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Abstract

At signalized intersections, vehicle speed profile plays a vital role in determining fuel consumption and emissions. With
advances of connected and automated vehicle technology, vehicles are able to receive predicted traffic information from the
infrastructure in real-time to plan their trajectories in a fuel-efficient way. In this paper, an eco-driving model is developed for
hybrid electric vehicles in a congested urban traffic environment. The vehicle queuing process is explicitly modeled by the
shockwave profile model with consideration of vehicle deceleration and acceleration to provide a green window for eco-
vehicle trajectory planning. A trigonometric speed profile is applied to minimize fuel consumption and maximize driving com-
fort with a low jerk. A hybrid electric vehicle fuel consumption model is built and calibrated with real vehicle data to evaluate
the energy benefit of the eco-vehicles. Simulation results from a real-world corridor of six intersections show that the pro-
posed eco-driving model can significantly reduce energy consumption by 8.7% on average and by 23.5% at maximum, without

sacrificing mobility.

The transportation sector is one of the primary sources
of emissions and fuel consumption. It produced 26% of
the total greenhouse gas emissions in the U.S. in 2014,
making it the second largest producer of greenhouse
gases (/). Besides, with the rapid growth of oil consump-
tion, the scarcity of fossil energy becomes more and more
severe. Studies show that oil will be depleted in approxi-
mately 35 years with the current consumption rate (2). It
is of vital importance to reduce fuel consumption and
emissions, especially in urban areas. Alternative-fuel
vehicles, as well as connected and automated vehicle
(CAYV) technology, are expected to be two effective
methods.

Alternative-fuel vehicles, such as hybrid electric vehi-
cles (HEVs) and electric vehicle (EVs), are considered as
further directions of vehicle development. HEVs are
powered by an internal combustion engine and an elec-
tric motor, whereas EVs are powered only by an electric
motor. One reason that HEVs or EVs can save energy is
that when the vehicle brakes, energy usually wasted can
be used to generate electricity for the electric motor.
Moreover, electric motors have inherently greater effi-
ciency and do not waste energy while vehicles are decel-
erating or stopped.

Not only improving vehicle technology can help save
fuels, but also the CAV technology can potentially

provide more savings with vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communications. It is well
known that given the same travel distance, different
speed and acceleration profiles have a significant impact
on fuel consumption and emissions (3). Typically, these
types of driving behaviors targeting saving energy and
reducing emissions are called eco-driving and the vehicles
that have eco-driving capabilities are called eco-vehicles.
By utilizing traffic information from traffic signals and
other surrounding vehicles, eco-vehicles can adjust speed
and acceleration dynamically to obtain a smoother tra-
jectory, in which both fuel consumption and emissions
can be reduced.

In this work, we propose a model to plan trajectories
for HEVs, in a congested urban environment. It is
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assumed that the HEVs have communication capabilities
(i.e., V2I) with Level 1 or higher automation level (i.e.,
longitudinal control). Information from both traffic sig-
nals and vehicle queues at the intersections are taken into
account when planning the trajectory. The vehicle queu-
ing process is modeled by the shockwave profile model
(SPM) (4) in which different shockwaves are estimated
and tracked to predict the queuing dynamics in the near
future. A trigonometric speed profile is applied, and the
trajectories of the HEVs are optimized with the objective
to minimize fuel consumption with a low jerk. A hybrid
electric vehicle (HEV) fuel consumption model is devel-
oped and calibrated to evaluate the eco-speed profile.
Simulation results from a real-world road network show
that the proposed eco-driving strategy can significantly
save total energy consumption without compromising
mobility performance.

The remaining of the paper is organized as follows:
first, a brief review of current eco-driving research is pre-
sented. Next, an overview of the simulation framework
is given and each component is then introduced in detail.
Experiment results are presented with discussions. The
final section concludes the paper and lays out further
research directions.

Literature Review

In the literature, eco-driving at signalized intersections is
usually referred to as eco-arrival and eco-departure
(EAD). For a single intersection, Jiang et al. used
Pontryagin’s Minimum Principle (PMP) to solve an opti-
mal control problem for eco-driving with a low penetra-
tion rate of CAVs (5). For multiple intersections, a
corridor-level, sub-optimal eco-driving algorithm was
introduced by De Nunzio et al. (6), using a weighted
directed graph to determine the optimal path over the
trip horizon along a signalized corridor. However, vehi-
cle queues at the intersections are neglected in the opti-
mization problem formulation, so the algorithm can
only work under free-flow condition. It cannot handle
the situations when intersections are congested. A multi-
stage optimal control model was proposed to plan the
trajectory for a signalized corridor in He et al. (7), with
the consideration of both vehicle queue and traffic
signals.

Some studies focus on controlling a single vehicle,
whereas others extend to multiple vehicles with platoon-
ing. A dynamic eco-driving approach was developed by
Barth et al. (8) for a single vehicle, assuming a trigono-
metric speed profile. The model not only minimizes fuel
consumption but also considers jerk, corresponding to
ride’s comfort. However, vehicle queuing at intersections
is not considered in this paper. Rakha and
Kamalanathsharma developed an eco-driving model to

determine whether a vehicle needs to slow down or pass
the intersection with signal information (9), using micro-
scopic fuel consumption models when conducting the
optimization. However, when developing the solution
algorithm, this study lacked consideration of queuing
profile prediction, which is emphasized in this paper. A
predictive intelligent driver model was introduced as the
adaptive cruise control (ACC) controller in Xin et al.
(10) for eco-driving, which was used to guide ACC-
equipped CAV across intersections, considering the
downstream queue discharging time. Kamal et al.
designed a control system to measure relevant informa-
tion about the roadway and traffic flow and to anticipate
the state of the preceding vehicle to reduce fuel consump-
tion (11).

Some studies investigated the impact of CAV market
penetration rate on eco-driving. Sensitivity analysis of
different penetration rates has been conducted in other
research (/2), which show the benefits of eco-driving in
relation to fuel consumption at network level, even under
20% of connected vehicles. In Jiang et al. (5), the benefits
remain significant when the penetration rate is higher
than 40%.

A variety of solution algorithms have been proposed
to plan the eco-vehicle trajectory. A dynamic program-
ming (DP) algorithm has been developed by Miyatake
et al. (13) for electric vehicles. Model predictive control
(MPC) introduced in another research (/4) reduced fuel
consumption by up to 47% and carbon dioxide emission
by up to 56% in a multi-intersection network, by mini-
mizing the probability of stopping at the red light. It is
assumed that all vehicles in the simulation are eco-
vehicles controlled by MPC. Both analytical and numeri-
cal solutions have been discussed (/5) to solve the fuel
consumption minimization problem. The analytical
methods work for simplified vehicle dynamics and fuel
consumption models. The numerical methods can be
applied to the non-linearity of the vehicle dynamics.

Methodology

In this section, we first give an overview of the simulation
framework. Then each component of the system includ-
ing queuing profile prediction, speed profile generation,
and HEV fuel consumption model is introduced in detail.

Overall Simulation Framework

The overall simulation framework consists of three parts:
VISSIM traffic simulator, Algorithm module, and Post
Analysis module (Figure 1). VISSIM is a microscopic
traffic simulation software developed by PTV. Vehicles
in VISSIM can either follow internal car-following and
lane-changing models or are controlled by user-defined
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Figure 1. Overall simulation framework.

API (16). VISSIM serves as the simulation platform and
sends vehicle data (i.e., basic safety messages [BSMs])
and infrastructure data (i.e., detector data and signal
phase and timing [SPaT] messages) to the Algorithm
module, which generates suggested acceleration profile
to control eco-vehicles in VISSIM using DriverModel.dll
API. The Algorithm module includes Vehicle
Localization algorithm, Queuing Profile Prediction algo-
rithm, and Speed Profile Generation algorithm. After
simulation runs, vehicle trajectories will be stored and
used in Post Analysis module to calculate fuel consump-
tion and emissions.

The Vehicle Localization algorithm processes vehicle
trajectory data from BSMs, locates vehicles on the map
and calculates related vehicle information such as
approach, lane, estimated time of arrival (ETA) and
requested signal phase. Combining with detector data
and SPaT data, vehicle trajectories calculated from the
Vehicle Localization algorithm serve as the input to the
Queuing Profile Prediction algorithm. More details
about the localization algorithm can be found in Feng
(17). This framework can be applied to both CAVs with
Level 1 or higher automation level and connected vehi-
cles with a human—machine interface (HMI) to give driv-
ers advisory speed.

Queuing Profile Prediction

The objective of queuing profile prediction is to make
a real-time prediction of the vehicle queuing dynamics
at the intersection and calculate a green window for
the eco-vehicle’s trajectory planning. Currently, the
following assumptions are made to simplify the
problem:

1. All vehicles are connected and broadcast BSMs.
2. Traffic signals operate under fixed timing plan.

Distance

DSRC Range

Qmax
Qeur

Green Window

Figure 2. SPM-based queuing profile prediction.

3. Traffic demand is not oversaturated.

The SPM (4) is implemented to predict the queuing
profile with the consideration of vehicle acceleration and
deceleration process. The SPM tracks and estimates dif-
ferent types of shockwaves and their speeds at a signa-
lized intersection and therefore the queuing dynamics can
be constructed. The SPM is modified to make predictions
of queuing dynamics instead of making estimations after
the queue has been discharged. The entire queuing pro-
cess within a signal cycle is shown in Figure 2. Four criti-
cal time points are defined:

to: Current time when the prediction is made.

t;: Predicted time point that the maximum queue
length Oy is reached (stop time of the front vehicle).

t: Predicted time point that the end of the queue starts to
move (launch time of the front vehicle).

t3: Predicted time point that the end of the queue reaches the
intersection (departure time of the front vehicle). This is also
the start time of the green window.

Note that the front vehicle is defined as the immediate
downstream vehicle of the eco-vehicle in the same lane.
The end of the green window is considered to be the end
of the green signal.

The primary purpose of the queuing profile prediction
algorithm is to determine the start of the green window
(t3). Four different types of shockwaves are identified in
Figure 2 to calculate #; step by step. wy is the queuing
shockwave speed from red signal start until current time;
w; is the predicted queuing shockwave speed until the
maximum queue is reached; w, is the discharge shock-
wave speed; w; is the departure shockwave speed. #; is
also the time point that the departure shockwave wy;
arrives at the intersection.

With the assumption of 100% penetration rate of con-
nected vehicles, the current queue length Q. is known
by checking each vehicle’s speed and location from the
BSMs. If the vehicle’s speed is less than 5 mph, we
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consider it is in queuing state based on Highway
Capacity Manual definition (/8). To predict the time-
point that the maximum queue length is reached, we con-
sider the vehicle deceleration rate and the stopping dis-
tance of the front vehicle as

V2

U

yi stop  2ap 1

fo+ L+ S in if d!
/

t() + stmp

Vi
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(1)

otherwise

where

v; = current speed of the front vehicle;

a, = average vehicle deceleration rate, a constant para-
meter; and

d{top = predicted stopping distance of the front vehicle,
from its current position to its stop location, which can
be calculated by the number of downstream vehicles mul-
tiplied by an average vehicle length.

When the signal turns to green, the discharge shock-
wave speed w, is determined by the saturation flow rate,
which is usually assumed to be a constant (e.g., 12 mph).
As a result, critical time point #, can be predicted as

h =1, + Qmax/WZ (2)

where #, is the start time of the green signal.

The departure time #; is estimated based on #, assum-
ing the last queuing vehicle accelerates to free-flow speed
and then keeps constant speed until it passes the intersec-
tion. Based on the stopping location of the vehicle, #; can
be calculated as
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where a,, is the average vehicle acceleration rate.

The descriptions above provide a general approach to
estimate the departure time #3. However, the eco-vehicle
may arrive at the intersection at any time with any num-
ber of downstream queuing vehicles. Vehicles down-
stream of the eco-vehicle may or may not stop based on
current signal status and remaining timing of the signal
phase. As a result, four different cases are identified as
shown in Figure 3.

In case 1, the signal is red; there is no stopped vehicle
at the downstream of the eco-vehicle. This case usually
happens when the signal has just turned to red. Whether
the eco-vehicle stops or not depends on whether its front
vehicle can pass the stop bar when the green signal starts

Distance
A

DSRC Range

Qax
Qar

Green Window

Time

Figure 3. Four cases in queuing profile prediction.

(e.g., a very short red time). If the front vehicle stops,
then case 1 turns to case 2.

In case 2, the signal is red, and there are stopped vehi-
cles at the downstream of the eco-vehicle. This is the
most common case when vehicles are waiting in the
queue for the green light. The time of arrival at the end
of the queue is compared with the time of discharge of
the last vehicle in the queue, to determine whether the
eco-vehicle stops or not.

In case 3, the signal is green, and there are stopped
vehicles at the downstream of the eco-vehicle. It happens
when an existing queue is dissipating. All stopped vehi-
cles are discharging by saturation flow rate, and the
approaching eco-vehicle is checked whether it joins the
queue by comparing its arrival time with the discharge
time of the last queuing vehicle.

In case 4, the signal is green, and there is no stopped
vehicle at the downstream of the eco-vehicle in the same
lane. Whether the eco-vehicle stops or not depends on
whether its front vehicle can pass the stop bar before the
red signal starts. The eco-vehicle stops if its front vehicle
stops. Otherwise, the time of arrival at the stop bar is
compared with the remaining time of the green signal.

Speed Profile Generation

The objective of the Speed Profile Generation algorithm
is to provide an eco-friendly vehicle trajectory. The plan-
ning horizon of the trajectory starts from the time point
when the eco-vehicle enters the communication range
until it arrives at the intersection. In an attempt to ensure
a smooth trajectory and minimize the fuel consumption
and emission with a low jerk, a trigonometric speed pro-
file is applied from Barth et al. (8). Figure 4 shows two
examples of the trigonometric speed profiles: one decel-
erating to a lower speed and one accelerating to a higher
speed. In the figure, vy is the initial speed, and the area
under the speed profile denotes the distance to stop bar
dstop- tarr 18 the time of arrival at the intersection with
tar = t3 + h where & is the saturation headway between
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Figure 4. Trigonometric speed profiles.

two vehicles. At time point #, = 57, the speed of the eco-
vehicle reaches the average speed v,, shown in Equation
5. After t, = 5. + 7=, the speed doesn’t change, and the
vehicle will cruise to the stop bar. The speed profile for
the acceleration process is shown in Equation 6. m and n
are model parameters that reflect the maximum accelera-
tion, maximum deceleration, and jerk. They determine
the shape of the trigonometric speed profile to minimize
fuel consumption by reaching the cruise segment as soon
as possible. The detailed explanation of the choice of m
and n can be found in Barth et al. (8). The deceleration
process shares the same format as the acceleration pro-
cess, with v, <0.

Vp = dstop/tarr (5)

vy — vecos(mi), t € [0,1,)
—veos[n(t + =)t €[t,,1,)  (6)
vp + V,.%,l‘ S [tqatarr)

v=4 v,

Ve =V, — Vg (7)

Based on the different time-points that the eco-vehicle
enters the communication range and corresponding
queue status, the eco-vehicle may choose different speed
profiles as shown in Figure 5. Four types of speed pro-
files are identified: slow down, speed up, cruise, and stop.
The criteria that determine which type the eco-vehicle
uses to plan the trajectory is shown in Figure 6. 4"
denotes the time when the eco-vehicle approaches the
end of the queue with the current speed. If it is less than
t, plus a 2-second buffer time, which means that the eco-
vehicle arrives at the end of the queue before it starts dis-
sipating, the eco-vehicle will plan to stop. Otherwise, the
algorithm checks whether the time to stop bar with the
current speed, " falls into the green window I". If so,
the vehicle can cruise and pass. If not, it checks whether
the green window intersects with [¢°, ], in which ° is
the earliest time the eco-vehicle can arrive at the intersec-
tion, by accelerating to the speed limit. If the eco-vehicle

can accelerate and pass the intersection, it adopts a
“speed up” speed profile. This scenario usually happens
when the eco-vehicle is approaching the intersection at
the end of the green phase. If acceleration is not feasible,
the algorithm checks whether the green window inter-
sects with [/, #7], in which # is the latest time the vehicle
can arrive at the intersection, by decelerating to the mini-
mum cruise speed. If the intersecting interval is empty,
the eco-vehicle applies the “stop” speed profile. Note
that all “slow down,” “speed up,” and “stop” speed pro-
files are generated by the trigonometric profiles with dif-
ferent parameter settings. Technically, the eco-vehicle
can always slow down to a very low speed and cross the
intersection without stopping. However, a very low
cruise speed may be disruptive to other traffic and cause
frequent lane changing and cut-in behaviors. As a result,
a minimum cruise speed is adopted as 70% of the speed
limit. If the eco-vehicle cannot maintain the minimum
cruise speed, it comes to a complete stop.

Although oversaturated traffic condition is not con-
sidered in this paper, the SPM can be extended to oversa-
turation cases (see Wu and Liu [4] for more details).
However, the benefits of eco-driving will be limited under
such circumstances. Because of constant cycle failures, all
vehicles have to stop at least once to pass the intersection.
There is little space for the Speed Profile Generation
algorithm to plan a fuel-efficient vehicle trajectory.

HEV Fuel Consumption Model

In this subsection, a vehicle level HEV simulation model
is introduced for the fuel consumption evaluation. The
HEV simulation model is configured with Toyota
Hybrid System (THS) and contains an engine thermal/
fuel model, a battery state of charge (SOC) model, an
electric motor model, a vehicle longitudinal model and a
driver model. A rule-based power-split controller is
applied to regulate the powertrain operation according
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to the driver demand. In this paper, we only focus on
modeling energy-related components which are the bat-
tery model and fuel consumption model. For more
details on the entire vehicle model, please refer to other
papers (19, 20).

For the electric path, the governing equation of the
battery dynamics is given as

SOC _ Uoc RV U§c - 4Rinthalt

2Rint Cbatt ’

(®)

where
SOC = state of the charge,
Py, = battery power,
Cpat = battery capacity,
U,. = open circuit voltage, and
R;,: = internal resistance.
Both Uy = f1(SOC) and R, = f2(SOC) are functions of
SOC and calibrated by real data.
The battery power is calculated from

Prat = Tnomny, — Tg"-’g'T]g, (9)

where

T = motor torque,

T, = generator torque,

oy, = motor speed,

g = generator speed,

Nm and m, = efficiency parameters which are based on
look-up tables obtained from AUTONOMIE (21).



Yang et al

IN)
-
J

Fuel consumption (g/s)
o -l

——Model

o

- - Data

0.5

0 100 200 300 400 500 600 700 800

Time (s)
60 al
<
£ 40-
=
g
5 20
>
0 = }
0 100 200 300 400 500 600 700 800
Time (s)

Figure 7. Fuel consumption validation of the HEV model.

The battery SOC is validated against the real testing data
of a Prius 2017.

For calculating the fuel consumption, the engine is
modeled as a quasi-static system where the effective
engine torque T. and the engine speed w, are the input
variables while the fuel flow rate my is the output vari-
able. Thermal influence on the fuel consumption is
also considered when the engine coolant temperature
varies. Thus, the fuel consumption of the engine is calcu-
lated by

I’hf = ffuel,map((’l)ea Te)fcl,map (TCI>9 (10)

where fiel, map (we, Te) denotes the standard fuel flow rate
by a look-up table and fo map(Te1) denotes the sensitivity
parameter depending on engine coolant temperature Tg.
The fuel consumption model is validated against a Prius
2017 testing vehicle through a local driving cycle in Ann
Arbor, Michigan as shown in Figure 7. The red dotted
curve is the fuel consumption from the real vehicle and
the blue curve is fuel consumption generated from the
model with the same speed profile, which is a good match
to the real data.

The HEV draws power from both engine and battery.
As a result, the actual energy consumed ( E,) is used as
the performance index in the evaluation scenarios

Eyt = LHVgas*mf + AEbatt/nsys (1 1)
AEpyy = (SOCy — SOCend) *Epan (12)

where
E. is the actual energy consumed in M1J;
LHYV,,, is the lower heat value of gasoline in MJ/kg;
my is the fuel consumption in kg;
AFEy,y is the change of battery energy in MJ

Figure 8. VISSIM simulation model of Plymouth Rd.

SOCy, is the state of charge at the beginning of the
trip in percentage

SOC,q is the state of charge at the end of the trip in
percentage

FEpay 1S the total battery energy in MJ

Tyys 18 @ battery coefficient

Simulation Analysis

Experimental Setup

A VISSIM simulation model is built for a six-
intersection corridor at Plymouth Rd, Ann Arbor as
shown in Figure 8. The stretch of the Plymouth Rd is
about 2.2 mi and has two lanes for each direction
which is one of the busiest commuting routes, serving
US23 to the North campus of the University of
Michigan and downtown Ann Arbor. Some crossing
roadways are major arterials which carry a large vol-
ume of traffic and others are side streets with less traf-
fic demand. The road geometries are calibrated with
the satellite maps from Google Earth.

The VISSIM model is calibrated with data collected
from two sources: video data and the naturalistic driving
data (NDD) from the Safety Pilot Model Deployment
(SPMD) project (22). The video data were collected from
each intersection simultaneously at afternoon peak hour
(4:00-5:00 p.m.). The video data contain vehicle volumes
at each movement, turning ratios at each approach and
signal phasing and timing data. The SPMD data is used
to calibrate the acceleration profiles to match actual driv-
ing behaviors. In total, 2,593 acceleration events along
Plymouth corridor were extracted and the mean accelera-
tion values under different speeds are calculated and set
as the desired acceleration rate in VISSIM. The reason
calibrated acceleration profiles are used is that different
driving behaviors have a significant impact on the fuel
consumption.

The vehicle volumes and turning ratios collected at
each intersection are used as the input to calibrate
the VISSIM model. To quantitatively evaluate the
accuracy of the calibration, the Geoffrey E. Havers
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(GEH) value of each movement is calculated. The
GEH value is defined as

(VOlsim - V()lreal)2
GEH = 13
\/( Volgm + Volreal)/z ( )

A general rule to determine whether a simulation net-
work is well calibrated is that the GEH values for more
than 85% of the traffic volumes at selected movements are
less than 5 (23). A total number of 61 movements along
the corridor are identified. Simulation results show that 58
out of 61 movements (95.1%) have the GEH value less
than 5, which indicates a well-calibrated network.

Results and Discussion

Queuing Profile Prediction. Figure 9 shows the results of the
queuing profile prediction of the four cases, as discussed
in the methodology section. In this experiment, there is
one downstream vehicle ahead of the eco-vehicle. The
lines without crosses are true values, and the lines with
crosses are predictions. The blue (crossed) lines denote
the true (predicted) stop time of the front vehicle ( #,),
and the red (crossed) lines denote the true (predicted)
launch time of the front vehicle ( #,). The true (predicted)
departure time of the front vehicle ( #3) goes with the
green (crossed) lines. The horizontal axis is the simula-
tion steps (every 0.1 s) and the vertical axis is the simula-
tion time. As a result, the true values are 45° diagonal
lines. When the true values reach zero on the vertical
axis, it means the front vehicle stops/launches/leaves at
this time point. The vertical differences between the
crossed lines and solid lines are the prediction errors.
Note that the prediction is made every 0.1 s. The

predictions of launch time ( #,) and leave time ( #3) are
pretty accurate except for case 4. In case 4, when the sig-
nal is green and no vehicle stops downstream of the eco-
vehicle, the SPaT data only provide the remaining time
of the current green phase. The duration of the upcom-
ing red signal is unknown, which leads to the inaccuracy
of the prediction. After the signal turns to red, the pre-
diction becomes accurate, which is case 1. After the front
vehicle stops, the queue has been formed, as in case 2.
After the signal turns to green, the queue starts dissipat-
ing, which is case 3. The small fluctuations of prediction
of stop time (in blue) in case 4 and case 1 are caused by
the constant vehicle deceleration value assumption.

Evaluation  Scenarios. The evaluation scenarios are
designed to test the algorithms in the network with dif-
ferent traffic conditions and signal timings. Figure 10
shows a sample speed profile with trajectory planning (in
blue) and without trajectory planning (in red) under the
same traffic condition. VISSIM’s internal driving model
with calibrated acceleration profile is used as the base-
line. It can be seen from the figure that through trajec-
tory planning, the eco-vehicle can greatly reduce speed
fluctuation both in the free-flow condition and when
approaching intersections, although in this case, the
number of stops is the same. Table 1 confirms that in
total 11.59% energy is saved because of trajectory plan-
ning using the HEV fuel consumption model.

To further validate the performance of the algorithms,
a total number of 50 eco-vehicles are generated using dif-
ferent random seeds and compared with the baseline.
Figure 11 shows the distribution of total energy reduc-
tion among all vehicles. The maximum energy saving is
about 23.5%, and average energy saving is about 8.7%.
Figure 12 shows the distribution of travel time differences
among all vehicles with or without eco trajectory plan-
ning. The average travel time with eco trajectory plan-
ning is about 442.5 s whereas the average travel time
without eco trajectory planning is about 442.3 s. The
results indicate that the proposed algorithms are able to
save energy while maintaining mobility performance. It is
noticed that in some cases the travel time difference can
reach 15-20%. That is because of the different speed pro-
files that the eco-vehicle may adopt. For example, if the
vehicle is under eco trajectory planning, it may choose
the “speed up” profile and pass the intersection, while
without eco trajectory planning, the vehicle may stop and
wait for the red signal for an entire cycle.

Conclusions

This study proposed an eco-driving model to plan the
trajectory for HEVs at signalized intersections. The SPM
was applied to predict the queuing profile and calculate
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Table I. Energy Comparison Sample Speed Profile

Fuel (kg) SOC begin SOC end Total energy (M)) Reduction (%)
With Planning 0.1446 0.6 0.5824 6.528 11.59
Without Planning 0.1591 0.6 0.5655 7.384 N/A

Note: M) = megajoule; SOC = state of charge; N/A = not available.

Speed profile Comparison along the Corridor
T T

Speed Profile (mph)

with control |
‘without control |

0
100 150 200

Simulation Time (s)

250 300 350 400 450

Figure 10. Speed profile comparison along the corridor.

Corridor Level Total Energy Reduction Distribution

Frequency

5 0 5 10 15 20 25
Total Energy Reduction (%)

Figure 11. Distribution of energy reduction.

green windows for eco-vehicles. Given traffic signal and
vehicle queue information, the vehicle speed trajectory
was optimized in a trigonometric form, to minimize the
fuel consumption. An HEV fuel consumption model was
developed and calibrated to evaluate the vehicle speed
profile. Results from a six-intersection corridor simula-
tion model showed that the maximum energy saving can
reach 23.5% and the average saving is about 8.7%.

Corridor Level Travel Time Difference Distribution
25 T T T T T

20

Frequency
>

-
o

-20 -15 -10 -5 0 5 10 15 20

Travel Time Difference (%)

Figure 12. Distribution of travel time difference.

Meanwhile, the travel time of the eco-vehicle along the
corridor remains similar.

There are a few directions worth investigating in
future work. The queuing profile prediction algorithm
needs to be modified for a lower penetration rate of
CAYV environment, in which data from infrastructure-
based sensors need to be added. Oversaturated traffic
conditions can also be considered with a focus on
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evaluating the benefits of eco-driving under such condi-
tions. Currently, lane-changing behavior is not modeled,
which should be added, especially when the eco-vehicle
needs to make turns. Finally, driver acceptance of the
new technology and changes in driving behaviors is
another interesting research topic.
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