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ABSTRACT

Though the variety of desktop real time stereo vision system
has grown considerably in the past several years, few make al
verifiable claims about the accuracy of the algorithms used t
construct 3D data or describe how the data generated by su
systems, which is large in size, can be effectively distadulIn
this paper, we describe a system that creates an accurétes(on
order of a centimeter), 3D reconstruction of an environnient
real time (under 30 ms) that also allows for remote inteoacti
between users. This paper addresses how to reconstruct, co
press, and visualize the 3D environment. In contrast to mos
commercial desktop real time stereo vision systems our-algq
rithm produces 3D meshes instead of dense point cloudshwhig
we show allows for better quality visualizations. The chose
representation of the data also allows for high compression
tios for transfer to remote sites. We demonstrate the acgura
and speed of our results on a variety of benchmarks.

Keywords— 3D video, compression, real time, teleimmer-

sion Fig. 1. Two users interacting with a virtual car model each cap-

tured with a different stereo camera and rendered insidar@gh

virtual environment using the stereo vision system preseimt
1. INTRODUCTION this paper.

3D display technology has improved considerably both in-qua
ity and popularity in recent years. Unfortunately, the depe = However, such devices have significant shortcomings, ssch a
ment of technology to generate 3D content has lagged behirldw resolution, limited range, high noise, and albedo s@&nsi
the development of such displays. Most of the content we novity [2]. Passive sensors, generally cameras, observeirexist
enjoy on stereo displays is either generated off line as in 3@lectromagnetic information and use that information tierin
movies or is synthetically generated as in video games. Accuwabout the 3D world. Approaches to extract 3D content from
rate real-time generation of 3D data from real-life scer@s h cameras usually take three forms: visual-hull extractiay-
proved extremely difficult. metric reconstruction, or image-based reconstructiohth&e

Approaches to real-time 3D content generation can be diapproaches, the image-based one, where 3D information is ex
vided into two categories, those with active and those passi tracted by comparing rectified images, can achieve muclehigh
sensors. The active sensors incorporate laser or infraged daccuracy with less noise (see [3] a more extensive review of
vices as in time-of-flight cameras like the ZCam or Canedta [1 these three approaches). Though image-based steredtaigeri

_ , _ _ have been studied extensively (see [4] for a review of such al

070;7hs|;s7?,v87r;4\{\$1?21?1338532%%/0@ National Science FoundatidenGrants 4 rithmes), they have struggled to simultaneously achiecea

Edgar Lobaton is now with Department of Computer Sciencéydssity ~ 'acy and real-time performance. We em_pl_oy t_he imag.e based
of North Carolina at Chapel Hill. approach and overcome its associated difficulties by pingos
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a real-time region-based algorithm via a multi-scale scepe

resentation. In addition to achieving high accuracy anedpe

this representation of the data allows for better visuibravia = _ _ & & o o o e e e e e e e e e e
texture mapping and high compression ratios for transfénef !

data to remote sites. Lt Color image ] Gray image [ ]
In this paper, we present a real-time portable stereo vision Gray image

system that creates accurate 3D reconstruction of usera via ¢ w -
mesh with high-resolution dynamic texture mapping. We make [ H ]

two major contributions: first, a novel multi-scale represe

tion that allows for the highly accurate reconstruction etane | A
which is described in Section 4; second, a real-time texture [ H ]—; TcPP
compression and decompression technique that allowsdar hi £

quality visualization which is described in Section 5. Thsetr
of the paperincludes a brief overview of related work in 88ttt @~ @ === e cccccc e e e e ==
2 and an overall description of the various system companent

in Section 3. An example of the results achieved by our system TcRAP -’[ H ]
presented in this paper can be found in Figure 1.

Fig. 2. Flow chart describing the algorithmic pipeline of the

K .
2. RELATED WORK desktop system

In th_is sectior_l, we brie_fly review related res_earch e_ffmtgén- _ 3. SYSTEM OVERVIEW
erating real-time 3D video for desktop teleimmersion. Thst fi
such teleimmersive system was presented by researchées at t
University of Pennsylvania [5] who used several stereo camln this section, we provide an overview of the algorithmic
era trip'ets for image_based reconstruction of the uppdrybo pipeline Of our platform Wh|Ch a”OWS fOI‘ CO||ab0rati0n Men
A local user was able to communicate to a remote user whilgeographically distributed users by seamlessly integgatieir
preserving gaze_ Another desktop teleimmersive Systered)as 3D I’epl’esentation and virtual ObjeCtS within a shared a&lrtu
on reconstruction from silhouettes was proposed by Baker &nVironment. All users interact in the virtual environmers
al. who used five different views to obtain a 3D model of thetheir local stations. In order to properly model interacttue-
user via a visual-hull approach [6] The system emp|0yed.a si tween ObjeCtS in the shared virtual environment and allow fo
g|e PC which performed 3D reconstruction and renderingf th ﬂele”lty during ViSUaIiZation, eaCh Station maintainSlQEa|
users in a simple virtual meeting room. The compact systerfopy of the entire virtual space. Model manipulation and-pos
showed limited accuracy and speed. A similar system was prdrocessing of data can then be performed locally. With these
posed by Kauff and Schreer [7] who obtained the 3D video daté€duirements in mind, each station must perform three tasks
by merging depth maps generated by multi-baseline a|g'nr|th compute a 3D reconstruction of the local enVironment, commu
from four views. The System featured a custom-built mu|ti-nicate this 3D data to other Stations, and visualize theiairt
processor board. To generate a arbitrary virtual view ofgae ~ €nvironment.
mote user in virtual environment, view synthesis by 3D wagpi In our system, we employ a Bumblebee 2 camera (1024x768
was utilized. The later approach was extended and preskyted resolution) developed by Point Grey, Inc., whose intermal a
Schreer et al.[8] as part of a multi-user 3D conferencingesys  external parameters are calibrated prior to use [11]. Tagia
Their algorithm combined volumetric reconstruction witpth  are resized to 320x240 and rectified. The 3D reconstrucsion i
estimation to balance the low accuracy. The system, howeveserformed on these rectified resized images, and the dynamic
required a large number of cameras to generate a 3D model @éxture is applied via the high resolution images. As we simow
the user. the next few sections, this decision does not have a dettahen
In this paper, we describe a desktop teleimmersive systemffect on the accuracy of the reconstruction while guagintg
that employs image-based reconstruction on a stereo pgétto high quality visualizations. Next, one of the images to bedus
accurate results in real-time. We combine local and glopal a for reconstruction is background subtracted and then naeshe
proaches for disparity calculation in a novel way to gereesat ~ Using this mesh, a 3D reconstruction is computed. This data i
accurate 3D mesh and apply high-resolution texture mappinthen post-processed to improve the accuracy. Finally tigg-or
to improve the final visual quality. We compare our approachmal color image is compressed using our compression tegéniqg
against various benchmarks [9, 10] to illustrate the stiteiof  which employs motion residuals for inter-frame compressio
our method. We also develop a compact representation of thEhis package is then sent to the remote location where it-is de
texture information, the Border-Descriptor Inter-FramenG ~ compressed in real-time and passed to the rendering loaghwh
pression (BIFC) scheme, to achieve real-time performaritte w visualizes the depth information and texture maps the decom
high compression ratios. pressed data. Figure 2 illustrates this algorithmic pipeli



4. STEREO ALGORITHM

In this section, we describe a 3D reconstruction algorithat t
first segments an image into regions and matches these segiq 4
rather than perform pixel by pixel matching which is gener-J
ally inaccurate. This segmentation of the image has two be
efits when compared to the traditional pixel matching apgioa
First, the segmentation into regions is done according titexc
rion that complements the matching step. Namely, the nadchi

perform matching, which is unavailable while performingedi
by pixel matching. Second, the segmentation is done in a faslif
ion to allow straightforward information sharing betweeairp

of segments to improve the overall accuracy of the initidt es Fig. 4. Two images, each of size 450375, from the bench-

mate of the depth returned by the matching. After describinqnark developed by Scharstein et al. [10] (left column), the
our algorithm, we compare the performance of our algorithm i '

: . o ground truth for these two images produced using a laseerang
with several algorithms on a traditional benchmark. ; .
finder (center column), and the output of our stereo algarith

(right column). Note that lighter gray values indicate ttis
4.1. Construction of the Representation object in the scene is closer, darker gray indicate that gcbb

. . . . in the scene is further away, and black indicates areas atunc
We begin by decomposing the image domain into a coarse re‘?éinty

resentation of right isosceles triangle bases functiorasfofed
largest possible size. Each triangle is then bisected if/éne
ance of the gray scale image within each triangular region ion alocally planar surface. This method succeeds in ouesyst
higher than a given threshold. This type of segmentatioe-is r for two reasons: first, itimproves the robustness of our iatg
ferred to as Maubach’s bisection scheme [12]. procedure by employing entire regions instead of singl@fgoi
In addition to this bisecting scheme, we introduce an addiand, second, it reduces the total number of points that neust b
tional constraint to allow for the application of a variefystan- ~ matched which improves the overall efficiency of the matghin
dard post processing techniques: we require that there be mgocedure. Finally, we note that if a region has too low of a
nodes in the middle of a triangle’s edge. If after the bisecti variance (i.e. the largest triangle size) or if there is adlwc
scheme such a node exists, then we bisect the triangle veith tigion, then cross correlation performs extremely poorlythia
offending node at its triangle’s edge, which ensures thatrin  instance, we simply skip this region and rely on the resuthef
angles in question satisfy our required criterion. Thisetyfp ~ Ppost processing step to fill in the depth in this region.
mesh is referred to as conforming and aids in the development Since the representation is conformal, the depth map can
of algorithms to quickly post process the depth maps created be post processed by exploiting an approximation to stahdar
our reconstruction algorithm. global optimization procedures such as anisotropic diffus
which have been proven to improve the overall quality of Hept
reconstruction [13]. Since our mesh is conformal, depthesl
can pass between neighboring triangles via their nodesugtho
After the construction of this representation of the image, these finite element methods generally converge slowly,ahe
can calculate the depth at the nodes of the triangles by gmploproven to converge rapidly in a conformal representatiet).[1
ing a normalized cross correlation technique. Since window!n Figure 3, we show images to illustrate the steps of ouester
based stereo aggregation methods, like cross correldtion, —algorithm.
plicitly assume that all pixels within the window have simi-
lar disparities, they struggle whenever windows stradéigtlal 4.3. Results
discontinuities. This results in the infamous foregrousitien-
ing effect. Fortunately, the aforementioned image pariitig At this point, we compare the effectiveness of our algorithm
scheme provides the necessary information to overcome thilculating disparities. The benchmarks consist of dozdéns
difficulty. pictures. The two images that the benchmark has identified as
We assume depth varies smoothly within any image segmetiie most difficult are found in the left column of Figure 4. The
with homogeneous color. Fortunately, our mesh employs aaccuracy of the measurements is calculated against a ground
identical assumption during its construction. The sizehaf t truth image, which can be found in the center column of Figure
image segment generated by the meshing dictates our stgreo @, generated by a laser range finder. Note that lighter glagsa
gregation window size choice, since all elements in an imagédicate that the object in the scene is closer and darker gra
segment have similar depth. We do not assume that pixels imdicates than an object in the scene is further away. Blezksa
the same segment share the same depth, but rather thateheydbrrespond to points where the disparity value is unknown.

4.2. Calculation of Depth



Fig. 3. A 320 x 240 image taken from a single camera in a stereo cluster (tdp-leé mesh generated for this image (bottom-left),
the pre-processed disparity image (top-middle), and tlet-pcessed disparity image (bottom-middle), a rendevinthe data
using linear interpolation between the color value stotezhah node (top-right), and a rendering of the data usinBtR€ scheme
and texture mapping (bottom-right). Note that lighter gvalues indicate that the object in the scene is closer, dgriay indicate
that an object in the scene is further away, and black ineiécateas of uncertainty.

In this domain, error is calculated by the percentage of pix-of the same figure. A quantitative comparison of our alganith
els that differ by more than a pixel, which is approximatélg t can be found in table 1. We include the most accurate perform-
number of pixels that differ in their returned value by mdrart  ers on this benchmark in the same table. Wang et al. employed
a single centimeter. The output of our stereo algorithm @n tha dual core 1.6 GHz machine [15], Bleyer et al. employed a 2
images found in the left column of Figure 4 calculated on twoGHz Pentium 4 machine [16], and Klaus et al. employed a dual
dual core 2.33 GHz machines can be found in the right columigore 2.21 GHz machine [17]. We arrive at comparable levels

of accuracy as the top performers, but our algorithm takgs an
where between three hundred to two thousand times less time

Process | Ours Wang Bleyer Klaus to produce an answer. These top performers arrive at a high
Teddy 1-Pixel Error| 8.15% 8.31% 6.54% 7.06% level of accuracy by relying upon variants of global optieziz
Teddy Speed 42.1ms 20s 100s 14s  tion technique, which are slow. We arrive at comparablelgeve
Cone 1-Pixel Error | 8.56% 7.18% 8.62% 7.92%  of accuracy at a much faster speed on CPU by taking a hybrid
Cone Speed 53.8ms 20s 100s 25s  approach: performing a local optimization technique (tee r

o _ _ ~gion matching) and using a global optimization approxioati
Table 1. A quantitative comparison of our algorithm againsto improve the initial results (anisotropic diffusion). bfa 2

the top performers on the benchmark developed by Scharstefiescribes the average speed of our algorithm on a sequence o
etal. [10]. The teddy and cone image correspond to the top anghages taken from our system.

bottom rows of Figure 4 respectively. Our output was produce

with approximately 40,000 triangles in both instances. 5 REAL-TIME COMPRESSION

Triangulation 3.83ms Though the image partition described in the previous sectio
Disparity 15.8 ms provides a straightforward method to compress the depth-inf
Post-Processing 1.78 ms mation [18], if the partition is employed to compress the-tex
Total | 21.41ms ture image it would result in poor visual appearance. Iféadt

o . the uncompressed texture information was employed via tex-
Table 2. Average frame rate for a typical Image sequence in t_h¢ure mapping, then visual quality would remain unadulexiat
Tl system on two dual core 2.33 GHz machines obtained USIngjnfortunateb/, texture images are very |arge in size. AmsHl

Tl stereo pairs each with siz&0 x 240 with approximately tration of the difference between the two methods can bedoun
10000 triangles per frame. in Figure 3.



5.1. BIFC Algorithm JPEG compression. Therefore the intra-frame encoding-stru
ture consists of a sequence of macro block types, mask en-
In this section, we present a Border-Descriptor Inter-Feam coding, and the image encoding data. In order to perform
Compression (BIFC) scheme, which employs inter-frame mojnter-frame compression, we assume that users do not move
tion estimation. We first divide the image into macro bloaks t {50 quickly between consecutive frames. This notion is made
increase the speed. Three types of macro blocks are definedifpre clear in the next subsection. Under this assumpti@n, th
our scheme, (1) foreground blocks, (2) background bloaks, a porder blocks alone can be used to perform a motion estimate
(3) border blocks for areas corresponding to the edge betwegjnce they encode the most distinct features. Foregroumtksl
the background and foreground. The border block is not densi 5 then be filled in employing the border blocks. Following
ered in other bitmap-based compression methods. By employhe plock search, DCT transforms of block residuals are done
ing the background subtraction, we can label each of themnacrys in JPEG compression. The inter-frame encoding structure
blocks. is defined as a sequence of macro block type, mask encoding,
Similar to MPEG encoding, we divide frames over time intoimage-residual encoding, and moving vector data.
two types: intra-frames and inter-frames. Intra-framescam-
pressed via a variant of JPEG compression. Namely, in intras
frames, only foreground and border blocks are compressed vi
To illustrate the type of compression ratio and the speedi-c
pression and decompression we consider the performance of o

2. Compression Ratio and Speed

607 algorithm at various resolutions on our two dual core 2.3%GH
50 machine. The results in this paper are presented for abéat 75
404 foreground coverage of the entire image area. The key frame

was calculated every 10 frames while the stereo recongiruct
was performed at about 30 frames per second. The macro block

30 1

compression ralio

21 e JPEG size was set at 16 by 16 pixels and the search window for mo-
—m— BIFC-INTRA| . . . .
10 1 s BIFC-INTER tion estimation was set at 32 by 32 pixels. The user movement
0 ; | ; | is considered too quick if it moves beyond this 32 by 32 pixel
320°240 6407480 8007600 10247768 search window. Figure 5 illustrates the compression rdtibe

JPEG and BIFC scheme as a function of image resolution. For

Fig. 5. Comparing compression for the same image sequence htgh foreground coverage the difference in the compression
different resolutions for different compression schemes tio between JPEG and BIFC intra-frame compression is small.

On the otherhand, BIFC inter-frame compression has a distin

advantage over the JPEG compression technique.
:;T:j;:;‘:‘;m In Figure 6 we compare the time cost for compression and
|| 4 BIFG-NTER=ncode decompression between JPEG and BIFC scheme for large fore-

ground coverage (about 75%). The BIFC intra-frame com-
pression has higher compression time than JPEG compression
mainly due to the calculation of block type, while the inter-
frame compression is close to or below the JPEG scheme. For
decompression, the advantage of the BIFC compression schem
is obvious. Figure 3 illustrates the visual quality of our ap
(a) Compression proach.

N
o
i

fima (ms)

320240 6407480 8007600 1024*768

45 7 [ _¢— JPEG-decode 6. CONCLUSION
40 1| —= BIFCINTRAecode

—a— BIFC-INTER-decode

time (ms)

In this paper, we described a real-time stereo-vision sysbat

501 creates a highly accurate 3D reconstruction of users toruse i

e / collaborative environments. Our novel data representatiul

51 3D reconstruction algorithm offers a flexible, accuratey tast

0 s02t0 savemo 0000 tomres s_olution tc_> real—time_scene (usgr) capture in 3D. The recots
tion algorithm described here is amongst the top performiers

(b) Decompression an industry wide benchm_ark for accuracy a_nd it is eas_ily one

of the fastest reconstructions available. Using dynamih-hi
resolution texture mapping on lower-resolution mesh dagéa w

Fig. 6. Average time cost for compression on the capturing sidgan leverage between the currently available computingepow

and decompression on the rendering side for images witle larghetwork bandwidth, and visual quality required for facefdoe

(75%) foreground coverage. interactions in shared virtual environments.




Within our framework, the users are integrated into the vir-[10] D. Scharstein, R. Szeliski, and M. Coll, “High-Accuyac

tual environment. Different digital effects (e.g., religiy, de-

formations) can be applied in real time to manipulate what is

displayed to the remote users. The users can be immersdd insi

computer generated existing or non-existing environmeoth

as ancient buildings and future architectural designs,enged [11]
with 3D medical (e.g. MRI) or other scientific data (e.g. g8
tomography of Earth crust) to allow interactive exploratio
[12]
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