horizon subject to
constraints. The real-time implementation of MPC-based PMC,
however, is challenging due to computational complexity of the
numerical optimization. In this paper, an MPC-based PMC for
a shipboard power system is developed and its real-time imple-
mentation is investigated. To meet the requirements for real-time
computation, an integrated perturbation analysis and sequential
quadratic programming (IPA-SQP) algorithm is applied to solve
a constrained MPC optimization problem. Several operational
scenarios are considered to evaluate the performance of the
proposed PMC solution. Simulations and experiments show that
real-time optimization, constraint enforcement, and fast load
following can be achieved with the IPA-SQP algorithm. Different
performance attributes and their tradeoffs can be coordinated
through proper tuning of the design parameters.

Index Terms— Integrated perturbation analysis and sequential
quadratic  programming (IPA-SQP), integrated power
system (IPS), model predictive control (MPC), power
management control (PMC), real-time optimization.

I. INTRODUCTION

HIPBOARD integrated power systems (IPSs) have
been pursued as the key enabling technology in ship
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electrification for applications including warships and
high-value commercial ships [1], [2]. They provide electrical
power for both the propulsion system and service loads,
and rely on power management control (PMC) strategies to
coordinate the power sources and loads to achieve efficient and
robust operation and to meet various dynamic requirements in
diverse and sometimes adverse conditions. Moreover, effective
PMC strategies are expected to provide improved fuel effi-
ciency, enhanced response speed, and superior reliability [3].
To accomplish this, PMC must effectively deal with nonlinear
system dynamics and stringent constraints that protect system
components. In addition, PMC must be simple to tune to
be able to trade off and rebalance performance attributes.
Several approaches have been proposed for shipboard PMC
with IPS. An automatic rule-based expert system is proposed
for reconfiguration of shipboard IPS to enhance survivability
of naval ships in [4]. In [5], an automated self-healing strategy
is investigated by solving an optimization problem with
constraints using a linear programming algorithm. In [6],
a decentralized control approach using an intelligent
multiagent system for shipboard power systems is proposed.

Several research groups have developed shipboard PMC
strategies using the real-time optimization framework. For
example, a fast reconfiguration algorithm based on zone
selection differential protection schemes is reported in [7];
however, [7] provides no evidence that the algorithm can
be implemented in real time. In other studies, real-time
simulations are achieved. For example, in [8], using the small
population-based particle swarm optimization method, a fast
intelligent reconfiguration algorithm is implemented on a
real-time simulator. Seenumani et al. [9] pursue a
methodology that exploits time-scale separation to achieve
real-time optimization of a shipboard IPS. By solving a
two-level simplified optimization problem, the computational
efficiency is improved and these improvements are validated
on a real-time simulator. In fact, studies of optimization-
based PMC strategies typically demonstrate implementation
feasibility using only real-time simulations. To the best of
our knowledge, however, no study has demonstrated the
feasibility of optimization-based PMC with test results on a
physical platform.

In this paper, we design a PMC for a shipboard power
system that includes multiple power sources and loads such
as the ship propulsion system (SPS) and high-power electrical
load (a pulsed-type load that represents an electromagnetic rail
guns and/or an electromagnetic launch system). We consider
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the high-power electrical load as an unknown disturbance
to the shipboard power system. The PMC is developed in
a real-time optimization framework where a cost function
is formulated and minimized while constraints that reflect
design objectives and operational limitations are enforced. The
PMC design, which aims to meet load demands, save fuel,
extend generator life cycle, and assure the power quality of
the shipboard microgrid, is formulated as a nonlinear model
predictive control (NMPC) problem with constraints.

Model predictive control (MPC) is an effective control
methodology that exploits the solution of a receding horizon
optimal control problem to enforce constraints, such as the
operational limits of the IPS, and to shape its transient
response [10]-[12]. The ability to solve this optimal con-
trol problem in real time, i.e., within one sampling period,
is, however, a key requirement for shipboard power man-
agement systems. This real-time requirement is very chal-
lenging as the system dynamics are fast and the sampling
period in these applications is in the order of milliseconds.
As in [13] and [14], the time and effort required for on-board
NMPC computations need to be reduced as much as possible.
The inability to complete the computations of NMPC law
in real time can result in loss of stability and degraded
performance. Without assured real-time capability, it is also
impossible to certify and use such a controller in safety
critical applications such as the shipboard power manage-
ment. Efficient numerical algorithms have been proposed
to address challenges in the real-time implementation
of MPC.

Diehl et al. [15] and Cannon [16] provide an overview of
efficient numerical methods and algorithms that have been
developed for NMPC. Several algorithms, such as the non-
linear real-time iteration scheme [17]-[20], the Newton-type
solver [21], and the continuation and generalized minimum
residual [22], have a common feature that they perform
one iteration of root finding in each sampling period. The
accuracy of finding the solution may, however, be insufficient,
and the performance may be degraded for systems with
significant nonlinearities. The advanced step algorithm [23]
performs a complete Newton-type interior point procedure to
convergence to avoid the potential issues associated with the
early termination approaches. In [24], the feasibility-perturbed
sequential quadratic programming (FP-SQP) algorithm has
been proposed. To reduce the computation time, the FP-SQP
algorithm maintains all intermediate iterations feasible and
exploits suboptimal solutions.

In this paper, we explore the integrated perturbation analysis
and SQP (IPA-SQP) framework to develop a PMC. The
IPA-SQP approach, developed for NMPC in [25]-[27],
combines solution updates derived using perturbation
analysis (PA) and SQP. For PA-based update, IPA-SQP
exploits neighboring extremal (NE) optimal control theory
extended to discrete-time systems with constraints [28] to
improve computational efficiency. The solution at time ¢ is
obtained as a correction to the solution at time (¢ — 1) through
the NE update. If the NE update is not fulfilling optimality
criteria, one or multiple SQP updates are exploited until the
optimality criteria are satisfied. The merged PA and SQP
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updates yield a fast solver for NMPC problems [29].
The TPA-SQP algorithm is based on the optimal control
and NE theory, which results in efficient updates that are
based on backward-in-time solution to discrete-time Riccati
equations. Alternative methods based on the sensitivity of
the underlying nonlinear programming problem [30]-[32]
can also be exploited. The comparison between various
approaches is beyond the scope of this paper and is left to
future work.

In this paper, we report the results of applying the IPA-SQP
algorithm to solve the real-time MPC problem for shipboard
PMC. Toward this end, a simplified optimization-oriented
design model is derived by approximating components of
the transient power management model (TPMM) [33], which
is a low-order simulation model of the test bed at Purdue
University. We then develop the IPA-SQP-based MPC
controller and analyze the performance using the TPMM as
the virtual test bed through both nonreal-time and real-time
simulations. Finally, the algorithm is implemented on the
physical test bed to evaluate its performance in several
proposed operational scenarios. The capability to perform the
computations in real time, satisfy constraints, and tune the
performance attributes is demonstrated.

This paper is organized as follows. In Section II, the
shipboard power system and its control objectives are
described, and the simulation model is introduced. The
optimization-oriented design model of the TPMM is derived
by approximation and model order reduction. Then, the MPC
problem with constraints is formulated considering various
PMC operational requirements and constraints. In Section III,
the features of the IPA-SQP-based MPC are reviewed and the
algorithm of the IPA-SQP is described. Test scenarios of the
proposed PMC for simulations and experiments are discussed
in Section IV. The simulation results with the TPMM serving
as the virtual test bed on a real-time simulator are reported and
analyzed. The experimental results on the physical test bed are
presented, analyzed, and compared with the simulation results.
Section V ends this paper with the conclusion.

II. SYSTEM DESCRIPTION AND MPC FORMULATION
A. System Description

The notional power system considered in this paper
represents a scaled-down version of a real shipboard power
system. It consists of two power generation systems, a
ship propulsion motor, and a square-wave pulse power
load (SWPPL). This system was developed at Purdue
University as an outcome of a sponsored project by the
Office of Naval Research [33], and has been used for several
sponsored research projects [33], [34]. The schematic of the
system is shown in Fig. 1, and the physical appearance of the
test bed is shown in Fig. 2.

Generation system 1 (GS-1) is the main shipboard power
source and represents a gas turbine generator. Generation
system 2 (GS-2) represents a smaller ship power generation
source, such as a diesel generator. The SPS is the primary
load on the power system. The SWPPL represents the load of
an electromagnetic rail gun. The power sources and loads are
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Fig. 1.

Fig. 2. Physical test bed.
connected in parallel to a 750 V dc bus. The key components
and their operational parameters are listed in Table L.

B. Operational Requirements and Control Objectives

For the investigation reported in this paper, we make the
following assumptions that are representative of the physical
system in the test bed.

1) The desired ship velocity, the SPS
machine (IM) power and desired speed,
target bus voltage are constant.

2) The GS-2 operates in the generation mode, has its best
efficiency at 5 kW, and has a constant rotor speed.

induction
and the

TABLE I
SUBSYSTEMS OF THE TEST BED

Key

Subsystems Description operational

parameters

GS-1 Prime mover 1 1800 rpm
Wound rotor synchronous machine max. 59 kW

GS-2 Prime mover 2 3600 rpm
Permanent magnet synchronous machine max. 11 kW

SPS Propulsion drive 1800 rpm
Induction machine max. 37 kW
SWPPL High power buck converter af;zkgeg 4k‘;{VW

Ojjj;;;;F
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Fig. 3. SWPPL on the TPMM. The pulse starts at 0.5 s with 8-kW amplitude
and 1-s duration. The period is 2 s.

3) The pulsed power load consists of square-wave pulses
with 8-kW amplitude and 1-s duration (Fig. 3).
4) The PMC has no prior knowledge of the SWPPL,
i.e., the SWPPL is an unknown disturbance.
5) The line losses are negligible.
Note that the above-listed assumptions are made to simplify
the exposition of the algorithm or to reflect the hardware
limitations (such as assumption 3). They can be removed or
modified without changing the nature of the problem and the
proposed solution. The control objectives of the PMC are
to coordinate the power generation sources to meet the load
demand and to achieve the following performance attributes:
1) tracking the set points of bus voltage, GS-2 electrical
power, SPS electrical power, and SPS rotor speed;
2) protecting and extending the life span of the machines
GS-1, GS-2, and SPS;
3) maintaining power quality of the microgrid and minimiz-
ing bus voltage variation.
We note that the GS-1 is expected to provide most of
the power for SWPPL, which may cause extreme ramping
in GS-1 power output due to the set-point tracking objective
on GS-2 electrical power and, consequently, have negative
impact on the gas turbine and generator life span. Therefore,
some of the control objectives are competing with each other
and need to be balanced by the PMC system.

C. Optimization-Oriented Design Model
and Operational Constraints

The TPMM is a low-order simulation model of the physical
test bed that has been established by Purdue University.
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4
TABLE II
STATE VARIABLES, CONTROL INPUTS, AND PARAMETERS IN THE
OPTIMIZATION-ORIENTED DESIGN MODEL
Variable Symbol Description
Xq GS-1 electrical power (kW)
State variables X2 IM rotor speed in the SPS (rad/s)
X3 DC bus voltage (V)
Uy GS-1 droop gain
Control inputs 1723 GS-2 mechanical power command (kW)
us SPS mechanical power command (kW)
Ts Sampling time interval (s)
Parameters Wy Desired rotor speed of the IM (rpm)
V, Desired bus voltage (V)

It represents the essential dynamics of the power system devel-
oped in [33]. Even though the TPMM is already simplified to
enable fast simulation, it is still complex to be used for the
IPA-SQP algorithm implementation.

The optimization-oriented design model that supports ana-
Iytical derivations for the IPA-SQP algorithm implementation
is developed by simplifying the TPMM model. This model is
represented by the following nonlinear discrete-time equations:

a4+ 1) = fie(), u®)
_ Tsx3(k + 1)
=Wt e D ram®”
a4+ 1) = ), u (k)

1
= Tscm(xz(k) + Tyca(czwa + cauz(k))) (2)

(k) )]

x3(k +1) = f3(x(k), u(k))
1
= m( 3(k) + TS\/Cﬁxg(k) + C7P5(k)) (3)
where

x(k) = (x1(k) x2(k) x3(k))"
u(k) = (u1(k) ua(k) uz(k))’

(m@M@ )

C1 2, N 1

x5k +1)

X (—C5)C3(k +1)+ \/c6x32(k) ~+ ¢7 P (k) )

cgu(k)xy (k)
x3(k+1)

z(k) =

+cg(Vp — x3(k)) —

Py(k) = cou3 (k) + croua (k)
P3(k) = (c11 + craxa(k))us (k)
Py (k) = x1(k) + Pa(k) + P3(k) + Pa(k).

Equations (1)—(3) are derived from the TPMM model based on
several simplifying assumptions and approximations [33] and
discretized using the backward Euler method. Table II sum-
marizes the state variables, the control inputs, and parameters
in (1)—(3). The droop gain u; of the voltage controller in the
GS-1 is a control input. This GS-1 droop gain impacts the dc
bus voltage. It is used to indirectly control the output power
of the GS-1. The GS-2 and SPS receive the GS-2 and SPS
mechanical power commands from the PMC, respectively.
Then, their inner loop controllers convert the power
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commands to torque commands and current commands to
accomplish tracking of these power commands using hys-
teresis control [33]. P»(k) and P3(k) are the GS-2 and SPS
electrical power, respectively, and Ps(k) is the square-wave
pulse power at sampling instant k. Pg(k) is the sum of the
GS-1, GS-2, SPS electrical power, and the SWPPL power
at sampling instant k. These values are required to estimate
GS-2 electrical power, SPS electrical power, the SWPPL
power, and the sum of the electrical power with the state vari-
ables and control inputs at sampling instant k. The parameters
ci, i = 1,...,12, are constants used in the equations [33].
Positive sign is used for electrical power generated, and
negative sign is used for electrical power consumed.

The system has several constraints that represent hardware
limitations and operational requirements. The GS-1, GS-2, and
SPS have operational limitations of 59, 11, and 37 kW, respec-
tively, as given in Table I. The GS-1 droop gain takes values
in the interval [—1, 1]. The constraints are mathematically
expressed as

0 < xi(k) =59 “)
1 =<uik) <1 (5)
=11 <us(k) <0 (6)
0 < u3z(k) =37. )

Note that the system is nonlinear with constraints that include
a pure state constraint (4) and pure control constraints (5)—(7).
Since the model is nonlinear, the NMPC approach is pursued
to provide reconfigurability to changing model parameters,
requirements, and faults.

D. MPC Problem Formulation

The MPC problem is formulated by considering the control
objectives and operational assumptions

min J(x(),u()) ®)
x(-)eR’,
u(-)eR?
where
t+N—1
J(x(),u()) =@+ N)) + Z L(x(k),u(k)) (9)
k=t
and

L(x(k), u(k)) = ki(x3(k) = Vb)* + ka(Pa (k) — P2a)’
+k3(P3 (k) = P3a)” + ka (2 (k) — @)’
+ks (w1 (k) — ui(k — 1))
+ke (1 (k) — x1(k — 1))
+k7(Pa(k) — Pa(k — 1))
+ks(P3(k) — P3(k — 1))
O(x(1 + N)) =1 (x2(t + N) — @2)* + do(x3(t + N) —V;)?
for all k € [t, t + N — 1], subject to (1)—(3) and (4)—(7).
Here, P>y and Pz, are the desired GS-2 electrical power
and the desired SPS electrical power, respectively. x; is the

state at a sampling instant f. k;, j = 1,...,8, denote
weighting factors on different terms in the cost function.
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TABLE III
WEIGHTING FACTORS IN THE COST FUNCTION ON THE TEST BED

Physical meaning on the test bed Weight Test A Test B Test C
(Baseline) | (Increase k¢) | (Increase k3)

DC bus voltage deviation ki 1 1 1

GS-2 power deviation ky 15 15 15

SPS power deviation k3 15 15 25

SPS induction machine speed deviation ks 1 1 1
Ramp rate of GS-1 droop gain ks 13 13 13
Ramp rate of GS-1 power ke 1 10 10
Ramp rate of GS-2 power k7 0.1 0.1 0.1
Ramp rate of SPS power kg 0.1 0.1 0.1
SPS induction machine speed deviation Lo 100 100 100
DC bus voltage deviation ¢ 100 100 100

Each weighting factor k; assigns a relative priority to a
performance aspect. The first term in L(x(k), u(k)), the error
between the measured bus voltage and the desired bus voltage,
is related to bus voltage tracking. Minimizing this error helps
assure power quality on the microgrid. The second term is for
GS-2 to operate at the most efficient point. The other terms
reflect SPS electrical power tracking of the desired value, SPS
rotor speed tracking for maintaining the desired ship velocity,
droop gain ramp rate, GS-1 electrical power ramp rate, GS-2
electrical power ramp rate, and SPS electrical power ramp rate.
Component wear is reduced by penalizing power ramp rate.
The ®(x (¢t + N)) is the terminal cost function to penalize the
deviation of x>(t + N) and x3(t + N) from their desired values
with weighting factors of ¢; and ¢, respectively. The GS-1 is
treated as a slack generator and provides the power necessary
to balance the generating power and consumed power. Hence,
x1(k) is not penalized. The values of the weighting factors
used for the cost function are listed in Table III.

Solving the MPC problem (8) subject to the constraints in
real time requires an effective optimization algorithm. The
IPA-SQP algorithm, which has been shown to have advan-
tages in computational efficiency for NMPC [29], is reviewed
in Section III.

III. OVERVIEW OF IPA-SQP ALGORITHM

The IPA-SQP algorithm combines the complementary
features of PA and SQP for solving constrained dynamic
optimization problems [26], [27], [35], [37]. PA is an approach
to predict a change in the optimal solution when some of the
parameters, such as the initial conditions, are changed. The
PA provides closed-form solutions and makes the optimization
computationally efficient. Because of the approximate nature
of the PA solution, however, it does not guarantee successive
optimality when the algorithm is applied repeatedly to update
a nominal solution. To correct the solution so that it satisfies
the necessary conditions to a specified tolerance, an SQP
update based on linearization and quadratic cost approximation
can be applied. Through synergetic integration of these two
algorithms, the optimal control sequence at each sampling
instant ¢ with the observed state x(¢) is calculated using the
optimal control sequence from the previous sampling instant
(t — 1). It can be shown that the IPA-SQP has a linear

computational complexity of O(N) as compared with SQP
that has complexity from O(N'?) to O(N?), where N is the
prediction horizon of the MPC problem [29]. Moreover, the
IPA-SQP has the following features.

1) The IPA-SQP efficiently computes the approximation of
the optimal solution by taking advantage of backward-in-
time recursive updates.

2) When active constraints are not changed by the pertur-
bation, dx () = x(t) — x(t — 1), in the initial state, the
closed-form PA solution can be derived, thereby leading
to a very efficient computation. If the variation Jdx(¢) in
the initial state causes changes in the activity status of
constraints, the variation Jx(¢) is divided into smaller
segments so that the PA solution can be applied to each of
these segments to sequentially update the solution. It has
been shown in several applications that a good tradeoff
between efficient computation and accurate optimization
can be achieved [25], [27], [37].

Let C and C denote the mixed state-input constraints and
pure state constraints

—u; —1
up —1
| —ua—11 - —X1
C = s , C_(x1—59)' (10)
—us
us — 37

The TPA-SQP algorithm computes the new control sequence
over the prediction horizon in the form of

u D (k) = u® (k) + 5u') (k) (11)

where k € [t,1 4+ N1, ou® (k) is given by

ouD (k) = — (I 0)Ko(k)
5 (221(k>5x<f>(k) + [T Tk + 1) + m(k))
C%(k)ox D (k)
(12)

and i is the iteration index. For i = 0, u© (k) is taken as the
solution sequence calculated at the previous sampling instant

(t — 1). The matrices Ko, Z»p, CY and T are defined by

X

the IPA-SQP algorithm. The detailed calculation steps are
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given in the Appendix. H, and f, are the partial derivatives
of the Hamiltonian function (13) and of the right-hand side
of (1-(3), ie., f(k) = (fitk) f2(k) f3(k))" with respect
to u, evaluated at u'¥) (k), respectively. Note that the predictor
update is integrated with a corrector update that accounts
for nonzero H,. In the IPA-SQP algorithm, we terminate
the iterations if Zf{:]tv Y H (k) < H! for some small
threshold H). A good tradeoff can be achieved between
efficient computation and accuracy of the optimization by
properly selecting H/, for instance, [38] where the tradeoff
between computation time and optimality is illustrated for
a spacecraft relative motion control problem in which the
impact of different termination thresholds is evaluated. In this
paper, H) was chosen as 0.01 both in the simulations and
experiments. Several iterations may be needed to satisfy the
criterion Z;;iv_l |Hy (k)| < HL.

The algorithm realization is based on a combination of a
MATLAB script function and some Simulink blocks from the
standard Simulink library. Fig. 4 shows the key steps of the
IPA-SQP algorithm in the form of a pseudocode.

IV. SIMULATION AND EXPERIMENTAL RESULTS

The power management strategy using MPC, where the
optimization of (8) subject to (4)—(7) is solved using the
IPA-SQP algorithm at each sampling period, has been tested
via simulations and experiments. We note that after the initial
design and simulation analysis, high sensitivity of control
performance to uncertainty in SWPPL delivery timing was
identified, i.e., when the SWPPL is treated as a known
disturbance, the performance of the PMC varied if the actual
ON and OFF times for SWPPL are different from the assumed
values. It was decided that the SWPPL will be treated as an
unknown disturbance.

The design and implementation of MPC based on
the IPA-SQP approach has been performed first in the
simulation environment using the TPMM, then in the
Opal-RT real-time simulator, and, finally, on the Purdue phys-
ical test bed. The design and implementation process is shown
in Fig. 5.

Given the hardware limitations of the test bed, we consider
the SWPPL waveform shown in Fig. 3, which sinks up to 8 kW
for 1-s intervals over seven consecutive cycles. The reference
set points for tracking are Py = 5 kW, P33 = —10 kW, and
Vi, =750 V for GS-2 electrical power, SPS electrical power,
and bus voltage, respectively, in simulations and experiments.
The prediction horizon is chosen as five sample intervals, and
the sampling time interval is set to 20 ms to balance the
algorithm execution time with the prediction horizon duration.
Hence, the PMC is able to look ahead 0.1 s.

The PMC metrics are developed to evaluate and quantify
the performance of the PMC using the IPA-SQP-based MPC.
The metrics reflect: 1) load-following performance measured
by maximum and average deviation of SPS power from its
set point; 2) fuel efficiency in terms of deviation of GS-2
from its optimal setting; 3) power quality represented by bus
voltage deviation from 750 V; and 4) gas turbine machinery
protection in terms of the maximum and average absolute ramp
rate of GS-1 and operating time interval when the ramp rate
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Measure x(#) and let
x(t — 1) and the nominal solution sequences x*(-), u*(-) be
given from the previous time instant (# — 1).
1. Initialization:
Set i = 0, 6x90) = x(t) — x(t = 1), x2() = x*(-), and
u(i)(.) =u*().
2. Evaluate the matrices Zy1(k), Z1(k), Z»(k), Ko(k), S (k), and
T(k) fork=t,...,t+ N — 1 according to equation (28).
Calculate 6u”(k) by equation (12).
3. Find the smallest @; among a; € [0,1] such that the
perturbation a;6x® (k) changes the status of the constraint at
least at one instant. (See [26] for details.)
4.
if @; = 1 then
Set u(i+1)(.) = u(i)(.) + 6u(i)('),

XD = XD () 4 62D (),

if 37" |H, (k)| < H!, then
| Obtain an optimal solution #“D(-) and x(*D(.).
else
Set 6x*D =0 and i = i + 1 for SQP updates.

Go to step 2.
end

else
if 0 <a; <1 then

Set u™* V() = u®() + a;ou?(-),
x(i+1)(.) = x(i)(-) + a;&x(i)(~),
and
6xV() = (1 = asx(),
i=i+1.
Go to step 2.
else
a; = 0.
Change the activity status of the corresponding con-
straint.
Go to step 2.
end
end
Fig. 4. Tllustration of the IPA-SQP algorithm.

exceeds a certain threshold. The value of absolute GS-1 ramp
rate threshold is chosen to be slightly lower than the maximum
absolute GS-1 ramp rate (90 kW/s in simulations and 35 kW/s
in experiments) to measure the duration that the absolute GS-1
ramp rate exceeds the threshold as a bad baseline.

A. Effects of Computational Delay

For the PMC problem described in Section II, the perfor-
mance will depend on the choice of the parameters in the cost
function (9). Computational delays can also have a significant
impact on system performance. To demonstrate the effects of
delays, simulations were performed using the TPMM as the
plant and the MPC as the controller.

We assume 30-ms computational delay when evaluating
its effects on performance. With 20-ms sampling time, this
will lead to an overrun in real time. This overrun has two
consequences: 1) the delay in the control execution and 2) the
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Performance analysis with 30-ms computational time delay on the

effective loss of the sampling rate, since the system cannot
respond to the next immediate sample data before it completes
the current computation. These effects have been modeled in
simulations, and the results are shown in Fig. 6.

As shown in Fig. 6, performance degradation, in terms of
those four metrics defined for the shipboard PMC, is notice-
able. The results highlight the performance degradation with
the delay and the importance of computationally efficient MPC
implementation that aims at minimizing the computational
delay.

B. Case Study Scenarios

The effectiveness of the optimization-based PMC strategy
is examined with emphasis being placed on different ship
performance attributes, such as protecting the main generator

GS-1 and extending its life span through reduced GS-1 ramp
rate, and improving SPS tracking performance. Among many
available paths, several scenarios are designed to test the
PMC algorithm and to evaluate the performance as well as
the sensitivity to key design parameters and tunability of the
controller.

1) Test A characterizes the baseline performance. After clos-
ing the control loop between the PMC and the test bed,
the weighting factors are tuned to meet different objec-
tives by running many simulations. The weighting factors
for the baseline were selected as shown in Table III.

2) Test B reflects the performance of the PMC algorithm
when protecting the GS-1 is emphasized, where the
penalty k¢ on the ramp rate of GS-1 is increased
(from 1 to 10).

3) Test C examines how the SPS tracking performance can
be improved after the SPS response is compromised
in Test B as a consequence of relaxed control authority
in GS-1. The new GS-1 ramp rate of Test B is maintained,
and the penalty k3 on the SPS IM power is increased
(from 15 to 25).

The weighting factors for each
in Table III.

scenario are reported

C. Numerical Simulation Results

Simulations are performed for the three scenarios using the
TPMM as the plant model. The results are shown in Fig. 7.
Plots present only one pulse period to avoid repetition since
the results for other pulses are identical. Fig. 8 summarizes the
performance metrics obtained from TPMM simulations. Note
that in Fig. 7, all set-point tracking objectives are achieved
with high accuracy (within 1% for GS-2 electrical power,
2% for SPS electrical power, and 0.05% for bus voltage in
average root-mean-square deviation from the desired values).
The square-wave load demand is also met with fast response
time in all three scenarios.

The maximum absolute GS-1 ramp rate is essentially
unchanged from Test A to Test B, as shown in Fig. 8, while the
average value of GS-1 ramp rate reduces 4.5% as the penalty
on GS-1 ramp rate increases, as summarized in Table IV.
Given that the SWPPL is treated as an unknown disturbance,
the maximum ramp rate always occurs when the pulse rises.
As side effects, SPS and GS-2 electrical power tracking errors
increase, namely, SPS and GS-2 electrical power tracking
performances are sacrificed in Test B. To mitigate some of
these effects, the penalty on SPS tracking error is increased
from Test B to C. There are several consequences of increas-
ing k4. First, SPS tracking error is decreased. Second, the
average value of GS-1 ramp rate is increased slightly (but
still less than that in Test A). Finally, GS-2 electrical power
tracking error is increased in Test C from Test B while
SPS tracking is improved. The bus voltage tracking behavior
correlates to the change in the average value of GS-1 ramp
rate. Table IV also reports the time intervals when GS-1 ramp
rate exceeds a threshold of 90 kW/s. GS-1 ramp rate that
exceeds 90 kW/s occurs less frequently in the simulation for
14 s in Tests B and C.
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Fig. 7. Responses on the TPMM. From top to bottom: GS-1 electrical power,
GS-2 electrical power, SPS electrical power, and dc bus voltage.

The simulation results show that the IPA-SQP algorithm can
be used effectively for power management to balance different
objectives. They also illustrate that, through adjustment of
different weighting factors in the cost function, one can
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TABLE IV
PMC SIMULATION METRICS ON THE TPMM
Average GS-1 GS-1 ramp rate
Test ramp rate threshold exceed time
(kW] s) out of 14 seconds (s)
A 9.05 0.28
B 8.64 0.14
C 8.84 0.14
Host Ethernet CPU1
PC CPU2
RT-LAB Opal-RT " .
Sinflgrare SUESTE  .0pal-RT Simulator
(a)

Fig. 9. Real-time simulation system. (a) System configuration. (b) Opal-RT
simulator.

emphasize different aspects of the performance attributes and
achieve the desired tuning of the controller performance.

D. Real-Time Simulation Results

Before implementing the IPA-SQP algorithm on the phys-
ical test bed, we run real-time simulations on an Opal-RT
simulator to verify the feasibility of real-time implementation
of our MPC algorithm and assess its performance.

The RT-LAB system is used to implement the real-time
simulations. The real-time simulation setup is shown in Fig. 9.
The RT-LAB system includes a host personal computer (PC)
and an Opal-RT simulator as a PC cluster-based platform.
The simulator has two CPUs that can exchange information
through the shared memory. The host PC and the simulator can
communicate via the Ethernet connection with 1-Gbit/s speed.
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TABLE V
WORST CASE COMPUTATION TIME ON THE Opal-RT SIMULATOR

Prediction horizon | 5 (0.1 sec)

1.5 ms

25 (0.5 sec)
6 ms

50 (1 sec)
12 ms

Computation time

Through real-time simulations on the Opal-RT simulator, we
check for overruns, algorithm execution time, and feasibility
of real-time implementation.

The waveform responses, tracking performance, and execu-
tion time are evaluated to assess the real-time behavior of the
proposed IPA-SQP solution. The same SWPPL power profile
in Fig. 3 and the same test scenarios are considered. The
TPMM model is used as the virtual plant and simulated with
the PMC.

Fig. 10 shows the profiles of the number of SQP iterations,
the value of optimality criterion Zf;[,\] - |H,(k)|, and the
value of the objective function for all scenarios. The maximum
number of SQP iterations is set to 10. One can observe that a
single SQP iteration was sufficient at 93% of the time instants
for the one square-wave period run. When large reference
changes happened (i.e., at 0.5 and 1.5 s), the number of
iterations, the value of optimality criterion, and the value of
the cost function all increased, due to the fact that the SQP
iteration limit was reached and the IPA-SQP algorithm was
terminated before achieving optimality.

Fig. 11 shows the waveform responses in real-time simula-
tion and compares them with nonreal-time simulation of the
one square-wave period run for Test A. Both cases have the
identical responses, demonstrating that there are no overruns
in real-time simulation. Table V summarizes the worst case
measured computation time on the real-time simulator with the
same solver settings as the prediction horizon length changes.
As one can observe from Table V, the computation time
grows approximately linearly with respect to the prediction
horizon, which is consistent with [29]. The IPA-SQP algo-
rithm is shown to be sufficiently fast for online optimiza-
tion in this application. Even for the prediction horizon of
50 steps with a sampling time of 20 ms (which corresponds to
1-s prediction window), it takes less than 12 ms to perform
the optimization and no overruns have been observed on the
Opal-RT simulator.

We note that even though the maximum iteration number
was reached and the IPA-SQP terminated the computation
without reaching the optimality condition (i.e., at
0.62 and 1.58 s), the IPA-SQP did provide feasible
solutions, and those solutions were used as initial guesses
for the solution at the next instants. The issue of loss of
feasibility was not encountered in our real-time simulation
and experiments. In general, however, how to guarantee
feasibility in the case of hitting iteration limitation is an
important issue, common to many state-of-the-art MPC
solvers, which is left to future research.

E. Experimental Results on the Purdue Physical Test Bed

In this section, we analyze the experimental results obtained
when the algorithm is implemented on the Purdue physical
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Fig. 10. Responses of real-time simulations. From top to bottom: SWPPL,
number of SQP iterations, value of optimality criterion, and value of objective
function.

test bed. The SWPPL is shown in Fig. 12, and the same
testing scenarios A—C and the same reference set points for
tracking used in the simulations are used in the experiments.
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Fig. 13 presents the control inputs, while Fig. 14 shows the
waveform responses (only one pulse period) in Tests A-C.
Fig. 15 reports the metrics for the measured values on the
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Fig. 13. Control inputs of PMC using IPA-SQP-based MPC on the test bed.

physical test bed. Since the SWPPL is assumed to be unknown,
the maximum absolute GS-1 ramp rate occurs when the pulse
first rise, and the maximum values are similar in the test
cases, as shown in Fig. 15. Table VI shows that the average
value of GS-1 ramp rate reduces from Test A to B as the
penalty on GS-1 ramp rate increases, confirming the simu-
lation results. As observed in the simulation, SPS and GS-2
power tracking performances are sacrificed, reflected by the
increased in the tracking errors for Test B. From Test B to C,
the penalty on SPS tracking error is increased to mitigate some
of the effects. Similar to the results obtained in the simula-
tions, SPS tracking error is decreased, as shown in Fig. 15,
while GS-2 power tracking performance is sacrificed to
accommodate SPS power tracking in Test C as compared
with Test B.

Table VI reports the maximum GS-1 ramp rate and the time
intervals when GS-1 ramp rate exceeds a threshold of 35 kW/s.
The maximum ramp rate of GS-1 is over 40 kW/s for all tests.
The time intervals when GS-1 ramp rate exceeds the threshold
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TABLE VI
PERFORMANCE ANALYSIS OF GS-1 RAMP RATE ON THE TEST BED

Average GS-1 GS-1 ramp rate
Test ramp rate threshold exceed time
(kW] s) out of 14 seconds (s)
A 9.07 1.26
B 8.88 1.08
C 8.45 0.76
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Fig. 14. Responses on the physical test bed. From top to bottom: GS-1
electrical power, GS-2 electrical power, SPS electrical power, and dc bus
voltage.
decrease from Test A to B and C, namely, the duration that
larger GS-1 ramp rate occurs is less.

The experimental results on the physical test bed are
qualitatively correlated to the simulation results. They also

experimentally demonstrate the feasibility and performance of
the TPA-SQP-based PMC. The differences in the numerical
values are attributed to unmodeled physical entities, such as
power converters, line losses, as well as unmodeled dynamics
of the motors and generators.

V. CONCLUSION

A power management controller for a shipboard power
system that uses the [PA-SQP-based MPC has been developed,
analyzed, and tested on the simulation model, the
Opal-RT real-time simulator, and the physical test bed.
The experimental results on the physical test bed and the
simulation results are qualitatively correlated. Evaluations
of three operational scenarios, Tests A, B, and C, reveal
the expected performance sensitivity with respect to tunable
parameters, such as the penalties on GS-1 ramp rate and SPS
tracking error. The developed PMC successfully allocates
requests to power sources and loads in the baseline test with
the SWPPL and appropriately modifies control inputs when
different aspects of the performance attributes are emphasized
by changing weighting factors in the cost function for the
MPC problem. This paper demonstrates the feasibility of
using the IPA-SQP-based MPC algorithm for real-time
power management of shipboard IPS and provides a case
that supports further development and implementation of
optimization-based PMC for shipboard power systems.
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Step 1. Seti =0, 6xO () = x(t) — x(t — 1),
O =2*(), uOC) =u()
I
N
Step 2. Calculate 5x®(-) and su(®(-) applying
PA to the nominal solution x®(-) and u® (")
for initial state perturbation §x®(t)
2
Step 3. Find the smallest «; € [0,1] :
perturbation a;5x® (-) changes the status
of the constraint at least at one instant
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Stepd. 0<a; <1
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u@*D() = u®d() + o6u®(),
2 = xO) + 08x (),
H 8x0D(0) = (1 - aax (D),
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x(i+1)(.) = x(i)(-) + 6x@ ®

sxD(t) =0,
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SQP update

Step 6. YLVt H, (k)| = 0

Fig. 16. Flowchart of the IPA-SQP algorithm [37].

APPENDIX
IPA-SQP ALGORITHM

Assume that (x*(k), u*(k)) is the nominal solution to (8).
The Hamiltonian function is defined as

H(k) = L(x(k), u(k)) + Atk + D)7 f(x(k), u(k))
+ p ()" C(x k), uk)) + m (k)" C*(x (k) (13)

where A(-) is the sequence of costates associated with
f(x(k), uk)) (i.e., the dynamics of system), u(k) and j(k)
are the vectors of Lagrange multipliers, and C“(x(k), u(k))
and C“(x(k)) denote vectors consisting of the active con-
straints. Before proceeding, we define compact notations for
partial derivatives as follows:

0

Guk) = 6aG(k)’ b
where the subscript letters a and b denote the variable G with
respect to which the partial derivative is taken, i.e., H, and H,,
denote the partial derivative of H with respect to x and u,
respectively.

Since the nominal solution x*(-) and u*(-) is optimal, the
following necessary optimality conditions are satisfied [36]:

Gt =55 (£:60)

Ak)y = Hy(k), k=t,...,t + N —1

H,(ky=0, k=t,...,t +N—1
At + N) = O (x(t + N))

uk) >0, k=t,...,t + N —1

nk) >0, k=t,...,t+ N. (14)

The NE solution [28] approximates the optimal state and
control sequences for the perturbed initial state so that the
necessary conditions (14) for optimality are maintained to the
first order.

The flowchart in Fig. 16 shows the main steps to obtain
the NE solutions and to deal with changes in the activity
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status of constraints. The NE solution in Step 2 of the
flowchart is obtained by solving the following optimization
problem [27], [29], [37]:

527

min

15
ox(+), ou(-) as)

where

1
5T = 0%t + N ®11(t + N)ox(t + N)

| - ox(k)\" (( Hex(k) Heu(k) [ 6x(k)

s.it. ox(k + 1) = fo(k)ox (k) + f,(k)ou(k) (16)
ox(t) = ox; 17)
CY(x(k), u(k))ox (k) + C(x(k), u(k)du(k) =0  (18)
C%(x(k))ox (k) = 0 (19)

where ox; is defined as dx;, := x(t) — x(t — 1) and
@1 (t+N) i= Oyy (t+N)+(8/0x)(CE(x (t+N))T ii(t+ N)).

When C¢ (k) has dependent rows, it can be transformed
through linear similarity transformation into the following

form:
Ci (k)
0

for some é;’ (k) with independent rows. Hence, (18) is decom-
posed into

(20)

CL(x(k), u(k))ox (k) + Co (x (k), u(k)du(k) = 0 (21)
Co(x(k))ox(k) =0 (22)

for appropriately defined C‘fj (x(k), u(k)) and C¢(x(k)). The
independence of the rows in C¢ is required for NE solution
calculation.

We now define matrix sequences C,(-), Cy(-). Cu (), and
Cy (), and S(-) using the following backward recursive equa-
tions. Define

C4t + N) := C4x(t + N)) (23)
S(t+ N) = O11(t+ N) (24)
and at sampling instant k, let
(. Gk
Canth) =  ex 11,00
ri := rank(Cayug (k). (25)

At each sampling instant k, there is a matrix P(k) that
transforms matrix Cyyg(k) into the following form:

ci (o ):(@w)(%)

P(k)Caug (k) = P(k) (éa (k+ 1) fu (k) 0

with Ci(k) €
By defining

R7>*™M which has independent rows.

C3 (k)
ri) = F® (éf:(k + l)fu(k))
Ce(k)

27)
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and assuming that yi is the number of rows of matrix I'(k),
I'(k) can be partitioned into a block matrix as

We

- (50)

then obtain

é?(k) = (Irerk Ork x(ykfrk))r(k) e R
é)‘: (k) = Og—royxre Age—roxGr—r)T k) € ROEi)xm,

By defining

Zi(k) i= Hex(k) + ()T Sk + 1) f (k)
Zo1(k) := Z12(k)" = Hux (k) + fu()T Sk + 1) f2 (k)

Zn(k) i= Hu(k) + fuk)T Stk + 1) fu (k)
A Zn®) T\
Koty = (Q‘:(k) 0 ) 28)
S0 i= 20 - (206 20" Kot () )
T(t+N) =0

T(k) = f() Tk +1)— (Zia(k) Ci(k)T)

T
< EolE) (fu(k) ThA D+ Hu(k>)

where Zy(k) > O for k € [t,t + N]. Using S(t + N) and
T(t + N) as the initial conditions for backward iteration,
we calculate the matrix sequences described above. We then
obtain the explicit relation between state and input variations
of the perturbed solution as (12).

When Jx; is large and causes activity status changes
in constraints, dx; is divided into smaller segments and
applied the NE solution to each segment. Details in handling
changes in the activity status of constraints are addressed
in [26], [27], and [35].
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